Hostname: page-component-cb9f654ff-nr592 Total loading time: 0 Render date: 2025-08-04T17:24:20.422Z Has data issue: false hasContentIssue false

Minkowski sum of fractal percolation and random sets

Published online by Cambridge University Press:  29 July 2025

TIANYI BAI
Affiliation:
State Key Laboratory of Mathematical Sciences, Academy of Mathematics and Svstems Science, Chinese Academy of Sciences, Beijing, China, e-mail: tianyi.bai73@amss.ac.cn
XINXIN CHEN
Affiliation:
School of Mathematical Sciences, Beijing Normal University No. 19, Xinjiekouwai St, Haidian District, Beijing, China. e-mail: xinxin.chen@bnu.edu.cn
YUVAL PERES
Affiliation:
Beijing Institute of Mathematical Sciences and Applications No. 544 Hefangkou Village, Huairou District, Beijing, China. e-mail: yperes@bimsa.cn

Abstract

In this paper, we prove that the hitting probability of the Minkowski sum of fractal percolations can be characterised by capacity. Then we extend this result to Minkowski sums of general random sets in $\mathbb Z^d$, including ranges of random walks and critical branching random walks, whose hitting probabilities are described by Newtonian capacity individually.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This research was supported by the National Key R&D Program of China No. 2022YFA1006500.

References

Asselah, A., Okada, I., Schapira, B. and Sousi, P.. Branching random walks and Minkowski sum of random walks. Preprint: Arxiv:2308.12948 (2023).Google Scholar
Bai, T., Delmas, J.-F. and Hu, Y.. Branching capacity and Brownian snake capacity. Preprint: Arxiv:2402.13735 (2024).Google Scholar
Baran, Z.. Intersections of branching random walks on $\mathbb Z^8$ . Preprint: Arxiv:2410.13834 (2024).Google Scholar
Dekking, M. and Simon, K.. On the size of the algebraic difference of two random Cantor sets. Random Struct. Algorithms 32 (2008), 205222.10.1002/rsa.20178CrossRefGoogle Scholar
Fitzsimmons, P. J. and Salisbury, T. S.. Capacity and energy for multiparameter Markov processes. Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), 325350.Google Scholar
Khoshnevisan, D. and Shi, Z.. Brownian sheet and capacity. Ann. Probab. 27 (1999), 11351159.10.1214/aop/1022677442CrossRefGoogle Scholar
Larsson, P. E. R.. The difference set of two Cantor sets. ProQuest LLC, Ann Arbor, MI Fil. Dr. Thesis Uppsala Universitet, Sweden (1991).Google Scholar
Lawler, G. F.. The probability of intersection of independent random walks in four dimensions. Comm. Math. Phys. 86 (1982), 539554.10.1007/BF01214889CrossRefGoogle Scholar
Lawler, G. F. and Limic, V.. Random Walk: a Modern Introduction (Cambridge University Press, Cambridge, 2010).10.1017/CBO9780511750854CrossRefGoogle Scholar
Lyons, R., Peres, Y. and Schramm, O.. Markov chain intersections and the loop-erased walk. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 779791.10.1016/S0246-0203(03)00033-5CrossRefGoogle Scholar
Mandelbrot, B. B.. Renewal sets and random cutouts. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 145157.10.1007/BF00532733CrossRefGoogle Scholar
Palis, J.. Homoclinic orbits, hyperbolic dynamics and dimension of Cantor sets. In The Lefschetz Centennial Conference, Part III (Mexico City, 1984) Contemp. Math. vol. 58, III (Amer. Math. Soc., Providence, RI, 1987), pp. 203216.10.1090/conm/058.3/893866CrossRefGoogle Scholar
Peres, Y. Intersection-equivalence of Brownian paths and certain branching processes. Comm. Math. Phys. 177 (1996), 417434.10.1007/BF02101900CrossRefGoogle Scholar
Salisbury, T. S.. Energy, and intersections of Markov chains. In Random Discrete Structures (Minneapolis, MN, 1993) IMA Vol. Math. Appl. vol 76 (Springer, New York, 1996), pp. 213225.10.1007/978-1-4612-0719-1_15CrossRefGoogle Scholar