Hostname: page-component-5447f9dfdb-84kf5 Total loading time: 0 Render date: 2025-07-29T15:20:43.590Z Has data issue: false hasContentIssue false

Coupled inflow vapour velocity and surface wettability effect on condensation heat transfer characteristics: a volume-of-fluid method study

Published online by Cambridge University Press:  13 May 2025

Bing-Kai Chen
Affiliation:
Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
Nai-Tsun Chang
Affiliation:
Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
Hua-Yi Hsu*
Affiliation:
Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
*
Corresponding author: Hua-Yi Hsu, huayihsu@mail.ntut.edu.tw

Abstract

This study employs volume-of-fluid-based computational fluid dynamics modelling to investigate the coupled effects of surface wettability and inflow vapour velocity on R134a ($p/p_{cri}=0.25$) condensation heat transfer in horizontal tubes. The results demonstrate that both the condensation heat transfer coefficient (HTC) and Nusselt number consistently increase with rising vapour velocity, indicating enhanced convective heat transfer at higher flow rates. Within this overall trend, the influence of surface wettability varies significantly across different velocity regimes. At moderate inlet velocities (10 m s−1), surface wettability demonstrates maximum impact, with the HTC enhancement exceeding 19.1% between peak and minimum values, optimising at contact angles of 120$^\circ$–140$^\circ$. As velocity increases to 20 m s−1, while surface wettability effects persist with $\gt$11.7 % enhancement, convective heat transfer becomes increasingly dominant, showing $\gt$38.8 % improvement in the maximum HTC compared with the 10 m s−1 case. At higher velocities (40 m s−1), the influence of surface wettability diminishes substantially, with the HTC variation reducing to $\gt$1.04 %. At extreme velocities (80 m s−1), surface tension effects become negligible compared with vapour shear forces, resulting in minimal (0.53 %) variation across different contact angles. The equivalent Reynolds number peaks at 20 m s−1, indicating optimal conditions for condensate formation and flow characteristics. These findings provide crucial insights for condensation system design, suggesting that while increasing velocity generally enhances heat transfer performance, surface wettability modifications are most effective at moderate velocities, while high-velocity applications should prioritise flow dynamics and system geometry optimisation.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akers, W.W., Deans, H.A., & Crosser, O.K. (1959) Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55, 171176.Google Scholar
Ansys Fluent 2020 R1 Theory Guide. Ansys Inc.Google Scholar
Aursand, E., Davis, S.H. & Ytrehust, T. 2018 Thermocapillary instability as a mechanism for film boiling collapse. J. Fluid Mech. 852, 283312.CrossRefGoogle Scholar
Bai, W., Chen, W., Li, M., Rao, M. & Chyu, M.K. 2023 An improved mass transfer model for film condensation numerical simulation. Intl J. Heat Mass Transfer 202, 123686.CrossRefGoogle Scholar
Baltis, C.H.M. & Geld van der, C.W.M. 2015 Heat transfer mechanisms of a vapour bubble growing at a wall in saturated upward flow. J. Fluid. Mech. 771, 264302.CrossRefGoogle Scholar
Ben-Naim, A.Y. 2012 Hydrophobic Interactions. Springer Science and Business Media.Google Scholar
Birbarah, P., Gebrael, T., Foulkes, T., Stillwell, A., Moore, A., Pilawa-Podgurski, R. & Miljkovic, N. 2020 Water immersion cooling of high power density electronics. Intl J. Heat Mass Transfer 147, 118918.CrossRefGoogle Scholar
