Hostname: page-component-cb9f654ff-mnl9s Total loading time: 0 Render date: 2025-08-15T09:16:30.292Z Has data issue: false hasContentIssue false

Stable homology of Lie algebras of derivations and homotopy invariants of wheeled operads

Published online by Cambridge University Press:  13 August 2025

Vladimir Dotsenko*
Affiliation:
Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René-Descartes, 67000 Strasbourg CEDEX, France vdotsenko@unistra.fr

Abstract

We prove a theorem that computes, for any augmented operad $\mathcal{O}$, the stable homology of the Lie algebra of derivations of the free algebra $\mathcal{O}(V)$ with twisted bivariant coefficients (here stabilization occurs as $\dim(V)\to\infty$) out of the homology of the wheeled bar construction of $\mathcal{O}$; this can further be used to prove uniform mixed representation stability for the homology of the positive part of that Lie algebra with constant coefficients. This result generalizes both the Loday–Quillen–Tsygan theorem on the homology of the Lie algebra of infinite matrices and the Fuchs stability theorem for the homology of the Lie algebra of vector fields. We also prove analogous theorems for the Lie algebras of derivations with constant and zero divergence, in which case one has to consider the wheeled bar construction of the wheeled completion of $\mathcal{O}$. Similarly to how cyclic homology of an algebra A may be viewed as an additive version of the algebraic K-theory of A, our results hint at the additive K-theoretic nature of the wheeled bar construction.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

To Boris Feigin, with gratitude and admiration.

