Hostname: page-component-cb9f654ff-nr592 Total loading time: 0 Render date: 2025-08-17T09:08:41.431Z Has data issue: false hasContentIssue false

Mean turbulent momentum fluxes and wind deficits in nocturnal stable atmospheric boundary layers

Published online by Cambridge University Press:  11 August 2025

Zhouxing Shen
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Luoqin Liu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Xi-Yun Lu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China
Richard J.A.M. Stevens
Affiliation:
Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
*
Corresponding authors: Luoqin Liu, luoqinliu@ustc.edu.cn; Xi-Yun Lu, xlu@ustc.edu.cn
Corresponding authors: Luoqin Liu, luoqinliu@ustc.edu.cn; Xi-Yun Lu, xlu@ustc.edu.cn

Abstract

Accurately predicting the mean flow properties of wall-bounded turbulence is essential for both fundamental research and engineering applications. In atmospheric boundary layers, the mean flow within the surface layer is typically described by Monin–Obukhov similarity theory (MOST). However, beyond the surface layer, MOST no longer applies as the Coriolis effect becomes significant. To address this issue, this study introduces a novel analytical model for the mean turbulent momentum fluxes and geostrophic wind deficits in nocturnal stable atmospheric boundary layers (NSBLs), which are stably stratified near the surface and transition to neutrally stratified flow above. The model solutions are derived from the Ekman equations using the eddy viscosity approach and a new parametrisation of the flux Richardson number. The solutions show that the geostrophic wind deficits scale with $u_*^2/(hf)$, where $u_*$ is the friction velocity, $h$ is the boundary layer height, and $f$ is the Coriolis parameter. The model’s predictions align closely with recent large-eddy simulation studies, confirming the model’s accuracy. Combined with the geostrophic drag law, the model can reliably predict the wind speed profile above the surface layer of NSBLs. This work marks a significant step in modelling atmospheric turbulence and its fundamental dynamics.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abkar, M. & Moin, P. 2017 Large eddy simulation of thermally stratified atmospheric boundary layer flow using a minimum dissipation model. Boundary-Layer Meteorol. 165 (3), 405419.10.1007/s10546-017-0288-4CrossRefGoogle ScholarPubMed
Abraham, C., Holdsworth, A.M. & Monahan, A.H. 2019 A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer. Nonlinear Process. Geophys. 26, 401427.10.5194/npg-26-401-2019CrossRefGoogle Scholar
Abraham, C. & Monahan, A.H. 2020 Spatial dependence of stably stratified nocturnal boundary-layer regimes in complex terrain. Boundary-Layer Meteorol. 177, 1947.10.1007/s10546-020-00532-xCrossRefGoogle Scholar
Allaerts, D. & Meyers, J. 2015 Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer. Phys. Fluids 27, 065108.10.1063/1.4922339CrossRefGoogle Scholar
Archer, C.L. & Caldeira, K. 2009 Global assessment of high-altitude wind power. Energies 2, 307319.10.3390/en20200307CrossRefGoogle Scholar
Basu, S. & Holtslag, A.A.M. 2023 A novel approach for deriving the stable boundary layer height and eddy viscosity profiles from the Ekman equations. Boundary-Layer Meteorol. 187, 105115.10.1007/s10546-022-00757-yCrossRefGoogle Scholar
