Hostname: page-component-6bb9c88b65-bw5xj Total loading time: 0 Render date: 2025-07-21T13:43:28.824Z Has data issue: false hasContentIssue false

Potential use of the egg parasitoid Trichogramma pretiosum in the management of Rachiplusia nu

Published online by Cambridge University Press:  17 July 2025

Nathalia C. Andrade
Affiliation:
Biological Sciences Sector, Department of Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
Weidson P Sutil
Affiliation:
Biological Sciences Sector, Department of Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
Viviane S Alves
Affiliation:
Entomology, Universidade Estadual do Norte do Paraná - Campus de Cornélio Procópio, Cornélio Procópio, PR, Brazil
Adeney de Freitas Bueno*
Affiliation:
Entomology, Embrapa Soja, Londrina, PR, Brazil
*
Corresponding author: Adeney de Freitas Bueno; Email: adeney.bueno@embrapa.br

Abstract

Outbreaks of Rachiplusia nu have occurred on soybean in Brazil as the first species resistant to the Bt soybean expressing only Cry1Ac protein, triggering a significant increase in insecticide use on the crop. This threatens one of the most important benefits of adopting Bt soybean cultivars – the reduction of chemicals. Therefore, this research studied the biology and parasitism capacity of Trichogramma pretiosum at 20, 25, and 30 ± 2 °C on R. nu eggs in order to evaluate the potential of releasing this egg parasitoid in soybean to manage R. nu. Parasitoid exhibited high biological performance on the R. nu eggs as observed in the lifetime parasitism of 24.9, 46.4, and 34.4 R. nu eggs at 20, 25, and 30 °C, respectively, and 100% emergence in both biology and parasitism capacity experiments. The sex ratio was statistically lower at 20 °C (0.4947), but at all studied temperatures, the production of female descendants was equal (sex ratio of 0.4947 at 20 °C) or higher (sex ratio of 0.6666 at 25 °C and 0.6524 at 30 °C). All other evaluated parameters were similar to previously positive recorded observations for T. pretiosum on other soybean pests, such as Anticarsia gemmatalis and Chrysodeixis includens, against which the parasitoid has already been commercially released in the fields as a biocontrol option. Therefore, T. pretiosum might also be released in soybean as an egg parasitoid against R. nu, what needs to be confirmed in future field trials.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bai, B, Luck, RF, Forster, L, Stephens, B and Janssen, JAM (1992) The effect of host size on quality attributes of the egg parasitoid, Trichogramma pretiosum. Entomologia Experimentalis Et Applicata 64, 3748.CrossRefGoogle Scholar
Basso, C, Chiaravalle, W and Maignet, P (2020) Effectiveness of Trichogramma pretiosum in controlling lepidopterous pests of soybean crops. Agrociencia Uruguay 24, 419. doi:10.31285/AGRO.24.419Google Scholar
Bernardi, O, Dourado, PM, Carvalho, RA, Martinelli, S, Berger, GU, Head, GP and Omoto, C (2014) High levels of biological activity of Cry1Ac protein expressed on MON 87701× MON 89788 soybean against Heliothis virescens (Lepidoptera: Noctuidae). Pest Management Science 70, 588594.CrossRefGoogle ScholarPubMed
Bernardi, O, Malvestiti, GS, Dourado, PM, Oliveira, WS, Martinelli, S and Berger, GU (2012) Assessment of the high-dose concept and level of control provided by MON 87701 × MON 89788 soybean against xAnticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Management Science 68, 10831091.CrossRefGoogle ScholarPubMed
Bleicher, E and Parra, JRP (1989) Espécies de Trichogramma parasitoides de Alabama argillacea. I. Biologia de três populações. Pesquisa Agropecuária Brasileira 24, 929940.Google Scholar