Brackbill, J.J., Kothe, D.B. & Zemach, C. 1992 A continuum method to model surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Bures, L. & Sato, Y. 2021 On the modelling of the transition between contact-line and microlayer evaporation regimes in nucleate boiling. J. Fluid Mech. 916, 53.CrossRefGoogle Scholar
Bures, L. & Sato, Y. 2022 Comprehensive simulations of boiling with a resolved microlayer: validation and sensitivity study. J. Fluid Mech. 933, 54.CrossRefGoogle Scholar
Carey, V. P.2020 Liquid-Vapor Phase-Change Phenomena: an Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment. CRC Press.CrossRefGoogle Scholar
Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G.A. & Rossetto, L. 2001 Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Intl J. Refrig. 24 (1), 7387.CrossRefGoogle Scholar
Cavallini, A., Del Col, D., Doretti, L., Matkovic, M., Rossetto, L., Zilio, C. & Censi, G. 2006 Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design. Heat Transfer Engng 27 (8), 3138.CrossRefGoogle Scholar
Cheng, J., Wang, Z., Sun, J., Ji, W., Wang, Y., Chen, Y., Xu, H. & Chen, K. 2023 Numerical simulation of condensation heat transfer characteristics of R134a at high vapor velocity under different angles. Intl J. Heat Mass Transfer 213, 124332.CrossRefGoogle Scholar
Crosser, O.K. 1955 Condensing Heat Transfer Within Horizontal Tubes. Rice University.Google Scholar
Dobson, M.K. & Chato, J.C. 1998 Condensation in smooth horizontal tubes. ASME J. Heat Transfer 120 (1), 193213.CrossRefGoogle Scholar
Fadhl, B., Wrobel, L.C. & Jouhara, H. 2013 Numerical modelling of the temperature distribution in a two-phase closed thermosyphon. Appl. Therm. Engng 60 (1-2), 122131.CrossRefGoogle Scholar
Fadhl, B., Wrobel, L.C. & Jouhara, H. 2015 CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a. Appl. Therm. Engng 78, 482490.CrossRefGoogle Scholar
Gibou, F., Chen, L., Nguyen, D. & Banerjee, S. 2007 A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change. J. Comput. Phys. 222 (2), 536555.CrossRefGoogle Scholar
Gokhale, S.J., Plawsky, J.L. & Wayner, P.C. JR 2003 Experimental investigation of contact angle, curvature, and contact line motion in dropwise condensation and evaporation. J. Colloid Interface Sci. 259 (2), 354366.CrossRefGoogle ScholarPubMed
Gong, S. & Cheng, P. 2015 Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Intl J. Heat Mass Transfer 93, 80206.Google Scholar
Guo, Z., Shi, B. & Wang, N. 2000 Lattice BGK model for incompressible Navier–Stokes equation. J. Comput. Phys. 165 (1), 153306.CrossRefGoogle Scholar
He, J., Tian, R., Jiang, P.X. & He, S. 2021 Turbulence in a heated pipe at supercritical pressure. J. Fluid Mech. 920, 138.CrossRefGoogle Scholar
Hirt, C.W. & Nichols, B.D. 1981 Volume of fluid method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.CrossRefGoogle Scholar
Hsu, H.Y., Kumar, R. & Lin, C.W. 2024 A numerical investigation of the wettability effect on minitube flow boiling using the volume of fluid method. Intl J. Heat Mass Transfer 225, 125370.CrossRefGoogle Scholar
Hsu, H.Y., Lin, M.C., Popovic, B., Lin, C.R. & Patankar, N.A. 2017 A numerical investigation of the effect of surface wettability on the boiling curve. PLOS ONE 12 (11), 120.CrossRefGoogle ScholarPubMed
Hsu, H.Y., Lin, Y.C., Chen, Z.-Y., Wang, Y., Li, C.E., Pai, S.H. & Lin, C.W. 2023 A numerical investigation of microtube length effect on convective boiling. J. Mech. 39, 352366.CrossRefGoogle Scholar
Hsu, H.Y. & Patankar, N.A. 2009 A continuum approach to reproduce molecular scale slip behaviour. J. Fluid Mech. 645, 5980.CrossRefGoogle Scholar
