Hostname: page-component-cb9f654ff-5kfdg Total loading time: 0 Render date: 2025-08-22T04:51:14.753Z Has data issue: false hasContentIssue false

Semigroups of self-similar actions and higher rank Baumslag–Solitar semigroups

Published online by Cambridge University Press:  18 August 2025

Robert Valente
Affiliation:
Department of Mathematics & Statistics, University of Windsor, Windsor, ON N9B 3P4, Canada (valenter@uwindsor.ca)
Dilian Yang*
Affiliation:
Department of Mathematics & Statistics, University of Windsor, Windsor, ON N9B 3P4, Canada (dyang@uwindsor.ca)
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Abstract

In this paper, we initiate the study of higher rank Baumslag–Solitar (BS) semigroups and their related C*-algebras. We focus on two rather interesting classes—one is related to products of odometers and the other is related to Furstenberg’s $\times p, \times q$ conjecture. For the former class, whose C*-algebras are studied in [32], we here characterize the factoriality of the associated von Neumann algebras and further determine their types; for the latter, we obtain their canonical Cartan subalgebras. In the rank 1 case, we study a more general setting that encompasses (single-vertex) generalized BS semigroups. One of our main tools in this paper is from self-similar higher rank graphs and their C*-algebras.

Information

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

1. Introduction

A self-similar higher rank graph $(G, \Lambda)$ is a pair, which consists of a group G and a higher rank graph Λ such that G acts on Λ from the left and Λ ‘acts’ on G from the right, where these two actions are compatible in an appropriate way. After [Reference Duwenig, Gillaspy, Norton, Reznikoff and Wright22, Reference Li and Yang38], self-similar higher rank graphs and their C*-algebras ${\mathcal{O}}_{G, \Lambda}$ have been systematically studied in [Reference Li33Reference Li and Yang35]. In particular, in [Reference Li33], when Λ is strongly connected, we find a canonical Cartan subalgebra of ${\mathcal{O}}_{G, \Lambda}$ en route to the study of the Kubo-Martin-Schwinger (KMS) states of ${\mathcal{O}}_{G, \Lambda}$. However, to achieve this, Λ is required to be locally faithful. The local faithfulness is a key property to obtain the main results in [Reference Li33]. Roughly speaking, it guarantees that one could define a periodicity group in a way very similar to higher rank graphs in [Reference Davidson, Power and Yang17, Reference Davidson and Yang18]. It turns out that the local faithfulness condition blocks a lot of interesting examples. This provides our starting point of this paper—to explore non-locally faithful self-similar higher rank graphs and their C*-algebras. During the exploration, we found that a particular non-locally faithful class is closely related to Baumslag–Solitar (BS) semigroups. Due to the higher rank feature, we call such self-similar higher rank graphs higher rank BS semigroups. One extreme case of higher rank BS semigroups is about products of odometers [Reference Laca, Raeburn, Ramagge and Whittaker32], while the other extreme case is surprisingly related to Furstenberg’s $\times p, \times q$ conjecture.

With semigroups mentioned, there is no surprise that Λ is assumed to be single-vertex in this paper. Taking rank 1 (i.e., classical) BS semigroups into consideration, we also consider $G={\mathbb{Z}}$ only. For single-vertex higher rank graphs, they have been systematically studied in the literature. To name just a few, see, for instance, [Reference Davidson15, Reference Davidson, Power and Yang16, Reference Serre46, Reference Spielberg47]. Those graphs seem very special but exhibit a lot of interesting properties. Surprisingly, they are also shown to interact intimately with the Yang–Baxter equation [Reference Yang49]. For BS semigroups, they have been attracting increasing attention in Operator Algebras recently. See [Reference an Huef, Laca, Raeburn and Sims2, Reference Brown, Nagy, Reznikoff, Sims and Williams7, Reference Chen and Li12, Reference Kumjian and Pask30, Reference Laca and Raeburn31, Reference Rudolph44] and the references therein. Those semigroups provide, on one hand, a class of nice examples for some properties [Reference Chen and Li12, Reference Kumjian and Pask30, Reference Rudolph44], and on the other hand, some counter-examples for other properties [Reference an Huef, Laca, Raeburn and Sims2, Reference Brown, Nagy, Reznikoff, Sims and Williams7]. Our main purpose in this paper is to mingle single-vertex higher rank graphs and BS semigroups.