Basu, S. & Lacser, A. 2017 A cautionary note on the use of Monin–Obukhov similarity theory in very high-resolution large-eddy simulations. Boundary-Layer Meteorol. 163 (2), 351355.10.1007/s10546-016-0225-yCrossRefGoogle Scholar
Basu, S. & Porté-Agel, F. 2006 Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J. Atmos. Sci. 63, 20742091.10.1175/JAS3734.1CrossRefGoogle Scholar
Basu, S., Porté-Agel, F., Foufoula-Georgiou, E., Vinuesa, J.-F. & Pahlow, M. 2006 Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: an integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Meteorol. 119, 473500.10.1007/s10546-005-9036-2CrossRefGoogle Scholar
Beare, R.J. et al. 2006 An intercomparison of large eddy simulations of the stable boundary layer. Boundary-Layer Meteorol. 118, 247272.10.1007/s10546-004-2820-6CrossRefGoogle Scholar
Bechtle, P., Schelbergen, M., Schmehl, R., Zillmann, U. & Watson, S. 2019 Airborne wind energy resource analysis. Renew. Energy 141, 11031116.10.1016/j.renene.2019.03.118CrossRefGoogle Scholar
Bon, T., Cal, R.B. & Meyers, J. 2024 Stable boundary layers with subsidence: scaling and similarity of the steady state. Boundary-Layer Meteorol. 190, 42.10.1007/s10546-024-00882-wCrossRefGoogle Scholar
Brost, R.A. & Wyngaard, J.C. 1978 A model study of the stably stratified planetary boundary layer. J. Atmos. Sci. 35, 14271440.10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Businger, J.A., Wyngaard, J.C., Izumi, Y. & Bradley, E.F. 1971 Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28 (2), 181189.10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Cabot, W. & Moin, P. 1999 Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63 (1), 269291.10.1023/A:1009958917113CrossRefGoogle Scholar
Caughey, S.J., Wyngaard, J.C. & Kaimal, J.C. 1979 Turbulence in the evolving stable boundary layer. J. Atmos. Sci. 36, 10411052.Google Scholar
Chinita, M.J., Matheou, G. & Miranda, P.M.A. 2022 Large-eddy simulation of very stable boundary layers. Part I: Modeling methodology. Q. J. R. Meteorol. Soc. 148, 18051823.10.1002/qj.4279CrossRefGoogle Scholar
Coleman, G.N., Ferziger, J.H. & Spalart, P.R. 1992 Direct simulation of the stably stratified turbulent Ekman layer. J. Fluid Mech. 244, 677712.10.1017/S0022112092003264CrossRefGoogle Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191226.10.1017/S0022112056000135CrossRefGoogle Scholar
Constantin, A. & Johnson, R.S. 2019 Atmospheric Ekman flows with variable eddy viscosity. Boundary-Layer Meteorol. 170, 395414.10.1007/s10546-018-0404-0CrossRefGoogle Scholar
Couvreux, F. et al. 2020 Intercomparison of large-eddy simulations of the Antarctic boundary layer for very stable stratification. Boundary-Layer Meteorol. 176, 369400.10.1007/s10546-020-00539-4CrossRefGoogle Scholar
Dai, Y., Basu, S., Maronga, B. & de Roode, S.R. 2021 Addressing the grid-size sensitivity issue in large-eddy simulations of stable boundary layers. Boundary-Layer Meteorol. 178, 6389.10.1007/s10546-020-00558-1CrossRefGoogle Scholar
Derbyshire, S.H. 1990 Nieuwstadt’s stable boundary layer revisited. Q. J. R. Meteorol. Soc. 116, 127158.10.1002/qj.49711649106CrossRefGoogle Scholar
Deusebio, E., Brethouwer, G., Schlatter, P. & Lindborg, E. 2014 A numerical study of the unstratified and stratified Ekman layer. J. Fluid Mech. 755, 672704.10.1017/jfm.2014.318CrossRefGoogle Scholar
