Hostname: page-component-cb9f654ff-kl2l2 Total loading time: 0 Render date: 2025-08-11T18:35:56.984Z Has data issue: false hasContentIssue false

The Electronic Structure of

Published online by Cambridge University Press:  24 October 2008

C. A. Coulson*
Affiliation:
Trinity College
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The molecular-orbital method has been applied to a study of in its ground state and excited levels, and the relative importance of the perturbation and variational methods has been considered in some detail, as well as the effect of certain integrals which, in discussions of molecular structure, have often been neglected. It appears that the ion should exist in stable equilateral form with a nuclear distance about 0·85 Å., and that all excited levels are unstable.

Reasons are given for supposing that the molecule H3 is linear and not triangular.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1935

References

REFERENCES

(1) Aston, , Isotopes. (Arnold.)Google Scholar
(2) Bainbridge, , Phys. Rev. 43 (1933), 103.10.1103/PhysRev.43.103Google Scholar
(3) Lennard-Jones, , Trans. Far. Soc. 30 (1934), 70.10.1039/tf9343000070Google Scholar
(4) Mulliken, , Phys. Rev. 41 (1932), 49.10.1103/PhysRev.41.49Google Scholar
(5) Lennard-Jones, , Trans. Far. Soc. 25 (1929), 668.Google Scholar
(6) Massey, , Proc. Cambridge Phil. Soc. 27 (1931), 451.10.1017/S0305004100010033Google Scholar
(7) Pauling, , Chem. Rev. 5 (1928), 173.10.1021/cr60018a003Google Scholar
(8) Morse, and Stueckelberg, , Phys. Rev. 33 (1929), 932.10.1103/PhysRev.33.932Google Scholar
(9) Slater, , Phys. Rev. 36 (1930), 57.Google Scholar
(10) Zener, , Phys. Rev. 36 (1930), 51.10.1103/PhysRev.36.51Google Scholar
(11) Rosen, , Phys. Rev. 38 (1931), 2099.10.1103/PhysRev.38.2099Google Scholar
(12) James, , J. Chem. Phys. 2 (1934), 794.10.1063/1.1749395Google Scholar
(13) Coolidge, and James, , J. Chem. Phys. 2 (1934), 782.10.1063/1.1749396Google Scholar
(14) Eyring, , J. Amer. Chem. Soc. 53 (1931), 2537.Google Scholar