Hostname: page-component-cb9f654ff-9b74x Total loading time: 0 Render date: 2025-08-11T15:01:48.029Z Has data issue: false hasContentIssue false

Norms of summation methods

Published online by Cambridge University Press:  24 October 2008

G. M. Petersen
Affiliation:
University College of Swansea
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We shall understand the norm, h(A) of a regular matrix A = (amn) to be

The method has a norm, ‖ ‖, ‖ ‖ ≥ 1, given by ‖ ‖ = inf h(A) where the inf is taken over all the matrix methods equivalent to for bounded sequences (b-equivalent). These definitions are due essentially to Brudno(1) though his definition of

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1958

References

REFERENCES

(1)Brudno, A.Summation of bounded sequences by matrices. Rec. Math. (Mat. Sbornik) N.S., 16 (1945), 191247 (in Russian).Google Scholar
(2)Lorentz, G. G.A contribution to the theory of divergent sequences. Acta Math., Stockh., 80 (1948), 167–90.CrossRefGoogle Scholar
(3)Petersen, G. M. Matrix norms. (Unpublished.)Google Scholar
(4)Petersen, G. M.Summability methods and bounded sequences. J. Lond. Math. Soc. 31 (1956), 324–6.CrossRefGoogle Scholar
(5)Petersen, G. M.The norm of iterations of regular matrices. Proc. Camb. Phil 53 (1957), 286–9.CrossRefGoogle Scholar
(6)Petersen, G. M.The iteration of regular matrix methods of summation. Math. Scand. 4 (1956), 276–80.CrossRefGoogle Scholar