Hostname: page-component-cb9f654ff-rkzlw Total loading time: 0 Render date: 2025-08-24T03:40:18.128Z Has data issue: false hasContentIssue false

Impulse control and expected suprema

Published online by Cambridge University Press:  17 March 2017

Sören Christensen*
Affiliation:
Chalmers University of Technology and University of Gothenburg
Paavo Salminen*
Affiliation:
Åbo Akademi University
*
* Current address: Department of Mathematics, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany. Email address: soeren.christensen@uni-hamburg.de
** Postal address: Department of Mathematics and Statistics, Åbo Akademi University, FIN-20500 Åbo, Finland.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a class of impulse control problems for general underlying strong Markov processes on the real line, which allows for an explicit solution. The optimal impulse times are shown to be of a threshold type and the optimal threshold is characterised as a solution of a (typically nonlinear) equation. The main ingredient we use is a representation result for excessive functions in terms of expected suprema.

Information

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2017 

References

[1] Alili, L. and Kyprianou, A. E. (2005).Some remarks on first passage of Lévy processes, the American put and pasting principles.Ann. Appl. Prob. 15,20622080.Google Scholar
[2] Alvarez, L. H. R. (2004).A class of solvable impulse control problems.Appl. Math. Optimization 49,265295.CrossRefGoogle Scholar
[3] Alvarez, L. H. R. (2004).Stochastic forest stand value and optimal timber harvesting.SIAM J. Control Optimization 42,19721993.Google Scholar
[4] Alvarez, L. H. R. and Lempa, J. (2008).On the optimal stochastic impulse control of linear diffusions.SIAM J. Control Optimization 47,703732.Google Scholar
[5] Belak, C. and Christensen, S. (2017).Utility maximization in a factor model with constant and proportional costs.Preprint. Available at http://ssrn.com/abstract=2774697.Google Scholar
[6] Bensoussan, A. and Lions, J.-L. (1987).Impulse Control and Quasi Variational Inequalities.John Wiley.Google Scholar
[7] Blumenthal, R. M. and Getoor, R. K. (1968).Markov Processes and Potential Theory(Pure Appl. Math. 29).Academic Press,New York.Google Scholar
[8] Borodin, A. N. and Salminen, P. (2002).Handbook of Brownian Motion–Facts and Formulae,2nd edn.Birkhäuser,Basel.Google Scholar
[9] Cadenillas, A. and Zapatero, F. (2000).Classical and impulse stochastic control of the exchange rate using interest rates and reserves.Math. Finance 10,141156.Google Scholar
[10] Christensen, S. (2014).On the solution of general impulse control problems using superharmonic functions.Stoch. Process. Appl. 124,709729.Google Scholar
[11] Christensen, S.,Salminen, P. and Ta, B. Q. (2013).Optimal stopping of strong Markov processes.Stoch. Process. Appl. 123,11381159.Google Scholar
[12] Chung, K. L. and Walsh, J. B. (2005).Markov Processes, Brownian Motion, and Time Symmetry(Fundamental Principles Math. Sci. 249),2nd edn.Springer,New York.Google Scholar
[13] Cissé, M.,Patie, P. and Tanré, E. (2012).Optimal stopping problems for some Markov processes.Ann. Appl. Prob. 22,12431265.Google Scholar
[14] Corless, R. M. et al. (1996).On the Lambert W function.Adv. Comput. Math. 5,329359.Google Scholar
[15] Deligiannidis, G.,Le, H. and Utev, S. (2009).Optimal stopping for processes with independent increments, and applications.J. Appl. Prob. 46,11301145.Google Scholar
[16] Egami, M. (2008).A direct solution method for stochastic impulse control problems of one-dimensional diffusions.SIAM J. Control Optimization 47,11911218.Google Scholar
[17] Föllmer, H. and Knispel, T. (2006).A representation of excessive functions as expected suprema.Prob. Math. Statist. 26,379394.Google Scholar
[18] Irle, A. and Sass, J. (2006).Optimal portfolio policies under fixed and proportional transaction costs.Adv. Appl. Prob. 38,916942.Google Scholar
[19] Korn, R. (1999).Some applications of impulse control in mathematical finance.Math. Meth. Operat. Res. 50,493518.Google Scholar
[20] Kyprianou, A. E. (2006).Introductory Lectures on Fluctuations of Lévy Processes with Applications.Springer,Berlin.Google Scholar
[21] Kyprianou, A. E. and Surya, B. A. (2005).On the Novikov-Shiryaev optimal stopping problems in continuous time.Electron. Commun. Prob. 10,146154.Google Scholar
[22] Mordecki, E. (2002).The distribution of the maximum of a Lévy processes with positive jumps of phase-type.Theory Stoch. Process. 8,309316.Google Scholar
[23] Mordecki, E. (2002).Optimal stopping and perpetual options for Lévy processes.Finance Stoch. 6,473493.Google Scholar
[24] Mordecki, E. and Salminen, P. (2007).Optimal stopping of Hunt and Lévy processes.Stochastics 79,233251.Google Scholar
[25] Mundaca, G. and Øksendal, B. (1998).Optimal stochastic intervention control with application to the exchange rate.J. Math. Econom. 29,225243.Google Scholar
[26] Novikov, A. A. and Shiryaev, A. N. (2004).On an effective case of the solution of the optimal stopping problem for random walks.Teor. Veroyatn. Primen. 49,373382(in Russian). English translation: Theory Prob. Appl. 49(2005),344354.Google Scholar
[27] Novikov, A. A. and Shiryaev, A. N. (2007).On a solution of the optimal stopping problem for processes with independent increments.Stochastics 79,393406.CrossRefGoogle Scholar
[28] Øksendal, B. and Sulem, A. (2007).Applied Stochastic Control of Jump Diffusions,2nd edn.Springer,Berlin.Google Scholar
[29] Salminen, P. (2011).Optimal stopping, Appell polynomials, and Wiener‒Hopf factorization.Stochastics 83,611622.Google Scholar
[30] Sharpe, M. (1988).General Theory of Markov Processes(Pure Appl. Math. 133).Academic Press,Boston, MA.Google Scholar
[31] Stettner, Ł. (1983).On impulsive control with long run average cost criterion.Studia Math. 76,279298.Google Scholar
[32] Surya, B. A. (2007).An approach for solving perpetual optimal stopping problems driven by Lévy processes.Stochastics 79,337361.Google Scholar
[33] Ta, B. Q. (2014).Excessive functions, Appell polynomials and optimal stopping.Doctoral Thesis, Åbo Akademi University.Google Scholar
[34] Willassen, Y. (1998).The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth.J. Econom. Dynam. Control 22,573596.Google Scholar