Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-18T06:31:01.166Z Has data issue: false hasContentIssue false

Bounds for the solutions of the hyperelliptic equation

Published online by Cambridge University Press:  24 October 2008

A. Baker
Affiliation:
Trinity College, Cambridge
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this note is to extend the result which I established recently (see (3)) on the Diophantine equation

to some further equations of a similar kind. The following theorems will be proved.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

References

REFERENCES

(1)Baker, A.Contributions to the theory of Diophantine equations: I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A. 263 (1968), 173191.Google Scholar
(2)Baker, A.Contributions to the theory of Diophantine equations: II. The Diophantine equation y 2 = x 2 + k. Philos. Trans. Roy. Soc. London Ser. A. 263 (1968), 193208.Google Scholar
(3)Baker, A.The Diophantine equation y 2 = ax 3 + bx 2 + cx + d. J. London Math. Soc. 43 (1968), 19. (Dedicated to Prof. L. J. Mordell on his 80th birthday).CrossRefGoogle Scholar
(4)Hecke, E.Theorie der algebraischen Zahlen (Leipzig, 1923).Google Scholar
(5)Landau, E.Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale (Leipzig and Berlin, 1927).Google Scholar
(6)Siegel, C. L.Approximation algebraischer Zahlen. Math. Z. 10 (1921), 173213.CrossRefGoogle Scholar
(7)Siegel, C. L.(under the pseudonym X). The integer solutions of the equation J. London Math. Soc. 1 (1926), 6668; = Ges. Abhandlungen I, 207–208.Google Scholar