van Dop, H. & Axelsen, S. 2007 Large eddy simulation of the stable boundary-layer: a retrospect to Nieuwstadt’s early work. Flow Turbul. Combust. 79, 235249.10.1007/s10494-007-9093-3CrossRefGoogle Scholar
Dougherty, J.P. 1961 The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys. 21 (2), 210213.10.1016/0021-9169(61)90116-7CrossRefGoogle Scholar
Dyer, A.J. 1974 A review of flux-profile relationships. Boundary-Layer Meteorol. 7 (3), 363372.10.1007/BF00240838CrossRefGoogle Scholar
Ekman, V.W. 1905 On the influence of the Earth’s rotation on ocean-currents. Arkiv för Matematik, Astronomi och Fysik 2, 152.Google Scholar
Fernando, H.J.S. & Weil, J.C. 2010 Whither the stable boundary layer? Bull. Am. Meteorol. Soc. 91, 14751484.10.1175/2010BAMS2770.1CrossRefGoogle Scholar
Foken, T. 2006 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol. 119 (3), 431447.10.1007/s10546-006-9048-6CrossRefGoogle Scholar
Gadde, S.N., Stieren, A. & Stevens, R.J.A.M. 2021 Large-eddy simulations of stratified atmospheric boundary layers: comparison of different subgrid models. Boundary-Layer Meteorol. 178 (3), 363382.10.1007/s10546-020-00570-5CrossRefGoogle Scholar
Garratt, J.R. 1983 Surface influence upon vertical profiles in the nocturnal boundary layer. Boundary-Layer Meteorol. 26 (1), 6980.10.1007/BF00164331CrossRefGoogle Scholar
Garratt, J.R. 1992 The Atmospheric Boundary Layer. Cambridge University Press.Google Scholar
Graham, M.D. & Floryan, D. 2021 Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows. Annu. Rev. Fluid Mech. 53, 227253.10.1146/annurev-fluid-051820-020223CrossRefGoogle Scholar
Grant, A.L.M. 1997 An observational study of the evening transition boundary-layer. Q. J. R. Meteorol. Soc. 123, 657677.Google Scholar
Gryning, S.-E., Batchvarova, E., Brümmer, B., Jørgensen, H. & Larsen, S. 2007 On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Boundary-Layer Meteorol. 124 (2), 251268.10.1007/s10546-007-9166-9CrossRefGoogle Scholar
GWEC 2024 Global Wind Report, 2024. Global Wind Energy Council.Google Scholar
Heisel, M. & Chamecki, M. 2023 Evidence of mixed scaling for mean profile similarity in the stable atmospheric surface layer. J. Atmos. Sci. 80, 20572073.10.1175/JAS-D-22-0260.1CrossRefGoogle Scholar
Holtslag, A.A.M. et al. 2013 Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull. Am. Meteorol. Soc. 94, 16911706.10.1175/BAMS-D-11-00187.1CrossRefGoogle Scholar
Huang, J. & Bou-Zeid, E. 2013 Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: A large-eddy simulation study. J. Atmos. Sci. 70, 15131527.10.1175/JAS-D-12-0167.1CrossRefGoogle Scholar
Jiang, Q. & Wang, Q. 2021 Characteristics and scaling of the stable marine internal boundary layer. J. Geophys. Res. Atmos. 126, e2021JD035510.10.1029/2021JD035510CrossRefGoogle Scholar
Jiménez, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 2745.10.1146/annurev-fluid-120710-101039CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.10.1017/jfm.2018.144CrossRefGoogle Scholar
Kadantsev, E., Mortikov, E. & Zilitinkevich, S. 2021 The resistance law for stably stratified atmospheric planetary boundary layers. Q. J. R. Meteorol. Soc. 147, 22332243.10.1002/qj.4019CrossRefGoogle Scholar