The paper is structured as follows. In § 2, some necessary preliminaries are provided. Although most of them are known, § 2.4 is new, where we introduce a notion of semigroups from self-similar actions. Those semigroups are different from self-similar semigroups/monoids in [Reference Barlak, Omland and Stammeier4] and the references therein (remark 2.10). Since the rank 1 case is studied in a more general setting, we focus on this case in § 3. Even in this case, it includes generalized Baumslag–Solitar (GBS) semigroups, and BS semigroups as well, as examples. We study the periodicity of the associated self-similar graph and obtain a canonical Cartan subalgebra of its C*-algebra (propositions 3.22 and 3.23). The simplicity of the C*-algebra is characterized in terms of the relation between the number of edges and the restriction map; and when it is Kirchberg is also described (theorem 3.20). We turn to higher rank cases in § 4. We first propose a notion of higher rank BS semigroups (definition 4.2). We briefly discuss how higher rank BS semigroups are related to Furstenberg’s $\times p, \times q$ conjecture in § 4.2. We then focus on two extreme classes. The first extreme class is about products of odometers studied in [Reference Laca, Raeburn, Ramagge and Whittaker32]; but here, we investigate the associated von Neumann algebra: Its factoriality is characterized and its type is also determined (theorem 4.13). The second extreme class seems trivial at first sight but turns out to be intriguing. We exhibit a canonical Cartan in this case, which is generally a proper subalgebra of the cycline algebra (theorem 4.22). We close with computing the spectrum of the fixed point algebra of its gauge action. We hope that we could push Furstenberg’s $\times p, \times q$ conjecture further in this vein in our future studies.

Notation and conventions

Given $1\le n\in {\mathbb{N}}$, let $[n]:=\{0, 1, \ldots, n-1\}$. For $1\le \mathsf k\in {\mathbb{N}}$, let $\mathbb{1}_{\mathsf k}:=(1,\ldots, 1)\in {\mathbb{N}}^{\mathsf{k}}$.

We use the multi-index notation: For $\mathbf{q}=(q_1,\ldots, q_{\mathsf k})$ and $\mathbf{p}=(p_1,\ldots, p_\mathsf{k})$ in ${\mathbb{Z}}^{\mathsf k}$ with all $p_i\ne 0$, let $\mathbf{p}^{\mathbf q}:=\prod_{i=1}^{\mathsf k} p_i^{q_i}$.

For convenience, sometimes we also let ${\mathbb{Z}}=\langle a\rangle$, which is written multiplicatively.

As with most literatures in Operator Algebras, all semigroups in this paper are assumed to be monoids, unless otherwise specified.

2. Preliminaries

2.1. Single-vertex rank $\mathsf k$ graphs

A countable small category Λ is called a rank $\mathsf k$ graph (or $\mathsf k$-graph) if there exists a functor $d:\Lambda \to \mathbb{N}^{\mathsf k}$ satisfying the following unique factorization property: For $\mu\in\Lambda, {\mathbf{n}}, {\mathbf{m}} \in \mathbb{N}^k$ with $d(\mu)={\mathbf{n}}+{\mathbf{m}}$, there exist unique $\beta\in d^{-1}({\mathbf{n}})$ and $\alpha\in d^{-1}({\mathbf{m}}) $ such that $\mu=\beta\alpha$. A functor $f:\Lambda_1 \to \Lambda_2$ is called a graph morphism if $d_2 \circ f=d_1$.

Let Λ be a $\mathsf{k}$-graph and ${\mathbf{n}}\in {\mathbb{N}}^k$. Set $\Lambda^{\mathbf{n}}:=d^{-1}({\mathbf{n}})$. For $\mu\in \Lambda$, we write $s(\mu)$ and $r(\mu)$ for the source and range of µ, respectively. Then Λ is said to be row-finite if $\vert v\Lambda^{{\mathbf{n}}}\vert \lt \infty$ for all $v \in \Lambda^0$ and ${\mathbf{n}} \in \mathbb{N}^{\mathsf k}$; and source-free if $v\Lambda^{{\mathbf{n}}} \neq \varnothing$ for all $v \in \Lambda^0$ and ${\mathbf{n}} \in \mathbb{N}^{\mathsf k}$. For more information about $\mathsf k$-graphs, refer to [Reference Katsura29]. In this paper, all $\mathsf k$-graphs are assumed to be row-finite and source-free. Actually, we focus on a special class of rank $\mathsf k$ graphs—single-vertex rank $\mathsf k$ graphs.