References

Aguiar, M. and Mahajan, S., Monoidal functors, species and Hopf algebras , CRM Monograph Series, vol. 29 (American Mathematical Society, Providence, RI, 2010).Google Scholar
Alekseev, A., Kawazumi, N., Kuno, Y. and Naef, F., The Goldman–Turaev Lie bialgebra in genus zero and the Kashiwara-Vergne problem , Adv. Math. 326 (2018), 153.CrossRefGoogle Scholar
Anick, D. J., Limits of tame automorphisms of $k[x_{1},\ldots,x_{N}]$ , J. Algebra 82 (1983), 459468.CrossRefGoogle Scholar
Artamonov, V. A., Clones of multilinear operations and multiple operator algebras, Uspekhi Mat. Nauk 24 (1969), 4759.Google Scholar
Artamonov, V. A., Nilpotence, projectivity, freeness, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5 (1971), 5053.Google Scholar
Artamonov, V. A., Projective metabelian groups and Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 2 (1978), 226236, 469.Google Scholar
Bahturin, Y. and Shpilrain, V., On Lie algebras with wild automorphisms, Results Math. 28 (1995), 209213.Google Scholar
Bartholdi, L. and Kassabov, M., Property (T) and Many Quotients, Preprint (2023), https://arxiv.org/abs/2308.14529arXiv:2308.14529 [math.GR].Google Scholar
Bass, H., Algebraic K (W. A. Benjamin, New York–Amsterdam, 1968).Google Scholar
Berest, Y., Felder, G., Patotski, S., Ramadoss, A. C. and Willwacher, T., Representation homology, Lie algebra cohomology and the derived Harish-Chandra homomorphism, J. Eur. Math. Soc. (JEMS) 19 (2017), 28112893.CrossRefGoogle Scholar
Berest, Y., Felder, G. and Ramadoss, A., Derived representation schemes and noncommutative geometry, in Expository lectures on representation theory, Contemporary Mathematics, vol. 607 (American Mathematical Society, Providence, RI, 2014), 113–162.Google Scholar
Berest, Y. and Ramadoss, A., Stable representation homology and Koszul duality, J. Reine Angew. Math. 715 (2016), 143187.Google Scholar
Berger, C. and Moerdijk, I., Resolution of coloured operads and rectification of homotopy algebras, in Categories in algebra, geometry and mathematical physics, Contemporary Mathematics, vol. 431 (American Mathematical Society, Providence, RI, 2007), 31–58.Google Scholar
Bergeron, F., Labelle, G. and Leroux, P., Combinatorial species and tree-like structures , Encyclopedia of Mathematics and its Applications, vol. 67 (Cambridge University Press, Cambridge, 1998).Google Scholar
Bergman, G., Wild automorphisms of free P.I. algebras, and some new identities, Manuscript (1979), https://math.berkeley.edu/ gbergman/papers/unpub/wild_aut.pdfhttps://math.berkeley.edu/ $\sim$ gbergman/papers/unpub/wild_aut. https://math.berkeley.edu/ gbergman/papers/unpub/wild_aut.pdfpdf.Google Scholar
Boardman, J. M. and Vogt, R. M., Homotopy-everything H-spaces, Bull. Amer. Math. Soc. 74 (1968), 11171122.Google Scholar
Bohmann, A. M. and Szymik, M., Boolean algebras, Morita invariance, and the algebraic K-theory of Lawvere theories, Preprint (2020), https://arxiv.org/abs/2011.11755arXiv:2011.11755 [math.KT].Google Scholar
Bruinsma, S., On cohomology of graph complexes, Preprint (2023), https://arxiv.org/abs/2311.18745arXiv:2311.18745 [math.KT].Google Scholar
Bryant, R. M. and Drensky, V., Obstructions to lifting automorphisms of free algebras, Comm. Algebra 21 (1993), 43614389.CrossRefGoogle Scholar
Brylinski, R. K., Stable calculus of the mixed tensor character. I, in Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Annèe (Paris, 1987/1988), Lecture Notes in Mathematics, vol. 1404 (Springer, Berlin, 1989), 35–94.Google Scholar
Church, T. and Farb, B., Representation theory and homological stability , Adv. Math. 245 (2013), 250314.CrossRefGoogle Scholar
Conant, J. and Vogtmann, K., On a theorem of Kontsevich, Algebr. Geom. Topol. 3 (2003), 11671224.Google Scholar
Connell, E. H., A K-theory for the category of projective algebras, J. Pure Appl. Algebra 5 (1974), 281292.Google Scholar
Connell, E. H., On the K-theory of algebras and polynomial extensions, J. Pure Appl. Algebra 7 (1976), 169174.Google Scholar
Connell, E. H. and Wright, D., A Mayer-Vietoris sequence in nonlinear K-theory, J. Pure Appl. Algebra 16 (1980), 149165.Google Scholar
Djament, A., Décomposition de Hodge pour l’homologie stable des groupes d’automorphismes des groupes libres, Compositio Math. 155 (2019), 17941844.Google Scholar
Dotsenko, V. and Khoroshkin, A., Quillen homology for operads via Gröbner bases, Doc. Math. 18 (2013), 707747.Google Scholar
Dotsenko, V. and Tamaroff, P., Endofunctors and Poincaré–Birkhoff–Witt theorems, Int. Math. Res. Not. IMRN 16 (2021), 12670–12690.CrossRefGoogle Scholar
Enomoto, N. and Satoh, T., On the derivation algebra of the free Lie algebra and trace maps, Algebr. Geom. Topol. 11 (2011), 28612901.Google Scholar
Felder, M., Naef, F., and Willwacher, T., Stable cohomology of graph complexes, Selecta Math. (N.S.) 29 (2023), Paper No. 23, 72.Google Scholar
Fegin, B. L. and Fuks, D. B., Stable cohomology of the algebra $W_{n}$ and relations in the algebra $L_{1}$ , Funktsional. Anal. i Prilozhen. 18 (1984), 94–95.Google Scholar
