Hostname: page-component-cb9f654ff-fg9bn Total loading time: 0 Render date: 2025-08-14T03:45:14.436Z Has data issue: false hasContentIssue false

The self-intersection formula and the ‘formule-clef’

Published online by Cambridge University Press:  24 October 2008

A. T. Lascu
Affiliation:
Université de Montréal, Harvard University, University of Sussex
D. Mumford
Affiliation:
Université de Montréal, Harvard University, University of Sussex
D. B. Scott
Affiliation:
Université de Montréal, Harvard University, University of Sussex
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We shall consider exclusively algebraic non-singular quasi-projective irreducible varieties over an algebraically closed field. If V is such a variety will be the Chow ring of rational equivalence classes of cycles of V

and the group homomorphism defined by any proper morphism φ: V1V2. Also

denotes the ring homomorphism defined by φ.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

References

REFERENCES

(1)Borel, A. and Serre, J.-P.Le théorème de Riemann-Roch. Bull. Soc. Math. France 86 (1958), 97136.Google Scholar
(2)Berthelot, A., Grothendieck, A. and Illusie, L. Thérie des intersections et théorème de Riemann-Roch. SGA6, Springer Lecture Notes no. 225.Google Scholar
(3)Grothendieck, A. Sur quelques propriétés fondamentales en théorie des intersections. Anneaux de Chow et applications. Séminaire G. Chevalley, 2e année (1958).Google Scholar
(4)Grothendieck, A.La théorie des classes de Chern. Bull. Soc. Math. France 86 (1958), 137159.Google Scholar
(5)Ilori, S., Ingleton, A. W. and Lascu, A. T.On a formula of D. B. Scott. J. London Math. Soc. (2), 8 (1974), 539544.CrossRefGoogle Scholar
(6)Jouanolou, J. P.Riemann-Roch sans dénominateurs. Inventiones Math. 11 (1970), 1526.CrossRefGoogle Scholar
(7)Lascu, A. T. and Scott, D. B.An algebraic correspondence with applications to projective bundles and blowing-up Chern classes. Annali di Matematica pura ed applicata (to appear).Google Scholar