Braz, ÉC, Bueno, AF, Colombo, FC and Queiroz, AP (2021) Temperature impact on Telenomus podisi emergence in field releases of unprotected and encapsulated parasitoid pupae. Neotropical Entomology 50, 462469. doi:10.1007/s13744-021-00857-3CrossRefGoogle ScholarPubMed
Brookes, G (2018) The farm level economic and environmental contribution of Intacta soybeans in South America: The first five years. GM Crops & Food 9, 140151.10.1080/21645698.2018.1479560CrossRefGoogle ScholarPubMed
Brotodjojo, RRR and Wakter, GH (2006) Oviposition and reproductive performance of a generalist parasitoid (Trichogramma pretiosum) exposed to host species that differ in their physical characteristics. Biological Control 39, 300312.10.1016/j.biocontrol.2006.08.011CrossRefGoogle Scholar
Bueno, AF, Braz-Zini, EC, Horikoshi, RJ, Bernardi, O, Andrade, G and Sutil, WP (2025) Over 10 years of Bt soybean in Brazil: Lessons, benefits, and challenges for its use in Integrated Pest Management (IPM). Neotropical Entomology 54, 61. doi:10.1007/s13744-025-01275-5CrossRefGoogle ScholarPubMed
Bueno, AF, Sutil, WP, Cingolani, MF and Colmenarez, YC (2024) Using egg parasitoids to manage caterpillars in soybean and maize: Benefits, challenges, and major recommendations. Insects 15, 869. doi:10.3390/insects15110869CrossRefGoogle ScholarPubMed
Bueno, RCOF, Parra, JRP and Bueno, AF (2012) Trichogramma pretiosum parasitism of Pseudoplusia includens and Anticarsia gemmatalis eggs at different temperatures. Biological Control 60, 154162.CrossRefGoogle Scholar
Burr, IW, and Foester, LA (1972) A test for equality of variances. In Mimeo Series. n° 282 West Lafayette: Purdue University. 26.Google Scholar
Carvalho, GS, Silva, LB, Reis, SS, Veras, MS, Carneiro, E, Almeida, MLS, Silva, AF and Lopes, GN (2017) Biological parameters and thermal requirements of Trichogramma pretiosum reared on Helicoverpa armigera eggs. Pesquisa Agropecuária Brasileira 52, 961968.10.1590/s0100-204x2017001100001CrossRefGoogle Scholar
Chapman, RF (1998) The Insects: Structure and Function 4th edition. Cambridge, UK: Cambridge University Press. 788.10.1017/CBO9780511818202CrossRefGoogle Scholar
Chen, L, Enkegaard, A and Sørensen, JG (2021) Temperature affects biological control efficacy: A microcosm study of Trichogramma achaeae. Insects 12, 95. doi:10.3390/insects12020095CrossRefGoogle ScholarPubMed
Cônsoli, FL, Kitajima, EW and Parra, JRP (1999) Ultrastructure of the natural and factitious host eggs of Trichogramma galloi Zucchi and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). International Journal of Insect Morphology and Embryology 28, 211229.CrossRefGoogle Scholar
Del Pino, M, Gallego, JR, Suárez, EH and Cabello, T (2020) Effect of Temperature on Life History and Parasitization Behavior of Trichogramma achaeae Nagaraja and Nagarkatti (Hym.: Trichogrammatidae). Insects 11(482). doi:10.3390/insects11080482CrossRefGoogle ScholarPubMed
Denis, D, Pierre, JS, van Baaren, J and van Alphen, JJ (2011) How temperature and habitat quality affect parasitoid lifetime reproductive success a simulation study. Ecological Modelling 222, 16041613. doi:10.1016/j.ecolmodel.2011.02.023CrossRefGoogle Scholar
Dourado, PM, Bacalhau, FB, Amado, D, Carvalho, RA, Martinelli, S, Head, GP and Omoto, C (2016) High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigera to Bt soybean in Brazil. PLoS One 11, 0161388.CrossRefGoogle ScholarPubMed
Firake, DM and Khan, MA (2014) Alternating temperatures affect the performance of Trichogramma species. Journal of Insect Science 14(1), 41. doi:10.1093/jis/14.1.41CrossRefGoogle ScholarPubMed
Foerster, LA and Avanci, MRF (1999) Egg parasitoids of Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae) in soybeans. Anais da Sociedade Entomológica Do Brasil 28, 545548.10.1590/S0301-80591999000300025CrossRefGoogle Scholar