Kaimal, J.C., Wyngaard, J.C., Haugen, D.A., Coté, O.R., Izumi, Y., Caughey, S.J. & Readings, C.J. 1976 Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33 (11), 21522169.10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kaiser, A., Vercauteren, N. & Krumscheid, S. 2024 Sensitivity of the polar boundary layer to transient phenomena. Nonlinear Process. Geophys. 31 (1), 4560.10.5194/npg-31-45-2024CrossRefGoogle Scholar
von Kármán, T. 1930 Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse 5, 5876.Google Scholar
Katul, G.G., Konings, A.G. & Porporato, A. 2011 Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer. Phys. Rev. Lett. 107 (26), 268502.10.1103/PhysRevLett.107.268502CrossRefGoogle Scholar
Kazanski, A.B. & Monin, A.S. 1961 On the dynamic interaction between the atmosphere and the Earth’s surface. Izv. Acad. Sci. USSR, Geophys. Ser., Engl. Transl. 5, 514515.Google Scholar
Kelly, M., Cersosimo, R.A. & Berg, J. 2019 A universal wind profile for the inversion-capped neutral atmospheric boundary layer. Q. J. R. Meteorol. Soc. 145, 982992.10.1002/qj.3472CrossRefGoogle Scholar
Kim, J. & Leonard, A. 2024 The early days and rise of turbulence simulation. Annu. Rev. Fluid Mech. 56, 2144.10.1146/annurev-fluid-120821-025116CrossRefGoogle Scholar
Kim, J. & Mahrt, L. 1992 Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer. Tellus A 44, 381394.10.3402/tellusa.v44i5.14969CrossRefGoogle Scholar
Kit, E., Hocut, C.M., Liberzon, D. & Fernando, H.J.S. 2017 Fine-scale turbulent bursts in stable atmospheric boundary layer in complex terrain. J. Fluid Mech. 833, 745772.10.1017/jfm.2017.717CrossRefGoogle Scholar
Kosović, B. & Curry, J.A. 2000 A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci. 57, 10521068.10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Kostelecky, J. & Ansorge, C. 2024 Simulation and scaling analysis of periodic surfaces with small-scale roughness in turbulent Ekman flow. J. Fluid Mech. 992, A8.10.1017/jfm.2024.542CrossRefGoogle Scholar
Kovasznay, L.S.G. 1970 The turbulent boundary layer. Annu. Rev. Fluid Mech. 2, 95112.10.1146/annurev.fl.02.010170.000523CrossRefGoogle Scholar
Lacser, A. & Arya, S.P.S. 1986 A numerical model study of the structure and similarity scaling of the nocturnal boundary layer (NBL). Boundary-Layer Meteorol. 35, 369385.10.1007/BF00118565CrossRefGoogle Scholar
LeMone, M.A. et al. 2019 100 years of progress in boundary layer meteorology. Meteorol. Monographs 59, 91985.10.1175/AMSMONOGRAPHS-D-18-0013.1CrossRefGoogle Scholar
Lenschow, D.H., Li, X.S., Zhu, C.J. & Stankov, B.B. 1988 The stably stratified boundary layer over the great plains I. Mean and turbulence structure. Boundary-Layer Meteorol. 42, 95121.10.1007/BF00119877CrossRefGoogle Scholar
Li, D., Salesky, S.T. & Banerjee, T. 2016 Connections between the Ozmidov scale and mean velocity profile in stably stratified atmospheric surface layers. J. Fluid Mech. 797, R3.10.1017/jfm.2016.311CrossRefGoogle Scholar
van der Linden, S.J.A., Edwards, J.M., van Heerwaarden, C.C., Vignon, E., Genthon, C., Petenko, I., Baas, P., Jonker, H.J.J. & van de Wiel, B.J.H. 2019 Large-eddy simulations of the steady wintertime Antarctic boundary layer. Boundary-Layer Meteorol. 173, 165192.10.1007/s10546-019-00461-4CrossRefGoogle Scholar