Fegin, B. L. and Tsygan, B. L., Additive K-theory, in K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Mathematics, vol. 1289 (Springer, Berlin, 1987), 67–209.Google Scholar
Fresse, B., Modules over operads and functors , Lecture Notes in Mathematics, vol. 1967 (Springer, Berlin, 2009).Google Scholar
Fuks, D. B., Stable cohomology of a Lie algebra of formal vector fields with tensor coefficients, Funktsional. Anal. i Prilozhen. 17 (1983), 62–69.CrossRefGoogle Scholar
Fuks, D. B., Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics (Consultants Bureau, New York, 1986).CrossRefGoogle Scholar
Gelfand, I. M., Fegin, B. L. and Fuks, D. B., Cohomology of the Lie algebra of formal vector fields with coefficients in its dual space and variations of characteristic classes of foliations, Funktsional. Anal. i Prilozhen. 2 (1974), 13–29.Google Scholar
Gelfand, I. M. and Fuks, D. B., Cohomologies of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR Ser. Mat. (1970), 322–337.Google Scholar
Ginzburg, V., Non-commutative symplectic geometry, quiver varieties, and operads , Math. Res. Lett. 8 (2001), 377400.CrossRefGoogle Scholar
Granåker, J., Unimodular L-infinity algebras, Preprint (2008), https://arxiv.org/abs/0803.1763arXiv:0803.1763 [math.QA].Google Scholar
Guillemin, V. and Shnider, S., Some stable results on the cohomology of the classical infinite-dimensional Lie algebras, Trans. Amer. Math. Soc. 179 (1973), 275–280.CrossRefGoogle Scholar
Habiro, K. and Katada, M., On the stable cohomology of the (IA-)automorphism groups of free groups, Preprint (2023), https://arxiv.org/abs/2211.13458arXiv:2211.13458 [math.AT].Google Scholar
Hamilton, A. and Lazarev, A., Characteristic classes of $A_\infty$ -algebras, J. Homotopy Relat. Struct. 3 (2008), 65111.Google Scholar
Hanlon, P., On the complete GL(n, C)-decomposition of the stable cohomology of gl_n(A), Trans. Amer. Math. Soc. 308 (1988), 209–225.Google Scholar
Hennion, B., The tangent complex of K-theory, J. Éc. polytech. Math. 8 (2021), 895932.Google Scholar
Joyal, A., Une théorie combinatoire des séries formelles , Adv. Math. 42 (1981), 182.CrossRefGoogle Scholar
Kapranov, M., Rozansky-Witten invariants via Atiyah classes, Compositio Math. 115 (1999), 71113.Google Scholar
Kassabov, M., On the automorphism tower of free nilpotent groups, Preprint (2003), https://arxiv.org/abs/math/0311488arXiv:math/0311488 [math.GR].Google Scholar
Katada, M., Stable rational homology of the IA-automorphism groups of free groups, Preprint (2022), https://arxiv.org/abs/2207.00920arXiv:2207.00920 [math.AT].Google Scholar
Kaufmann, R. M. and Ward, B. C., Koszul Feynman categories, Preprint (2021), https://arxiv.org/abs/2108.09251arXiv:2108.09251.Google Scholar
Kawazumi, N. and Vespa, C., On the wheeled PROP of stable cohomology of ${\rm Aut}(F_n)$ with bivariant coefficients, Algebr. Geom. Topol. 23 (2023), 30893128.Google Scholar
Kelly, G. M., On the operads of J. P. May, Repr. Theory Appl. Categ. 13 (2005), 1–13.Google Scholar
Khoroshkin, A. S., Lie algebra of formal vector fields extended by formal g-valued functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 335 (2006), 205–230.Google Scholar
Khoroshkin, A. S., Characteristic classes of flags of foliations and Lie algebra cohomology, Transform. Groups 21 (2016), 479–518.CrossRefGoogle Scholar
Khoroshkin, A., Koszul operads and distributive lattices, Preprint (2005), ITEP-TH-95/05, http://wwwth.itep.ru/mathphys/psfiles/05_95.pshttp://wwwth.itep.ru/mathphys/psfiles/05_95.ps.Google Scholar
Khoroshkin, A., PBW property for associative universal enveloping algebras over an operad, Int. Math. Res. Not. IMRN 4 (2022), 3106–3143.CrossRefGoogle Scholar
Kontsevich, M., Formal (non)commutative symplectic geometry, in The Gelfand Mathematical Seminars, 1990–1992 (Birkhäuser, Boston, 1993), 173187.Google Scholar
Kontsevich, M., Feynman diagrams and low-dimensional topology, in First European Congress of Mathematics, Vol. II (Paris, 1992), Progress in Mathematics, vol. 120 (Birkhäuser, Basel, 1994), 97–121.CrossRefGoogle Scholar
Kh, D.. Kozybaev and U. U. Umirbaev, The Magnus embedding for right-symmetric algebras, Sibirsk. Mat. Zh. 45 (2004), 592–599.Google Scholar
Kupers, A. and Randal-Williams, O., On the Torelli Lie algebra, Forum Math. Pi 11 (2023), e13.Google Scholar
Lindell, E., Stable cohomology of ${\rm Aut}(F_n)$ with bivariant twisted coefficients, Preprint (2022), https://arxiv.org/abs/2212.11075arXiv:2212.11075 [math.AT].Google Scholar
Loday, J.-L., Cyclic homology, second edition, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301 (Springer, Berlin, 1998).CrossRefGoogle Scholar
Loday, J.-L. and Quillen, D., Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), 569–591.Google Scholar
Loday, J.-L. and Vallette, B., Algebraic operads, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346 (Springer, Heidelberg, 2012).Google Scholar