Grande, MLM, Queiroz, AP, Gonçalves, J, Hayashida, R, Ventura, MU and Bueno, AF (2021) Impact of environmental variables on parasitism and emergence of Trichogramma pretiosum, Telenomus remus and Telenomus podisi. Neotropical Entomology 50, 110. doi:10.1007/s13744-021-00874-2CrossRefGoogle ScholarPubMed
Greene, GL, Leppla, NC and Dickerson, WA (1976) Velvetbean caterpillar: A rearing procedure and artificial medium. Journal of Economic Entomology, Baltimore 69, 487488.CrossRefGoogle Scholar
Haddad, ML, Parra, JRP and Moraes, RCB (1999) Métodos Para Estimar Os Limites Térmicos Inferior E Superior de Desenvolvimento Dos Insetos. FEALQ: Piracicaba.Google Scholar
Hasan, MM, Parvin, MN and Athanassiou, CG (2024) Effects of low temperatures on quiescence in Trichogramma evanescens Westwood and T. chilonis Ishii reared on Plodia interpunctella (Hübner): Implications for mass rearing. Scientific Reports 14, 3220. doi:10.1038/s41598-024-53702-zCrossRefGoogle Scholar
Hassan, SA (1997) Seleção de espécies de Trichogramma para o uso em programas de controle biológico. Parra, JRP and Zucchi, RA Trichogramma E O Controle Aplicado. Piracicaba – SP: FEALQ, 183205.Google Scholar
Hayashida, R, Godoy, CV, Hoback, WW and Bueno, AF (2020) Are economic thresholds for IPM decisions the same for low LAI soybean cultivars in Brazil? Pest Management Science 77(3), 12561261.10.1002/ps.6138CrossRefGoogle Scholar
Hernández, D and Díaz, F (1996) Efecto de la temperatura sobre el desarrollo de Telenomus remus Nixon (Hymenoptera: Scelionidae) parasitoide de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Boletin de Entomologia Venezolana 11, 149153.Google Scholar
Hoffmann, CL, Silva, SMT and Santos, WJ (1989) Lista preliminar de Trichogrammatidae encontrados no Paraná. Anais da Sociedade Entomológica Do Brasil 18, 203206.Google Scholar
Hoffmann-Campo, CB, Oliveira, EB and Moscardi, F (1985) Criação Massal da Lagarta-da-soja. EMBRAPA-CNPSO: Londrina - PR.Google Scholar
Li, L (1994) Worldwide use of Trichogramma for biological control on different crops: A survey. In Wajnberg, E and Hassan, SA (eds.), Biological Control with Egg Parasitoids. Wallingford: CAB International, 3754.Google Scholar
Machado, VOF, Ferreira, GA, Rosa, SRA, Garcia, AE, Pinheiro, JB and Veloso, VRS (1999) Aspectos biológicos de Anticarsia gemmatalis Hübner (Lepidotera: Noctuidae) em cultivares de soja (Glycine max Merrill). Pesquisa Agropecuária Tropical 29, 3941.Google Scholar
MacRae, TC, Baur, ME, Boethel, DJ, Fitzpatrick, BJ, Gao, AG and Gamundi, JC (2005) Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera. Journal of Economic Entomology 98, 577587.10.1093/jee/98.2.577CrossRefGoogle ScholarPubMed
McDougall, SJ and Mills, NJ (1997) The influence of hosts, temperature and food sources on the longevity of Trichogramma platneri. Entomologia Experimentalis Et Applicata 83, 195203.10.1046/j.1570-7458.1997.00172.xCrossRefGoogle Scholar
Mills, NJ and Kuhlmann, U (2000) The relationship between egg load and fecundity among Trichogramma parasitoids. Ecological Entomology 25, 315324.10.1046/j.1365-2311.2000.00260.xCrossRefGoogle Scholar
Naranjo, SE (2021) Effects of GE Crops on Non-target Organisms. In Ricroch, A, Chopra, S and Kuntz, M (eds.) Second Edition , Plant Biotechnology. Springer 127-144 : Cham. 10.1007/978-3-030-68345-0_1010.1007/978-3-030-68345-0_10CrossRefGoogle Scholar
Nardon, AC, Mathioni, SM, Santos, LV and Rosa, DD (2021) Primeiro registro de Rachiplusia nu (Guenée, 1852), (Lepidoptera: Noctuidae) sobrevivendo a soja Bt no Brasil. Entomological Communications 3, ec03028ec03028.10.37486/2675-1305.ec03028CrossRefGoogle Scholar