Liu, L., Gadde, S.N. & Stevens, R.J.A.M. 2021 Universal wind profile for conventionally neutral atmospheric boundary layers. Phys. Rev. Lett. 126, 104502.10.1103/PhysRevLett.126.104502CrossRefGoogle ScholarPubMed
Liu, L., Gadde, S.N. & Stevens, R.J.A.M. 2023 The mean wind and potential temperature flux profiles in convective boundary layers. J. Atmos. Sci. 80 (8), 18931903.10.1175/JAS-D-22-0159.1CrossRefGoogle Scholar
Liu, L. & Stevens, R.J.A.M. 2021 Effects of atmospheric stability on the performance of a wind turbine located behind a three-dimensional hill. Renew. Energy 175, 926935.10.1016/j.renene.2021.05.035CrossRefGoogle Scholar
Liu, L. & Stevens, R.J.A.M. 2022 Vertical structure of conventionally neutral atmospheric boundary layers. Proc. Natl Acad. Sci. USA 119, e2119369119.10.1073/pnas.2119369119CrossRefGoogle ScholarPubMed
Mahrt, L. 2014 Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 2345.10.1146/annurev-fluid-010313-141354CrossRefGoogle Scholar
Mahrt, L., Sun, J., Blumen, W., Delany, T. & Oncley, S. 1998 Nocturnal boundary-layer regimes. Boundary-Layer Meteorol. 88 (2), 255278.10.1023/A:1001171313493CrossRefGoogle Scholar
Maronga, B., Knigge, C. & Raasch, S. 2020 An improved surface boundary condition for large-eddy simulations based on Monin–Obukhov similarity theory: evaluation and consequences for grid convergence in neutral and stable conditions. Boundary-Layer Meteorol. 174, 297325.10.1007/s10546-019-00485-wCrossRefGoogle Scholar
Maronga, B. & Li, D. 2022 An investigation of the grid sensitivity in large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol. 182, 251273.10.1007/s10546-021-00656-8CrossRefGoogle Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.10.1017/jfm.2012.511CrossRefGoogle Scholar
Mason, P.J. & Thomson, D.J. 1992 Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242, 5178.10.1017/S0022112092002271CrossRefGoogle Scholar
Momen, M. & Bou-Zeid, E. 2017 Mean and turbulence dynamics in unsteady Ekman boundary layers. J. Fluid Mech. 816, 209242.10.1017/jfm.2017.76CrossRefGoogle Scholar
Monin, A.S. 1970 The atmospheric boundary layer. Annu. Rev. Fluid Mech. 2, 225250.10.1146/annurev.fl.02.010170.001301CrossRefGoogle Scholar
Monin, A.S. & Obukhov, A.M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 24 (151), 163187.Google Scholar
Narasimhan, G., Gayme, D.F. & Meneveau, C. 2024 Analytical model coupling Ekman and surface layer structure in atmospheric boundary layer flows. Boundary-Layer Meteorol. 190, 16.10.1007/s10546-024-00859-9CrossRefGoogle Scholar
Nieuwstadt, F.T.M. 1984 a Some aspects of the turbulent stable boundary layer. Boundary-Layer Meteorol. 30, 3155.10.1007/BF00121948CrossRefGoogle Scholar
Nieuwstadt, F.T.M. 1984 b The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41 (14), 22022216.10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Obukhov, A.M. 1946 Turbulence in an atmosphere with inhomogeneous temperature. Trans. Inst. Teoret. Geoz. Akad. Nauk SSSR 1, 95115.Google Scholar
Optis, M., Monahan, A. & Bosveld, F.C. 2014 Moving beyond Monin–Obukhov similarity theory in modelling wind-speed profiles in the lower atmospheric boundary layer under stable stratification. Boundary-Layer Meteorol. 153, 497514.10.1007/s10546-014-9953-zCrossRefGoogle Scholar
Optis, M., Monahan, A. & Bosveld, F.C. 2016 Limitations and breakdown of Monin–Obukhov similarity theory for wind profile extrapolation under stable stratification. Wind Energy 19 (6), 10531072.10.1002/we.1883CrossRefGoogle Scholar
