Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-09T11:37:55.483Z Has data issue: false hasContentIssue false

On a theorem of Zygmund

Published online by Cambridge University Press:  24 October 2008

M. Kac
Affiliation:
Cornell University, Ithaca, New York
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Zygmund (1) proved in 1936 that if f(x) ∈Lp(−∞, ∞) (1 ≤ p ≤ 2), the Fourier transform

exists for almost every λ, in the sense that

exists for almost every λ. The purpose of this note is to provide a short proof of this theorem.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

References

REFERENCES

(1)Zygmund, A.A remark on Fourier transforms. Proc. Cambridge Phil. Soc. 32 (1936), 321–7.CrossRefGoogle Scholar
(2)Kac, M.Convergence and divergence of non-harmonic gap series. Duke Math. J. 8 (1941), 541–5.CrossRefGoogle Scholar
(3)Hartman, P.Divergence of non-harmonic gap series. Duke Math. J. 9 (1942), 404–5.CrossRefGoogle Scholar
(4)Menchoff, D.Sur les séries de fonctions orthogonales. Fund. Math. 11 (1928), 375420, Theorem 12.Google Scholar