Nava, DE Haddad ML and Parra, JRP (2008) Exigências térmicas, estimativa do número de gerações de Stenoma canetifer e comprovação do modelo em campo. Pesquisa Agropecuária Brasileira 40, 961967.CrossRefGoogle Scholar
Negahban, M, Sedaratian-Jahromi, A, Ghane-Jahromi, M, Haghani, M and Zalucki, MP (2021) Response of Trichogramma brassicae (Hym.: Trichogrammatidae) to temperature: Utilizing thermodynamic models to describe curvilinear development. Crop Protection 143, 105562. doi:10.1016/j.cropro.2021.105562CrossRefGoogle Scholar
Noldus, LPJJ (1989) Semiochemicals foraging behaviour and quality of entomophagous insects for biological control. Journal Applied of Entomology 108, 425451.10.1111/j.1439-0418.1989.tb00478.xCrossRefGoogle Scholar
Oliveira, LMG and Kanashiro, MK (2010) Imunologia. Fundação CECIERJ: Rio de Janeiro – RJ, 2: 248.Google Scholar
Pak, GA and Oatman, ER (1982) Biology of Trichogramma brevicapillum. Entomologia Experimentalis Et Applicata 32, 6167.CrossRefGoogle Scholar
Parra, JRP (1997) Técnicas de criação de Anagasta kuehniella, hospedeiro alternativo para produção de Trichogramma. In Parra, JRP and Zucchi, RA (eds.), Trichogramma E O Controle Biológico Aplicado. Piracicaba: FEALQ, 121150.Google Scholar
Parra, JRP and Coelho, JA (2019) Applied Biological Control in Brazil: From Laboratory Assays to Field Application. Journal of Insect Science 19, 16.Google Scholar
Pereira, FF, Barros, R, Pratissoli, D and Parra, JRP (2004) Biologia e exigências térmicas de Trichogramma pretiosum Riley e T. exiguum Pinto & Planter (Hymenoptera: Trichogrammatidae) criados em ovos de Plutella xylostella (L.) (Lepidoptera: Plutellidae). Neotropical Entomology 33, 231236.10.1590/S1519-566X2004000200014CrossRefGoogle Scholar
Pizzol, J, Desneux, N, Wajnberg, E and Thiéry, D (2010) Parasitoid and host egg ages have independent impact on various biological traits in a Trichogramma species. Journal of Pest Science 85, 489496.10.1007/s10340-012-0434-1CrossRefGoogle Scholar
Pratissoli, D (1995) Bioecologia de Trichogramma pretiosum Riley, 1879, nas traças, Scrobipalpuloides absoluta (Meyrick, 1917) e Phthorimaea operculella (Zeller, 1873), em tomateiro. PhD thesis in Entomology– Escola Superior de Agricultura “Luiz de Queiroz.” (University of São Paulo, Piracicaba, SP, Brazil). Piracicaba, SP: Universidade de São Paulo, 134.Google Scholar
Pratissoli, D, Oliveira, HN, Gonçalves, JR, Zanuncio, JC and Holtz, AM (2004a) Changes in biological characteristics of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) reared on eggs of Anagasta kuehniella (Lepidoptera.: Pyralidae) for 23 generations. Biocontrol Science and Technology 14, 313319.CrossRefGoogle Scholar
Pratissoli, D and Parra, JRP (2000) Desenvolvimento e exigências térmicas de Trichogramma pretiosum Riley, criados em duas traças do tomateiro. Pesquisa Agropecuária Brasileira 35, 12811288.CrossRefGoogle Scholar
Pratissoli, D and Parra, JRP (2001) Seleção de linhagens de Trichogramma pretiosum Riley, 1879, para o controle das traças, Tuta absoluta (Meyrick) e Phthorimaea operculella (Zeller). Neotropical Entomology 30, 277282.CrossRefGoogle Scholar
Reis, AC, Steinhaus, EA, Godoy, DN, Warpechowski, LF, Diniz, LHM, Dallanora, A, Horikoshi, RJ, Ovejero, RFL, Martinelli, S, Berger, GU, Head, GP, Dourado, PM and Bernardi, O (2025) Genetic basis of resistance to Cry1Ac in Rachiplusia nu (Lepidoptera: Noctuidae): Inheritance mode, cross-resistance patterns and fitness cost. Pest Management Science 81(2), 727735.CrossRefGoogle ScholarPubMed
Reznik, SY, Umarova, TY and Voinovich, ND (2001) Long-term egg retention and parasitization in Trichogramma principium (Hymenoptera, Trichogrammatidae). Journal of Applied Entomology 125, 169175.CrossRefGoogle Scholar
