Hostname: page-component-cb9f654ff-9knnw Total loading time: 0 Render date: 2025-08-17T12:30:35.908Z Has data issue: false hasContentIssue false

The large values of the Riemann Zeta-function

Published online by Cambridge University Press:  26 February 2010

Kai-Man Tsang
Affiliation:
Department of Mathematics, University of Hong Kong, Pokfulam Road, Hong Kong.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let |θ| < π/2 and . By refining Selberg's method, we study the large values of as t → ∞ For σ close to ½ we obtain Ω+ estimates that are as good as those obtained previously on the Riemann Hypothesis. In particular, we show that

and

Our results supplement those of Montgomery which are good when σ > ½ is fixed.

MSC classification

Information

Type
Research Article
Copyright
Copyright © University College London 1993

References

1.Bateman, H.. Tables of Integral Transforms (McGraw-Hill, 1954).Google Scholar
2.Balasubramanian, R. and Ramachandra, K.. On the frequency of Titchmarsh's phenomenon for ζ(s)-III. Proc. Indian Acad, Sci., 83A (1977), 341351.Google Scholar
3.Levinson, N.. Ω-theorems for the Riemann zeta-function. Acta Arith., 20 (1972), 317330.Google Scholar
4.Montgomery, H.. Extreme values of the Riemann zeta function. Comment. Math. Helv., 52 (1977), 511518.Google Scholar
5.Selberg, A.. Contributions to the theory of the Riemann zeta-function. Arch, for Math, og Naturv. B, 48 (1946), no. 5.Google Scholar
6.Titchmarsh, E. C.. On an inequality satisfied by the zeta-function of Riemann. Proc. London Math. Soc., 28 (1928), 7080.Google Scholar
7.Titchmarsh, E. C.. The Theory of the Riemann Zeta-function, 2nd ed. Revised by Heath-Brown, D. R. (Oxford University Press, Oxford, 1988).Google Scholar
8.Tsang, K.. Some Ω-theorems for the Riemann zeta-function. Acta Arith., 46 (1986), 369395.Google Scholar