Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-08-13T23:55:40.792Z Has data issue: false hasContentIssue false

On multipliers of Fourier transforms

Published online by Cambridge University Press:  24 October 2008

Louis Pigno
Affiliation:
Kansas State University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper G is a locally compact Abelian group, φ a complex-valued function defined on the dual Γ, Lp(G) (1 ≤ p ≤ ∞) the usual Lebesgue space of index p formed with respect to Haar measure, C(G) the set of all bounded continuous complex-valued functions on G, and C0(G) the set of all f ∈ C(G) which vanish at infinity.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1972

References

REFERENCES

(1)Doss, R.On the multiplicators of some classes of Fourier transforms. Proc. London Math. Soc. (2) 50 (1949), 169195.Google Scholar
(2)Edwards, D. A.On translates of L -functions. J. London Math. Soc. 36 (1961), 431432.CrossRefGoogle Scholar
(3)Edwards, R. E.Fourier series, A modern introduction, vol. II. Holt, Rinehart and Winston (New York, 1967).Google Scholar
(4)Edwards, R. E.On factor functions. Pacific J. Math. 5 (1955), 367378.CrossRefGoogle Scholar
(5)Hewitt, E. and Ross, K. A.Abstract harmonic analysis, vol. I (Springer-Verlag; Heidelberg and New York, 1963).Google Scholar
(6)Hewitt, E. and Ross, K. A.Abstract harmonic analysis, vol. I (Springer-Verlag; Heidelberg and New York, 1970).Google Scholar
(7)Hormander, L.Estimates for translation invariant operators in L ν spaces. Acta Math. 104 (1960), 93140.CrossRefGoogle Scholar
(8)Pigno, L.A multiplier theorem. Pacific J. Math. 34 (1970), 755757.CrossRefGoogle Scholar
(9)Rudin, W.Fourier analysis on groups (Interscience; New York, 1962).Google Scholar
(10)Verblunsky, S.On some classes of Fourier series. Proc. London Math. Soc. (2) 33 (1932), 287327.CrossRefGoogle Scholar
(11)Zygmund, A.Remarque sur un théorème de M. Fekete. Bull. Acad. Polonaise Sci. Lett. (1927), 343347.Google Scholar