Reznik, SY and Vaghina, NP (2006) Temperature effects on induction of parasitization by females of Trichogramma principium (Hymenoptera, Trichogrammatidae). Entomological Review 86, 133138.CrossRefGoogle Scholar
SAS Institute (2009) SAS User’s Guide: Statistics, Version 8e. SAS Institute. Cary –: NC 1028.Google Scholar
Scholler, M and Hassan, SA (2001) Comparative biology and life tables of Trichogramma evanescens and T. cacoeciae with Ephestia elutella as host at four constant temperatures. Entomologia Experimentalis Et Applicata 98, 3540.10.1046/j.1570-7458.2001.00754.xCrossRefGoogle Scholar
Shapiro, SS and Wilk, MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52, 591611.10.1093/biomet/52.3-4.591CrossRefGoogle Scholar
Silveira, LCP, Vendramin, JD and Rossetto, CJ (1997) Efeitos de genótipos de milho no desenvolvimento de Spodoptera frugiperda (J. E. Smith). Anais da Sociedade Entomológica Do Brasil 26, 291298.10.1590/S0301-80591997000200010CrossRefGoogle Scholar
Smith, SM (1996) Biological control with Trichogramma: Advances, successes, and potencial of their use. Annual Review of Entomology 41, 375406.10.1146/annurev.en.41.010196.002111CrossRefGoogle Scholar
Sosa-Gómez, DR, Corrêa-Ferreira, BS, Hoffmann-Campo, CB, Corso, IC, Oliveira, LJ, Moscardi, F, Panizzi, AR, Bueno, AF, Hirose, E and Roggia, S (2014) Manual D Identificação de Insetos E Outros Invertebrados da Cultura da Soja. Londrina – PR: Embrapa Soja.Google Scholar
Sujii, ER, Costa, MLM, Pires, CSS, Colazza, S and Borges, M (2002) Inter and intra-guild interactions in egg parasitoid species of the soybean stink bug complex. Pesquisa Agropecuária Brasileira 37, 541549.10.1590/S0100-204X2002001100004CrossRefGoogle Scholar
Tabashnik, EB, Fabrick, AJ and Carrière, Y (2023) Global Patterns of Insect Resistance to Transgenic Bt Crops: The First 25 Years. Journal of Economic Entomology 116, 297309. doi:10.1093/jee/toac183CrossRefGoogle ScholarPubMed
Thomson, LJ and Hoffmann, AA (2002) Laboratory fecundity as predictor of field success in Trichogramma carverae (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology 95, 912917.10.1603/0022-0493-95.5.912CrossRefGoogle Scholar
van Lenteren, JC, Bolckmans, K, Köhl, J, Ravensberg, WJ and Urbaneja, A (2018) Biological control using invertebrates and microorganisms: Plenty of new opportunities. Bio Control 63, 3959.Google Scholar
Volkoff, AN and Daumal, J (1994) Ovarian cycle in immature and adults’ stage of Trichogramma cacoeciae and T. brassicae (Hymenoptera: Trichogrammatidae). Entomophaga 39, 303312.10.1007/BF02373035CrossRefGoogle Scholar
Wajnberg, E and Hassan, SA (1994) Biological Control with Egg Parasitoids. Wallingford: British Library, 286.Google Scholar
Wakeil, NE, Farghaly, HT and Ragab, Z (2008) A. Efficacy of inundative releases of Trichogramma evanescens in controlling Lobesia botrana in vineyards in Egypt. Journal of Pesticide Science 81, 4955.Google Scholar
Yeargan, KV (1980) Effects of temperature on development rate of Telenomus podisi (Hymenoptera: Scelionidae). Annals of the Entomological Society of America 73, 339342.CrossRefGoogle Scholar
Zachrisson, BA (1997) Bioecologia de Trichogramma pretiosum Riley, 1879, para o controle de Anticarsia gemmatalis Hübner, 1818, na cultura da soja. PhD Thesis – Escola Superior de Agricultura “Luiz de Queiroz.” (University of São Paulo, São Paulo, SP, Brazil) Piracicaba: Universidade de São Paulo, 106.Google Scholar
Zago, HB, Pratissoli, D, Barros, R and Godim, MGC Jr (2006) Biologia e exigências térmicas de Trichogramma pratissolii Querino & Zucchi (Hymenoptera: Trichogrammatidae) em hospedeiros alternativos. Neotropical Entomology 35, 377381.10.1590/S1519-566X2006000300013CrossRefGoogle Scholar