Hostname: page-component-cb9f654ff-nr592 Total loading time: 0 Render date: 2025-08-13T23:28:03.453Z Has data issue: false hasContentIssue false

Triple velocity correlations in isotropic turbulence

Published online by Cambridge University Press:  24 October 2008

R. W. Stewart
Affiliation:
Cavendish LaboratoryCambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The triple velocity correlation, in turbulence produced by inserting a square-mesh grid near the beginning of the working section of a wind tunnel, has been measured for mesh Reynolds numbers of RM = 5300, 21,200 and 42,400 (RM = UM/ν, where U is the mean wind speed in the working section of the tunnel and M is the centre to centre spacing of the rods making up the grid; ν is the kinematic viscosity of air). At the lowest Reynolds number the correlation has been measured at distances downstream of the grid varying from 20 to 120M. This range covers practically all of the initial period of the decay of turbulence, where the turbulent intensity varies as t−1.

Information

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

References

REFERENCES

(1)Taylor, G. I.Proc. Roy. Soc. A, 151 (1935), 421.Google Scholar
(2)Kármán, T. von and Howarth, L.Proc. Roy. Soc. A, 164 (1938), 192.Google Scholar
(3)Batchelor, G. K. and Townsend, A. A.Proc. Roy. Soc. A, 193 (1948), 539.Google Scholar
(4)Townsend, A. A.Australian J. Sci. Res. A, 1 (1948), 161.Google Scholar
(5)Zobel, O. J.Bell Syst. Tech. J. 2 (1923), 1.Google Scholar
(6)Batchelor, G. K. and Townsend, A. A.Proc. Roy. Soc. A, 190 (1947), 534.Google Scholar
(7)Kolmogoroff, A. N.C.R. Acad. Sci. U.R.S.S. 30 (1941), 301;Google Scholar
Kolmogoroff, A. N.C.R. Acad. Sci. U.R.S.S. 32 (1941), 16.Google Scholar
(8)Batchelor, G. K.Proc. Cambridge Phil. Soc. 43 (1947), 533.Google Scholar
(9)Batchelor, G. K.Proc. Roy. Soc. A, 195 (1949), 513.Google Scholar
(10)Batchelor, G. K. and Stewart, R. W.Quart. Appl. Math. 3 (1950), 1.Google Scholar
(11)Townsend, A. A.Proc. Cambridge Phil. Soc. 44 (1947), 560.CrossRefGoogle Scholar