Hostname: page-component-cb9f654ff-nr592 Total loading time: 0 Render date: 2025-08-23T20:51:11.115Z Has data issue: false hasContentIssue false

RUIN PROBABILITIES FOR A MULTIDIMENSIONAL RISK MODEL WITH NON-STATIONARY ARRIVALS AND SUBEXPONENTIAL CLAIMS

Published online by Cambridge University Press:  16 March 2021

Ke-Ang Fu
Affiliation:
Department of Statistics, Zhejiang University City College, Hangzhou 310015, China E-mail: fukeang@hotmail.com
Yang Liu
Affiliation:
School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China E-mail: sukey07828@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider a multidimensional risk model, in which an insurer simultaneously confronts m (m ≥ 2) types of claims sharing a common non-stationary and non-renewal arrival process. Assuming that the claims arrival process satisfies a large deviation principle and the claim-size distributions are heavy-tailed, asymptotic estimates for two common types of ruin probabilities for this multidimensional risk model are obtained. As applications, we give two examples of the non-stationary point process: a Hawkes process and a Cox process with shot noise intensity, and asymptotic ruin probabilities are obtained for these two examples.

Information

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

References

Albrecher, H. & Asmussen, S. (2006). Ruin probabilities and aggregate claims distributions for shot noise Cox processes. Scandinavian Actuarial Journal 2: 86110.CrossRefGoogle Scholar
Baltrūnas, A., Daley, D.J., & Klüppelberg, C. (2004). Tail behaviour of the busy period of a GI/GI/1 queuewith subexponential service times. Stochastic Processes and Their Applications 111: 237258.CrossRefGoogle Scholar
Bordenave, C. & Torrisi, G.L. (2007). Large deviations of Poisson cluster processes. Stochastic Models 23: 593625.CrossRefGoogle Scholar
Chen, Y., Yuen, K.C., & Ng, K.W. (2011). Asymptotics for the ruin probabilities of a two-dimensional renewal risk model with heavy-tailed claims. Applied Stochastic Models in Business and Industry 27: 290300.CrossRefGoogle Scholar
Chen, Y., Wang, Y., & Wang, K. (2013). Asymptotic results for ruin probability of a two-dimensional renewal risk model. Stochastic Analysis and Applications 31: 8091.CrossRefGoogle Scholar
Daley, D.J. & Vere-Jones, D (2003). An introduction to the theory of point processes. vols. I and II, 2nd ed. New York: Springer.Google Scholar
Dembo, A. & Zeitouni, O (1998). Large deviations techniques and applications. New York: Springer.CrossRefGoogle Scholar
Gao, Q. & Yang, X. (2014). Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest. Journal of Mathematical Analysis and Applications 419: 11931213.CrossRefGoogle Scholar
Gao, X. & Zhu, L. (2018). Large deviations and applications for Markovian Hawkes processes with a large initial intensity. Bernoulli 24: 28752905.CrossRefGoogle Scholar
Hawkes, A.G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika 58: 8390.CrossRefGoogle Scholar
Konstantinides, D.G. & Li, J. (2016). Asymptotic ruin probabilities for a multidimensional renewal risk model with multivariate regularly varying claims. Insurance Mathematics & Economics 69: 3844.CrossRefGoogle Scholar
Korshunov, D.A. (2002). Large deviation on probabilities for the maxima of sums of independent summands with a negative mean and a subexponential distribution. Theory of Probability and Its Applications 46: 355365.CrossRefGoogle Scholar
Leipus, R. & Šiaulys, J. (2007). Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes. Insurance Mathematics & Economics 40: 498508.CrossRefGoogle Scholar
Li, J. (2018). A revisit to asymptotic ruin probabilities for a bidimensional renewal risk model. Statistics & Probability Letters 140: 2332.CrossRefGoogle Scholar
Li, J. & Yang, H. (2015). Asymptotic ruin probabilities for a bidimensional renewal risk model with constant interest rate and dependent claims. Journal of Mathematical Analysis and Applications 426: 247266.CrossRefGoogle Scholar
Li, J., Liu, Z., & Tang, Q. (2007). On the ruin probabilities of a bidimensional perturbed risk model. Insurance Mathematics & Economics 41: 185195.CrossRefGoogle Scholar
Liu, X., Gao, Q., & Guo, E. (2016). Uniform asymptotics for ruin probability of a two-dimensional dependent renewal risk model. Communications in Statistics – Theory and Methods 45: 60456060.CrossRefGoogle Scholar
Lu, D. & Zhang, B. (2016). Some asymptotic results of the ruin probabilities in a two-dimensional renewal risk model with some strongly subexponential claims. Statistics & Probability Letters 114: 2029.CrossRefGoogle Scholar
Shen, X., Ge, M., & Fu, K.A. (2020). Approximation of the tail probabilities for bidimensional randomly weighted sums with dependent components. Probability in the Engineering and Informational Sciences 34: 112130.CrossRefGoogle Scholar
Stabile, G. & Torrisi, G.L. (2010). Risk processes with non-stationary Hawkes arrivals. Methodology and Computing in Applied Probability 12: 415429.CrossRefGoogle Scholar
Yang, H. & Li, J. (2014). Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims. Insurance Mathematics & Economics 58: 185192.CrossRefGoogle Scholar
Yang, Y., Wang, K., Liu, J., & Zhang, Z. (2019). Asymptotics for a bidimensional risk model with two geometric Levy price processes. Journal of Industrial and Management Optimization 15: 481505.CrossRefGoogle Scholar
Zhu, L. (2013). Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims. Insurance Mathematics & Economics 53: 544550.CrossRefGoogle Scholar