Ozmidov, R.V. 1965 On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 1 (8), 853860.Google Scholar
Panofsky, H.A. 1974 The atmospheric boundary layer below 150 meters. Annu. Rev. Fluid Mech. 6, 147177.10.1146/annurev.fl.06.010174.001051CrossRefGoogle Scholar
Parmhed, O., Kos, I. & Grisogono, B. 2005 An improved Ekman layer approximation for smooth eddy diffusivity profiles. Boundary-Layer Meteorol. 115, 399407.10.1007/s10546-004-5940-0CrossRefGoogle Scholar
Prandtl, L. 1925 Bericht über untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech. 5, 136139.10.1002/zamm.19250050212CrossRefGoogle Scholar
Rossby, C.G. & Montgomery, R.B. 1935 The layers of frictional influence in wind and ocean currents. Pap. Phys. Oceanogr. Meteorol. 3 (3), 1101.Google Scholar
Saiki, E.M., Moeng, C.-H. & Sullivan, P.P. 2000 Large-eddy simulation of the stably stratified planetary boundary layer. Boundary-Layer Meteorol. 95, 130.10.1023/A:1002428223156CrossRefGoogle Scholar
Salesky, S.T. & Anderson, W. 2020 Coherent structures modulate atmospheric surface layer flux–gradient relationships. Phys. Rev. Lett. 125, 124501.10.1103/PhysRevLett.125.124501CrossRefGoogle ScholarPubMed
Shah, S.K. & Bou-Zeid, E. 2014 Direct numerical simulations of turbulent Ekman layers with increasing static stability: modifications to the bulk structure and second-order statistics. J. Fluid Mech. 760, 494539.10.1017/jfm.2014.597CrossRefGoogle Scholar
Shapiro, A. & Fedorovich, E. 2010 Analytical description of a nocturnal low-level jet. Q. J. R. Meteorol. Soc. 136, 12551262.10.1002/qj.628CrossRefGoogle Scholar
Shen, Z., Liu, L., Lu, X. & Stevens, R.J.A.M. 2024 The global properties of nocturnal stable atmospheric boundary layers. J. Fluid Mech. 999, A60.10.1017/jfm.2024.969CrossRefGoogle Scholar
Smits, A.J. 2022 Batchelor Prize Lecture: Measurements in wall-bounded turbulence. J. Fluid Mech. 940, A1.10.1017/jfm.2022.83CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.10.1146/annurev-fluid-122109-160753CrossRefGoogle Scholar
Sorbjan, Z. 1986 On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol. 34 (4), 377397.10.1007/BF00120989CrossRefGoogle Scholar
Sorbjan, Z. 1988 Structure of the stably-stratified boundary layer during the SESAME-1979 experiment. Boundary-Layer Meteorol. 44, 255266.10.1007/BF00116065CrossRefGoogle Scholar
Steeneveld, G.-J. 2014 Current challenges in understanding and forecasting stable boundary layers over land and ice. Frontiers Environ. Sci. 2, 41.10.3389/fenvs.2014.00041CrossRefGoogle Scholar
Stevens, R.J.A.M. & Meneveau, C. 2017 Flow structure and turbulence in wind farms. Annu. Rev. Fluid Mech. 49, 311339.10.1146/annurev-fluid-010816-060206CrossRefGoogle Scholar
Stevens, R.J.A.M., Wilczek, M. & Meneveau, C. 2014 Large eddy simulation study of the logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech. 757, 888907.10.1017/jfm.2014.510CrossRefGoogle Scholar
Stiperski, I. & Calaf, M. 2023 Generalizing Monin–Obukhov similarity theory (1954) for complex atmospheric turbulence. Phys. Rev. Lett. 130, 124001.10.1103/PhysRevLett.130.124001CrossRefGoogle ScholarPubMed