Single-vertex $\mathsf k$-graphs, at first sight, seem to be a very special class of $\mathsf k$-graphs. It turns out that they are a rather intriguing class to study. They have been systematically studied in the literature, e.g., [Reference Davidson15Reference Davidson and Yang18]. There are close connections with the well-known Yang–Baxter equation [Reference Yang49].

Let $\{\epsilon_1,\ldots, \epsilon_{\mathsf{k}}\}$ be the standard basis of ${\mathbb{N}}^{\mathsf{k}}$, and Λ be a single-vertex rank $\mathsf{k}$ graph. For $1\le i\le \mathsf{k}$, write $ \Lambda^{\epsilon_i}:=\{{\mathbf{x}}^i_{\mathfrak{s}}:{\mathfrak{s}}\in[n_i]\}, $ where $n_i=|\Lambda^{\epsilon_i}|$. It follows from the factorization property of Λ that, for $1\le i \lt j\le \mathsf{k}$, there is a permutation $\theta_{ij}\in S_{n_i\times n_j}$ satisfying the following θ-commutation relations

\begin{align*} {\mathbf{x}}^i_{\mathfrak{s}} {\mathbf{x}}^j_{\mathfrak{t}} = {\mathbf{x}}^j_{{\mathfrak{t}}'} {\mathbf{x}}^i_{{\mathfrak{s}}'} \quad\text{if}\quad \theta_{ij}({\mathfrak{s}},{\mathfrak{t}}) = ({\mathfrak{s}}',{\mathfrak{t}}'). \end{align*}

To emphasize θ-commutation relations involved, this single-vertex $\mathsf k$-graph Λ is denoted as $\Lambda_\theta$ in this paper. So $\Lambda_\theta$ is the following (unital) semigroup

\begin{align*} \Lambda_\theta=\big\langle {\mathbf{x}}_{\mathfrak{s}}^i: {\mathfrak{s}}\in [n_i],\, 1\le i\le \mathsf{k};\, {\mathbf{x}}^i_{\mathfrak{s}} {\mathbf{x}}^j_{\mathfrak{t}} = {\mathbf{x}}^j_{{\mathfrak{t}}'} {\mathbf{x}}^i_{{\mathfrak{s}}'} \text{ whenever } \theta_{ij}({\mathfrak{s}},{\mathfrak{t}}) = ({\mathfrak{s}}',{\mathfrak{t}}') \big\rangle^+, \end{align*}

which is also occasionally written as

\begin{align*} \Lambda_\theta=\big\langle {\mathbf{x}}_{\mathfrak{s}}^i: {\mathfrak{s}}\in [n_i],\ 1\le i\le \mathsf{k}; \, \theta_{ij}, \, 1\le i \lt j\le \mathsf{k} \big\rangle^+. \end{align*}

One should notice that $\Lambda_\theta$ has the cancellation property due to the unique factorization property. It follows from the θ-commutation relations that every element $w\in \Lambda_\theta$ has the normal form $ w={\mathbf{x}}_{u_1}^1\cdots {\mathbf{x}}_{u_{\mathsf{k}}}^{\mathsf{k}} $ for some ${\mathbf{x}}_{u_i}^i\in\Lambda_\theta^{\epsilon_i{\mathbb{N}}}$ ( $1\le i\le \mathsf{k}$). Here we use the multi-index notation: ${\mathbf{x}}^i_{u_i}={\mathbf{x}}^i_{{\mathfrak{s}}_1}\cdots {\mathbf{x}}^i_{{\mathfrak{s}}_n}$ if $u_i={\mathfrak{s}}_1\cdots{\mathfrak{s}}_n$ with all ${\mathfrak{s}}_i$’s in $[n_i]$.

