Hostname: page-component-cb9f654ff-h4f6x Total loading time: 0 Render date: 2025-08-24T14:50:06.790Z Has data issue: false hasContentIssue false

The flow due to a rotating disc

Published online by Cambridge University Press:  24 October 2008

W. G. Cochran
Affiliation:
St John's College
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The steady motion of an incompressible viscous fluid, due to an infinite rotating plane lamina, has been considered by Kármán. If r, θ, z are cylindrical polar coordinates, the plane lamina is taken to be z = 0; it is rotating with constant angular velocity ω about the axis r = 0. We consider the motion of the fluid on the side of the plane for which z is positive; the fluid is infinite in extent and z = 0 is the only boundary. If u, v, w are the components of the velocity of the fluid in the directions of r, θ and z increasing, respectively, and p is the pressure, then Kármán shows that the equations of motion and continuity are satisfied by taking

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1934

References

* Zeitschrift für angewandte Mathematik u. Mechanik, 1 (1921), 244–7.Google Scholar

* These results are given, as Kármán, stated them, in the Handbuch der Physik, 7 (1927), 158, 159Google Scholar; the Handbuch der Experimental-Physik, 4 (1931), Part I, 255–7Google Scholar; Bulletin No. 84 of the National Research Council; Lamb, , Hydrodynamics (1932), 280–2Google Scholar; Müller, , Einführung in die Theorie der zähen Flüssigkeiten (1932), 226–9Google Scholar. A comparison with experiment was given by Kempf, , Vorträge aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck, 1922Google Scholar) edited by Kármán, and Levi-Civitá, (1924), 168–70Google Scholar. If ωa 2/ν is too large (greater than about 5 × 105), the motion is turbulent.

* Cf. Whittaker, and Robinson, , Calculus of Observations, 2nd ed., 363–7.Google Scholar