Sullivan, P.P., Weil, J.C., Patton, E.G., Jonker, H.J.J. & Mironov, D.V. 2016 Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J. Atmos. Sci. 73 (4), 18151840.10.1175/JAS-D-15-0339.1CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.10.7551/mitpress/3014.001.0001CrossRefGoogle Scholar
Tong, C. & Ding, M. 2020 Velocity-defect laws, log law and logarithmic friction law in the convective atmospheric boundary layer. J. Fluid Mech. 883, A36.10.1017/jfm.2019.898CrossRefGoogle Scholar
Veers, P. et al. 2019 Grand challenges in the science of wind energy. Science 366, eaau2027.10.1126/science.aau2027CrossRefGoogle ScholarPubMed
Vercauteren, N., Mahrt, L. & Klein, R. 2016 Investigation of interactions between scales of motion in the stable boundary layer. Q. J. R. Meteorol. Soc. 142 (699), 24242433.10.1002/qj.2835CrossRefGoogle Scholar
van de Wiel, B.J.H., Moene, A.F., Steeneveld, G.J., Baas, P., Bosveld, F.C. & Holtslag, A.A.M. 2010 A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci. 67, 26792689.10.1175/2010JAS3289.1CrossRefGoogle Scholar
van de Wiel, B.J.H., Vignon, E., Baas, P., van Hooijdonk, I.G.S., van der Linden, S.J.A., Antoon van Hooft, J., Bosveld, F.C., de Roode, S.R., Moene, A.F. & Genthon, C. 2017 Regime transitions in near-surface temperature inversions: a conceptual model. J. Atmos. Sci. 74, 10571073.10.1175/JAS-D-16-0180.1CrossRefGoogle Scholar
Williams, O., Hohman, T., Van Buren, T., Bou-Zeid, E. & Smits, A.J. 2017 The effect of stable thermal stratification on turbulent boundary layer statistics. J. Fluid Mech. 812, 10391075.10.1017/jfm.2016.781CrossRefGoogle Scholar
Wittich, K.P. 1991 The nocturnal boundary layer over Northern Germany: an observational study. Boundary-Layer Meteorol. 55, 4766.10.1007/BF00119326CrossRefGoogle Scholar
Wyngaard, J.C. 1992 Atmospheric turbulence. Annu. Rev. Fluid Mech. 24, 205234.10.1146/annurev.fl.24.010192.001225CrossRefGoogle Scholar
Wyngaard, J.C. 2010 Turbulence in the Atmosphere. Cambridge University Press.10.1017/CBO9780511840524CrossRefGoogle Scholar
Yokoyama, O., Gamo, M. & Yamamoto, S. 1979 The vertical profiles of the turbulence quantities in the atmospheric boundary layer. J. Meteorol. Soc. Japan 57, 264272.10.2151/jmsj1965.57.3_264CrossRefGoogle Scholar
Zilitinkevich, S. & Calanca, P. 2000 An extended similarity theory for the stably stratified atmospheric surface layer. Q. J. R. Meteorol. Soc. 126, 19131923.10.1002/qj.49712656617CrossRefGoogle Scholar
Zilitinkevich, S.S. 1972 On the determination of the height of the Ekman boundary layer. Boundary-Layer Meteorol. 3, 141145.10.1007/BF02033914CrossRefGoogle Scholar
Zilitinkevich, S.S. 2002 Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Q. J. R. Meteorol. Soc. 128, 913925.10.1256/0035900021643746CrossRefGoogle Scholar
Zilitinkevich, S.S., Esau, I. & Baklanov, A. 2007 Further comments on the equilibrium height of neutral and stable planetary boundary layers. Q. J. R. Meteorol. Soc. 133 (622), 265271.10.1002/qj.27CrossRefGoogle Scholar
Zilitinkevich, S.S. & Esau, I.N. 2002 On integral measures of the neutral barotropic planetary boundary layer. Boundary-Layer Meteorol. 104 (3), 371379.10.1023/A:1016540808958CrossRefGoogle Scholar
Zilitinkevich, S.S. & Esau, I.N. 2005 Resistance and heat-transfer laws for stable and neutral planetary boundary layers: old theory advanced and re-evaluated. Q. J. R. Meteorol. Soc. 131 (609), 18631892.10.1256/qj.04.143CrossRefGoogle Scholar