For $\mathsf{k}=2$, every permutation $\theta\in S_{n_1\times n_2}$ determines a single-vertex rank 2 graph. But for $\mathsf{k}\ge 3$, $\theta=\{\theta_{ij}:1\le i \lt j\le \mathsf{k}\}$ determines a rank $\mathsf k$ graph if and only if it satisfies a cubic condition (see, e.g., [Reference Davidson and Yang18, Reference Exel and Pardo23] for its definition). This cubic condition exactly provides interplay between $\mathsf k$-graphs and the Yang–Baxter equation [Reference Yang49].

Here are some examples of single-vertex $\mathsf k$-graphs which will be used later.

Example 2.1. (Trivial permutation)

For $1\le i \lt j\le \mathsf{k}$, let θij be the trivial permutation: $\theta_{ij}(s,t) = (s,t)$ for all $s\in [n_i]$ and $t\in [n_j]$. Then clearly $\Lambda_\theta$ is a $\mathsf{k}$-graph for all $\mathsf{k}\ge 1$, which is written as $\Lambda_{\operatorname{id}}$.

Example 2.2. (Division permutation)

Let θij be defined by $\theta_{ij}(s,t) = (s',t')$, where $s'\in [n_i]$ and $t'\in [n_j]$ are the unique integers such that $s + tn_i = t' + s'n_j$. One can check that this determines a $\mathsf{k}$-graph for any $\mathsf{k}\ge 1$ (see, e.g., [Reference Laca, Raeburn, Ramagge and Whittaker32]), denoted as $\Lambda_{\mathsf{d}}$.

In particular, if $n_i=n$ for all $1\le i\le \mathsf{k}$, then θ coincides with the flip commutation relation: $\theta_{ij}(s,t) = (t,s)$.

Example 2.3. (‘Trivial’ case)

Let $n_i=1$ for all $1\le i\le \mathsf{k}$. Then θij has to be the trivial commutation relation, which is the same as the division commutation relation. This is a special case of both examples 2.1 and 2.2.

Very surprisingly, this case is not trivial at all when it is equipped with self-similar actions! It is extremely interesting and related to Furstenberg’s $\times p, \times q$ conjecture. See § 4.2 below.

2.2. Self-similar single-vertex $\mathsf k$-graph C*-algebras

To unify the treatments of [Reference Johnson27] and [Reference Li and Yang38, Reference Murphy40], self-similar graphs and their C*-algebras naturally arise in [Reference Duwenig, Gillaspy, Norton, Reznikoff and Wright22] and are well studied there. Later, they are generalized to higher rank cases in [Reference Li and Yang34] and are further studied in [Reference Li33, Reference Li and Yang35].

Since this paper mainly focuses on single-vertex $\mathsf k$-graphs, we adapt the notions of [Reference Li33, Reference Li and Yang34] to our setting and simplify them accordingly.

Let $\Lambda_\theta$ be a single-vertex $\mathsf k$-graph. A bijection $\pi:\Lambda_\theta \to \Lambda_\theta$ is called an automorphism of $\Lambda_\theta$ if π preserves the degree map d. In general, an automorphism on $\Lambda_\theta$ is not necessarily a semigroup automorphism on $\Lambda_\theta$, as a semigroup. Denote by $\operatorname{Aut}(\Lambda_\theta)$ the automorphism group of Λ.

Let G be a (discrete countable) group. We say that G acts on $\Lambda_\theta$ if there is a group homomorphism φ from G to $\operatorname{Aut}(\Lambda_\theta)$. For $g\in G$ and $\mu\in\Lambda_\theta$, we often simply write $\varphi_g(\mu)$ as $g\cdot \mu$.

Definition 2.4. ([Reference Li33, Definition 3.2])

Let $\Lambda_\theta$ be a single-vertex $\mathsf k$-graph, G be a group acting on $\Lambda_\theta$, and $G\times \Lambda_\theta \to G$, $(g,\mu)\mapsto g|_\mu$ be a given map. Then we call $(G,\Lambda_\theta)$ a self-similar $\mathsf k$-graph if the following properties hold true:

  1. (i) $g\cdot (\mu\nu)=(g \cdot \mu)(g \vert_\mu \cdot \nu)$ for all $g \in G,\mu,\nu \in \Lambda_\theta$;

  2. (ii) $g \vert_v =g$ for all $g \in G,v \in \Lambda_\theta^0$;

  3. (iii) $g \vert_{\mu\nu}=g \vert_\mu \vert_\nu$ for all $g \in G,\mu,\nu \in \Lambda_\theta$;

  4. (iv) $1_G \vert_{\mu}=1_G$ for all $\mu \in \Lambda_\theta$;

  5. (v) $(gh)\vert_\mu=g \vert_{h \cdot \mu} h \vert_\mu$ for all $g,h \in G,\mu \in \Lambda_\theta$.