Losik, M. V., The cohomology of the Lie algebra of vector fields with nontrivial coefficients, Funktsional. Anal. i Prilozhen. 6 (1972), 44–46.CrossRefGoogle Scholar
Lyakhovich, S. L., Mosman, E. A. and Sharapov, A. A., Characteristic classes of Q-manifolds: classification and applications, J. Geom. Phys. 60 (2010), 729759.Google Scholar
MacLane, S., Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40106.Google Scholar
Macdonald, I. G., Symmetric functions and Hall polynomials, second edition, Oxford Mathematical Monographs (Oxford University Press, New York, 1995).CrossRefGoogle Scholar
MacLane, S., Categories for the working mathematician , Graduate Texts in Mathematics, vol. 5 (Springer, New York–Berlin, 1971).Google Scholar
Mahajan, S., Symplectic operad geometry and graph homology, Preprint (2002), https://arxiv.org/abs/0211464arXiv:0211464 [math.QA].Google Scholar
Mahajan, S., Cyclic homology and graph homology, Manuscript (2003), https://www.math.iitb.ac.in/ swapneel/Cyclic.pdfhttps://www.https://www.math.iitb.ac.in/ swapneel/Cyclic.pdfmath.iitb.ac.in/ $\sim$ swapneel/Cyclic.pdf.Google Scholar
Markl, M., Merkulov, S. and Shadrin, S., Wheeled PROPs, graph complexes and the master equation, J. Pure Appl. Algebra 213 (2009), 496535.Google Scholar
Markl, M., ${\rm GL}_n$ -invariant tensors and graphs, Arch. Math. (Brno) 44 (2008), 449–463.Google Scholar
May, J. P., The geometry of iterated loop spaces , Lecture Notes in Mathematics, vol. 271 (Springer, Berlin–New York, 1972).Google Scholar
Merkulov, S. A., Graph complexes with loops and wheels, in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progress in Mathematics, vol. 270 (Birkhäuser, Boston, 2009), 311–354.CrossRefGoogle Scholar
Morita, S., Lie algebras of symplectic derivations and cycles on the moduli spaces, in Groups, homotopy and configuration spaces , Geometry & Topology Monographs, vol. 13 (Geometry & Topology Publications, Coventry, 2008), 335–354.CrossRefGoogle Scholar
Morita, S., Sakasai, T., and Suzuki, M., Abelianizations of derivation Lie algebras of the free associative algebra and the free Lie algebra, Duke Math. J. 162 (2013), 9651002.Google Scholar
Papistas, A. I., Automorphisms of free polynilpotent Lie algebras, Comm. Algebra 21 (1993), 43914395.CrossRefGoogle Scholar
Petersen, D., The operad structure of admissible G-covers , Algebra Number Theory 7 (2013), 19531975.CrossRefGoogle Scholar
Pirashvili, T., Projectives are free for nilpotent algebraic theories, in Algebraic K-theory and its applications (Trieste, 1997) (World Scientific Publications, River Edge, NJ, 1999), 589–599.Google Scholar
Powell, G., On derivations of free algebras over operads and the generalized divergence, Priprint (2021), arXiv:2105.09123 [math.AT].Google Scholar
Quillen, D. G., Homotopical algebra , Lecture Notes in Mathematics, vol. 43 (Springer, Berlin–New York, 1967).Google Scholar
Randal-Williams, O., Cohomology of automorphism groups of free groups with twisted coefficients, Selecta Math. (N.S.) 24 (2018), 1453–1478.CrossRefGoogle Scholar
Randal-Williams, O. and Wahl, N., Homological stability for automorphism groups , Adv. Math. 318 (2017), 534626.CrossRefGoogle Scholar
Rezk, C. W., Spaces of algebra structures and cohomology of operads, PhD thesis, Massachusetts Institute of Technology (ProQuest LLC, Ann Arbor, MI, 1996).Google Scholar
Satoh, T., On the lower central series of the IA-automorphism group of a free group, J. Pure Appl. Algebra 216 (2012), 709717.Google Scholar
Satoh, T., A survey of the Johnson homomorphisms of the automorphism groups of free groups and related topics, in Handbook of Teichmüller theory. Vol. V, IRMA in Mathematics and Theoretical Physics, vol. 26 (European Mathematical Society, Zürich, 2016), 167–209.CrossRefGoogle Scholar
Segre, B., Sur un problème de M. Zariski, in Algèbre et théorie des nombres, Colloque International du CNRS, vol. 24 (CNRS, Paris, 1950), 135–138.Google Scholar
Shafarevich, I. R., On some infinite-dimensional groups. II, Izv. Akad. Nauk SSSR Ser. Mat. 1 (1981), 214–226, 240.Google Scholar
Shestakov, I. P. and Umirbaev, U. U., The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197227.Google Scholar
Szymik, M. and Wahl, N., The homology of the Higman-Thompson groups , Invent. Math. 216 (2019), 445518.CrossRefGoogle Scholar
Tsygan, B. L., Homology of matrix Lie algebras over rings and the Hochschild homology, Uspekhi Mat. Nauk 38 (1983), 217–218.Google Scholar
Umirbaev, U. U., The Anick automorphism of free associative algebras, J. Reine Angew. Math. 605 (2007), 165178.Google Scholar
Ward, B. C., Massey products for graph homology, Int. Math. Res. Not. IMRN 11 (2022), 8086–8161.CrossRefGoogle Scholar
Weibel, C. A., An introduction to homological algebra , Cambridge Studies in Advanced Mathematics, vol. 38 (Cambridge University Press, Cambridge, 1994).Google Scholar
Weyl, H., The classical groups. Their invariants and representations (Princeton University Press, Princeton, NJ, 1939).Google Scholar
Wright, D., On the Jacobian conjecture, Illinois J. Math. 25 (1981), 423440.Google Scholar