Hostname: page-component-5447f9dfdb-2r8x7 Total loading time: 0 Render date: 2025-07-30T08:41:42.942Z Has data issue: false hasContentIssue false

Lifting amalgamated sums and other colimits of groups and topological groups

Published online by Cambridge University Press:  24 October 2008

Ronald Brown
Affiliation:
Department of Pure Mathematics, University College of North Wales, Bangor, Gwynedd LL57 2UW
Philip R. Heath
Affiliation:
Department of Mathematics, Memorial University of Newfoundland, St John's, Newfoundland A1C 5S7, Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose a group H is given as a free product with amalgamation

determined by groups A0, A1, A2 and homomorphisms α1: A0A1, α2: A0A2. Thus H may be described as the quotient of the free product A * A2 by the relations i1 α10) = i2α20) for all α0A0, where i1, i2 are the two injections of A1, A2 into A1 * A2. We do not assume that α1, α2 are injective, so the canonical homomorphisms α′i: AiH, i = 0,1,2, also need not be injective.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1987

References

REFERENCES

[1]Booth, P. I. and Brown, R.. Spaces of partial maps, fibred mapping spaces and the compactopen topology. Gen. Top. Appl. 8 (1978), 181195.CrossRefGoogle Scholar
[2]Brown, R.. Fibrations of groupoids. J. Algebra 15 (1970), 103132.CrossRefGoogle Scholar
[3]Brown, R.. Some nonprojective subgroups of free topological groups. Proc. Amer. Math. Soc. 52 (1975), 433440.CrossRefGoogle Scholar
[4]Brown, R. and Nicholas, P.. Exponential laws for topological categories, groupoids and groups, and mapping spaces of colimits. Cah. Top. Géom. Diff. 20 (1979), 179198.Google Scholar
[5]Conduché, F.. Au sujet de l'existence d'adjoints à droite aux foncteurs image réciproque dans la catégorie des catégories. C.R.A.S. Paris 275 A (1972), 891894.Google Scholar
[6]Higgins, P. J.. Notes on Categories and Groupoids (Van Nostrand, 1971).Google Scholar
[7]Howie, J.. Pullback functors and crossed complexes. Cah. Top. Géom. Diff. 20 (1979), 281296.Google Scholar
[8]LaMartin, W. F.. On the foundations of k-group theory. Diss. Math. (Rozprawy Mat.) 146 (1977).Google Scholar
[9]Mac Lane, S.. Categories for the Working Mathematician (Springer-Verlag, 1971).CrossRefGoogle Scholar
[10]Nickolas, P.. Free products of k ω-topological groups with a closed subgroup amalgamated. J. Austral. Math. Soc. (Series A) 40 (1986), 414420.CrossRefGoogle Scholar