Hostname: page-component-cb9f654ff-pvkqz Total loading time: 0 Render date: 2025-08-22T07:47:06.518Z Has data issue: false hasContentIssue false

Polynomials which are near to k-th powers

Published online by Cambridge University Press:  24 October 2008

K. R. Matthews
Affiliation:
Trinity College, Cambridge
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Let f(x) be a polynomial of degree n ≥ 2 with integral coefficients, the highest coefficient being positive. It is well known that if f(x) is an exact k-th power for all sufficiently large integers x, where k ≥ 2, then f(x) = g(x)k identically, where g(x) is another polynomial with integral coefficients. (See Pólya and Szegö (4), section 8, problems 114, 190; also Davenport, Lewis and Schinzel(1), where other references are given.) The main purpose of this note is to prove that if we suppose only that

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1965

References

REFERENCES

(1)Davenport, H., Lewis, D. J. and Schinzel, A.Polynomials of certain special types. Acta Arith. 9 (1964), 107116.CrossRefGoogle Scholar
(2)Dörge, K.Zum Hilbertschen Irreduzibilitätssatz. Math. Ann. 95 (1926), 8497.CrossRefGoogle Scholar
(3)Dörge, K.Einfacher Beweis des Hilbertschen Irreduzibilitätssatzes. Math. Ann. 96 (1927), 176182.CrossRefGoogle Scholar
(4)Pólya, G. and Szegö, G.Aufgaben und Lehrsätze aus der Analysis, vol. ii (Berlin, 1925).Google Scholar
(5)Skolem, Th.Diophantische Gleichungen (Ergebnisse der Math, v, 4; Berlin, 1938).Google Scholar
(6)Weyl, H.Ueber die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77 (1916), 313352.CrossRefGoogle Scholar