Issa, R.I., Gasman, A.D. & Watkins, A.P. 1986 The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comput. Phys. 62 (1), 6682.CrossRefGoogle Scholar
Jafari, R. & Okutucu-Özyurt, T. 2016 Numerical simulation of flow boiling from an artificial cavity in a microchannel. Intl J. Heat Mass Transfer 97, 270278.CrossRefGoogle Scholar
Ji, R., Qin, S., Liu, Y., Jin, L., Yang, C. & Meng, X. 2024 Analysis of wettability effects on thermal performance of vapor chamber with a hybrid lattice Boltzmann method. Intl J. Heat Mass Transfer 225, 125315.CrossRefGoogle Scholar
Kalantarpour, R. & Vafai, K. 2023 The effect of self-rewetting fluids and surface wettability modification on the thermal performance of a two-phase flat-shaped thermosyphon. ASME J. Heat Mass Transfer 145 (3), 033001.CrossRefGoogle Scholar
Kharangate, C.R. & Mudawar, I. 2017 Review of computational studies on boiling and condensation. Intl J. Heat Mass Transfer 108, 11641196.CrossRefGoogle Scholar
Kubiak, K.J., Wilson, M.C.T., Mathia, T.G. & Carval, P. 2011 Wettability versus roughness of engineering surfaces. Wear 271 (3-4), 523528.CrossRefGoogle Scholar
Lavrenchenko, G.K., Ruvinskij, G.Y., Iljushenko, S.V. & Kanaev, V.V. 1992 Thermophysical properties of refrigerant R134a. Intl J. Refrig. 15 (6), 386392.CrossRefGoogle Scholar
Lee, W.H. & Veziroglu, T.N. 1980 A Pressure Iteration Scheme for Two-Phase Flow Modeling, Multiphase Transport Fundamentals, Reactor Safety. vol. 1. Applications Editor, Hemisphere Publishing.Google Scholar
Lin, C.W., Lin, Y.C., Hung, T.C., Lin, M.C. & Hsu, H.Y. 2021 A numerical investigation of the superbiphilic surface on the boiling curve using the volume of fluid method. Intl J. Heat Mass Transfer 171, 121058.CrossRefGoogle Scholar
Lin, C.W., Lin, Y.C., Kumar, R., Lin, M.C. & Hsu, H.Y. 2022 A numerical study of microtube geometry effect on flow boiling using the volume of fluid method. Intl J. Heat Mass Transfer 19, 123477.CrossRefGoogle Scholar
Lin, Y.C., Lin, C.W., Kumar, R., Lin, K.Q., Hsu, H.Y. & Hung, T.C. 2022 A numerical simulation of tube geometry effect on the performance of regenerators in Organic Rankine Cycle systems using the Volume of Fluid method. Appl. Therm. Engng 216, 119025.CrossRefGoogle Scholar
Ling, Y., Fuster, D., Tryggvason, G. & Zaleski, S. 2019 A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability. J. Fluid Mech. 852, 283312.Google Scholar
Lorstad, D., Francois, M., Shy, W. & Fuchs, L. 2004 Assessment of volume of fluid and immersed boundary methods for droplet calculations. Intl J. Numer. Meth. Fluids 46 (2), 109125.CrossRefGoogle Scholar
Lörstad, D. & Fuchs, L. 2004 High-order surface tension VOF-model for 3D bubble flows with high-density ratio. J. Comput. Phys. 200 (1), 153176.CrossRefGoogle Scholar
McGlen, R.J., Jachuck, R. & Lin, S. 2004 Integrated thermal management techniques for high power electronic devices. Appl. Therm. Engng 24 (8-9), 11431156.CrossRefGoogle Scholar
Min, W., Zhong, W., Zhang, Y., Cao, X. & Yuan, Y. 2023 Investigation of the condensation mass transfer time relaxation parameter for numerical simulation of the thermosyphon. Intl J. Heat Mass Transfer 201, 123599.CrossRefGoogle Scholar
Murthy, J.Y. & Mathur, S.R. 1997 A pressure-based method for unstructured meshes. Numer. Heat Transfer 31 (2), 195215.Google Scholar
Nusselt, W. 1916 Die oberflächenkondensation des wasserdampfes. Z. Verein. Deutsch. Ing. 60, 541546.Google Scholar
Osher, S. & Sethian, J.A. 1988 Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79 (1), 1249.CrossRefGoogle Scholar
Panzarella, C.H., Davis, S.H. & Bankoff, S.G. 2000 Nonlinear dynamics in horizontal film boiling. J. Fluid Mech. 402, 163194.CrossRefGoogle Scholar
