Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-08-15T06:44:13.940Z Has data issue: false hasContentIssue false

Some metrical theorems in diophantine approximation

v. on a conjecture of mahler

Published online by Cambridge University Press:  24 October 2008

J. W. S. Cassels
Affiliation:
The UniversityMachester
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Introduction. If ξ is a real number we denote by ∥ ξ ∥ the difference between ξ and the nearest integer, i.e.

It is well known (e.g. Koksma (3), I, Satz 4) that if θ1, θ2, …, θn are any real numbers, the inequality

has infinitely many integer solutions q > 0. In particular, if α is any real number, the inequality

has infinitely many solutions.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

References

REFERENCES

(1)Khintchine, A.Ya. Zur Theorie der Diophantischen Approximationen. Mat. Sborn. (Rec. Math.), 32 (1925), 277–8.Google Scholar
(2)Khintchine, A.Ya. Zwei Bemerkungen zu einer Arbeit des Herrn Perron. Math. Z. 22 (1925), 274–84.CrossRefGoogle Scholar
(3)Koksma, J. F.Diophantische Approximationen. Ergebn. Math. iv, 4 (1935).Google Scholar
(4)Koksma, J. F.Über die Mahlersche Klasseneinteilung u.s.w. Monatshefte, 48 (1939), 176–89.CrossRefGoogle Scholar
(5)Mahler, K.Über das Mass der Menge aller S-Zahlen. Math. Ann. 166 (1932), 131–9.CrossRefGoogle Scholar
(6) (C.R. Acad. Sci. U.R.S.S.), 67 (1949), 783–6.Google Scholar