In this case, we also say that $\Lambda_\theta$ is a self-similar $\mathsf k$-graph over G, and that G acts on $\Lambda_\theta$ self-similarly.

Definition 2.5. A self-similar $\mathsf k$-graph $(G,\Lambda_\theta)$ is said to be pseudo-free if $g \cdot \mu=\mu$ and $g \vert_\mu=1_G $ implies $g=1_G$ for all $g\in G$ and $\mu\in \Lambda_\theta$.

Definition 2.6. ([Reference Li33, Definition 3.8])

Let $(G,\Lambda_\theta)$ be a self-similar $\mathsf k$-graph. The self-similar $\mathsf k$-graph C*-algebra $\mathcal{O}_{G,\Lambda_\theta}$ is defined to be the universal unital C*-algebra generated by a family of unitaries $\{u_g\}_{g \in G}$ and a family of isometries $\{s_\mu: \mu\in \Lambda_\theta\}$ satisfying

  1. (i) $u_{gh}=u_g u_h$ for all $g, \ h \in G$;

  2. (ii) $s_\mu s_\nu=s_{\mu\nu}$ for all $\mu,\ \nu\in \Lambda_\theta$;

  3. (iii) $\sum\limits_{\mu\in \Lambda_\theta^{\mathbf{n}}} s_\mu s_\mu^*=I$ for all ${\mathbf{n}}\in {\mathbb{N}}^{\mathsf k}$;

  4. (iv) $u_g s_\mu=s_{g \cdot \mu} u_{g \vert_\mu}$ for all $g \in G$ and $\mu \in \Lambda_\theta$.

Let us record the following result [Reference Li and Yang34, Propositions 3.12 and 5.10], which will be used later without mentioning.

Proposition 2.7. Let $(G,\Lambda_\theta)$ be a self-similar $\mathsf k$-graph. Then

  1. (i) the linear span of $\{s_\mu u_g s_\nu^*: \mu, \nu \in \Lambda_\theta, g \in G\}$ is a dense $*$-subalgebra of $\mathcal{O}_{G,\Lambda_\theta}$;

  2. (ii) The $\mathsf k$-graph C*-algebra ${\mathcal{O}}_{\Lambda_\theta}$ naturally embeds into ${\mathcal{O}}_{G,\Lambda_\theta}$;

  3. (iii) G and $\mathrm{C}^*(G)$ embed into ${\mathcal{O}}_{G, \Lambda_\theta}$, provided that $(G, \Lambda_\theta)$ is pseudo-free and G is amenable.

As in [Reference Li and Yang34], let γ be the gauge action of ${\mathbb{T}}^{\mathsf k}$ on ${\mathcal{O}}_{{\mathbb{Z}}, \Lambda_\theta}$:

\begin{equation*} \gamma_{\mathbf{t}}(s_\mu u_g s_\nu^*)={\mathbf{t}}^{d(\mu)-d(\nu)}s_\mu u_g s_\nu^* \end{equation*}

for all $\mu, \nu \in \Lambda_\theta$, $g\in {\mathbb{Z}}$, and ${\mathbf{t}}\in {\mathbb{T}}^{\mathsf{k}}$. The fixed point algebra, ${\mathcal{O}}_{{\mathbb{Z}}, \Lambda_\theta}^\gamma$, of γ is generated by the standard generators $s_\mu u_g s_\nu^*$ with $d(\mu)=d(\nu)$. We often write ${\mathcal{F}}$ to stand for ${\mathcal{O}}_{{\mathbb{Z}}, \Lambda_\theta}^\gamma$. More generally, for ${\mathbf{n}}\in {\mathbb{N}}^{\mathsf k}$, we define a mapping on ${\mathcal{O}}_{{\mathbb{Z}},\Lambda_\theta}$ by

\begin{equation*} \Phi_{\mathbf{n}}(x) = \int_{{\mathbb{T}}^{\mathsf k}} {\mathbf{t}}^{-{\mathbf{n}}}\gamma_{\mathbf{t}}(x)d{\mathbf{t}} \text{ for all }x \in {\mathcal{O}}_{{\mathbb{Z}},\Lambda_\theta}. \end{equation*}

