No CrossRef data available.
Published online by Cambridge University Press: 11 August 2025
Accurately predicting the mean flow properties of wall-bounded turbulence is essential for both fundamental research and engineering applications. In atmospheric boundary layers, the mean flow within the surface layer is typically described by Monin–Obukhov similarity theory (MOST). However, beyond the surface layer, MOST no longer applies as the Coriolis effect becomes significant. To address this issue, this study introduces a novel analytical model for the mean turbulent momentum fluxes and geostrophic wind deficits in nocturnal stable atmospheric boundary layers (NSBLs), which are stably stratified near the surface and transition to neutrally stratified flow above. The model solutions are derived from the Ekman equations using the eddy viscosity approach and a new parametrisation of the flux Richardson number. The solutions show that the geostrophic wind deficits scale with $u_*^2/(hf)$, where
$u_*$ is the friction velocity,
$h$ is the boundary layer height, and
$f$ is the Coriolis parameter. The model’s predictions align closely with recent large-eddy simulation studies, confirming the model’s accuracy. Combined with the geostrophic drag law, the model can reliably predict the wind speed profile above the surface layer of NSBLs. This work marks a significant step in modelling atmospheric turbulence and its fundamental dynamics.