Patankar, G., Weibel, J.A. & Garimella, S.V. 2020 On the transient thermal response of thin vapor chamber heat spreaders: optimized design and fluid selection. Int. J. Heat Mass Tran. 148, 119106.CrossRefGoogle Scholar
Pattanayak, L., Padhi, B.N. & Kodamasingh, B. 2019 Thermal performance assessment of steam surface condenser. Case Stud. Therm. Engng 14, 100484.CrossRefGoogle Scholar
Perrot, P. 1998 A to Z of Thermodynamics. Oxford University Press.CrossRefGoogle Scholar
Rohsenow, W.M. 1956 Heat transfer and temperature distribution in laminar-film condensation. Trans. Am. Soc. Mech. Engrs 78 (8), 16451647.CrossRefGoogle Scholar
Schrage, R.W. 1953 A Theoretical Study of Interphase Mass Transfer. Columbia University Press.CrossRefGoogle Scholar
Si, Y., Dong, Z. & Jiang, L. 2018 Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Central Science 4 (9), 11021112.CrossRefGoogle ScholarPubMed
Singh, N.K. & Premachandran, B. 2021 A two-dimensional numerical study of film boiling over an elliptical cylinder in the mixed regime under aiding and orthogonal saturated liquid flow configurations. J. Fluid Mech. 908, 153.CrossRefGoogle Scholar
Sinha, G.A., Narayan, S. & Srivastava, A. 2021 Microlayer dynamics during the growth process of a single vapour bubble under subcooled flow boiling conditions. J. Fluid Mech. 916, 53.Google Scholar
Tanasawa, I. 1991 Advances in condensation heat transfer. Adv. Heat Transfer 21, 55139.CrossRefGoogle Scholar
Tandon, T.N., Varma, H.K. & Gupta, C.P. 1995 Heat transfer during forced convection condensation inside horizontal tube. Intl J. Refrig. 18 (3), 210214.CrossRefGoogle Scholar
Tang, C., Sun, S., Li, S. & Vafai, K. 2024 Investigation of condensation prevention and thermal comfort of convection-radiation cooling system. Intl Commun. Heat Mass 157, 107736.CrossRefGoogle Scholar
Teng, H., Cheng, P. & Zhao, T.S. 1999 Instability of condensate film and capillary blocking in small-diameter-thermosyphon condensers. Intl J. Heat Mass Transfer 42 (16), 30713083.CrossRefGoogle Scholar
Vasiliev, L.L. 2008 Micro and miniature heat pipes – Electronic component coolers. Appl. Therm. Engng 28 (4), 266273.CrossRefGoogle Scholar
Wang, X., Xu, B., Liu, Q., Yang, Y. & Chen, Z. 2021 Enhancement of vapor condensation heat transfer on the micro- and nano-structured superhydrophobic surfaces. Intl J. Heat Mass Transfer 177, 121526.CrossRefGoogle Scholar
Wei, L., Wang, P., Chen, X. & Chen, Z. 2024 Water vapor condensation behavior on different wetting surfaces via molecular dynamics simulation. Surf. Interfaces 52, 104981.CrossRefGoogle Scholar
Winterton, R.H.S. 1988 Where did the Dittus and Boelter equation come from? Intl J. Heat Mass Transfer 41 (4), 809810.CrossRefGoogle Scholar
Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. & Speziale, C.G. 1992 Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids 4 (7), 15101520.CrossRefGoogle Scholar
Yan, Y.Y. & Lin, T.F. 1999 Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Intl J. Heat Mass Transfer 42 (4), 697708.CrossRefGoogle Scholar
Zeynali, F.I., Abolfazli, E.J. & Vafai, K. 2017 Effect of nanoparticles on condensation of humid air in vertical channels. Intl J. Therm. Sci. 112, 470483.Google Scholar
Zhang, D., Li, G., Liu, Y. & Tian, X. 2018 Simulation and experimental studies of R134a flow condensation characteristics in a pump-assisted separate heat pipe. Intl J. Heat Mass Transfer 126, 10201030.CrossRefGoogle Scholar
Zhang, J., Watson, S.J. & Wong, H. 2007 Fluid flow and heat transfer in a dual-wet micro heat pipe. J. Fluid Mech. 589, 131.CrossRefGoogle Scholar