Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-08-17T13:20:52.491Z Has data issue: false hasContentIssue false

The Spectral resolution of Watson transforms

Published online by Cambridge University Press:  24 October 2008

Edwin J. Akutowicz
Affiliation:
Massachusetts Institute of Technology
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If φ belongs to L2(0, ∞), the Watson transform W φ of φ is defined by

where k(u)/u belongs to L2(0, ∞) and

The operator W is unitary in L2(0, ∞), and its inverse is given by

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1958

References

REFERENCES

(1)Doetsch, G.Die Eigenwerte und Eigenfunktionen von Integral-transformationen. Math. Ann. 117 (1939).Google Scholar
(2)Pollard, H.Integral transforms. Duke Math. J. 13 (1946).CrossRefGoogle Scholar
(3)Plessner, A. and Rokhlin, V.Spectral theory of linear operators. Uspehi Mat. Nauk, 1 (N.S.), 1946.Google Scholar
(4)Murray, F. J.Linear transformations in Hilbert Space (Princeton, 1941).Google Scholar
(5)Nagy, Béla v. Sz.Spektraldarstellung Linearer Transformationen des Hilbertschen Raumes (Berlin, 1942).CrossRefGoogle Scholar
(6)Nevastlinna, F. and Nieminen, T.Das Poisson-Stieltjessche Integral und seine Anwendung in der Spektraltheorie des Hilbertschen Raumes. Ann. Acad. Sci. Fenn. No. 207 (1955).Google Scholar