Hostname: page-component-cb9f654ff-65tv2 Total loading time: 0 Render date: 2025-08-17T13:34:47.256Z Has data issue: false hasContentIssue false

A note on rank and direct decompositions of torsion-free Abelian groups. II

Published online by Cambridge University Press:  24 October 2008

A. L. S. Corner
Affiliation:
Worcester College, Oxford
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

According to well-known theorems of Kaplansky and Baer–Kulikov–Kapla nsky–Fuchs (4, 2), the class of direct sums of countable Abelian groups and the class of direct sums of torsion-free Abelian groups of rank 1 are both closed under the formation of direct summands. In this note I give an example to show that the class of direct sums of torsion-free Abelian groups of finite rank does not share this closure property: more precisely, there exists a torsion-free Abelian group G which can be written both as a direct sum G = A⊕B of 2 indecomposable groups A, B of rank ℵ0 and as a direct sum G = ⊕n ε zCn of ℵ0 indecomposable groups Cn (nεZ) of rank 2, where Z is the set of all integers.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

References

REFERENCES

(1)Corner, A. L. S.A note on rank and direct decompositions of torsion-free Abelian groups. Proc. Cambridge Philos. Soc. 57 (1961), 230233.CrossRefGoogle Scholar
(2)Fuchs, L.Notes on Abelian groups, I. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959), 523.Google Scholar
(3)Jónsson, B.On direct decompositions of torsion-free Abelian groups. Math. Scand. 5 (1957), 230235.CrossRefGoogle Scholar
(4)Kaplansky, I.Projective modules. Ann. of Math. 68 (1958), 372377.CrossRefGoogle Scholar