Note that for $\mu,\nu \in \Lambda_\theta$, $g \in G$ we have

\begin{equation*} \Phi_{\mathbf{n}}(s_\mu u_g s_\nu^*) = \begin{cases} s_\mu u_g s_\nu^* & \text{if } d(\mu)-d(\nu) = {\mathbf{n}}, \\ 0 & \text{otherwise.} \end{cases} \end{equation*}

In particular, ${\mathcal{O}}_{{\mathbb{Z}}, \Lambda_\theta}^\gamma=\operatorname{Ran}\Phi_{\mathbf 0}$. Also $\Phi_{\mathbf 0}$ is a faithful conditional expectation from ${\mathcal{O}}_{{\mathbb{Z}},\Lambda_\theta}$ onto ${\mathcal{O}}_{{\mathbb{Z}}, \Lambda_\theta}^\gamma$.

We end this subsection by briefly recalling the periodicity of $(G, \Lambda_\theta)$. Let $(G,\Lambda_\theta)$ be a self-similar $\mathsf k$-graph. For $\mu,\nu \in \Lambda_\theta, g \in G$, the triple $(\mu,g,\nu)$ is called cycline if $\mu(g \cdot x)=\nu x$ for all $x \in s(\nu)\Lambda^\infty$. Clearly, every triple $(\mu, 1_G, \mu)$ $(\mu \in \Lambda)$ is cycline. Those cycline triples are said to be trivial. An infinite path $x \in \Lambda_\theta^\infty$ is said to be G-aperiodic if, for $g \in G, \mathbf p, \mathbf q \in \mathbb{N}^{\mathsf k}$ with $g \neq 1_G$ or $\mathbf p \neq \mathbf q$, we have $\sigma^{\mathbf p}(x) \neq g \cdot \sigma^{\mathbf q}(x)$; otherwise, x is called G-periodic. $(G,\Lambda_\theta)$ is said to be aperiodic if there exists a G-aperiodic path $x\in \Lambda_\theta^\infty$; and periodic otherwise.

Theorem 2.8. (Li-Yang [Reference Li33])

$(G,\Lambda_\theta)$ is aperiodic $\iff$ all cycline triples are trivial.

2.3. Right LCM semigroup C*-algebras and their boundary quotient C*-algebras

Let us recall some basics about right LCM semigroups and their C*-algebras from [Reference Brownlowe, Larsen, Ramagge and Stammeier8]. Let P be a discrete left-cancellative semigroup. We say P is a right LCM semigroup if any two elements $x,y\in P$ with a right common multiple have a right least common multiple $z\in P$. Equivalently, P is right LCM if, for any $x,y\in P$, the intersection $xP\cap yP$ is either empty or equal to zP for some $z\in P$.

For a right LCM semigroup P, its C*-algebra $\mathrm{C}^*(P)$ defined in [Reference Li and Yang36] can be greatly simplified as follows: $\mathrm{C}^*(P)$ is the universal C*-algebra generated by isometries $\{v_p: p\in P\}$ and projections $\{e_{pP}: p\in P\}$ satisfying

(1)\begin{align} v_pv_q= v_{pq},\ v_p e_{qP} v_p^*=e_{pqP}, \ e_P=1, \ e_\varnothing=0,\ e_{pP}e_{qP}=e_{pP\cap qP} \end{align}

for all $p, q\in P$.

Recall that a subset $F\subseteq P$ is called a foundation set if it is finite and for each $p \in P$, there exists $q\in F$ such that $pP \cap qP\ne \varnothing$. Then the boundary quotient ${\mathcal{Q}}(P)$ of $\mathrm{C}^*(P)$ is the universal C*-algebra generated by isometries $\{v_p: p\in P\}$ and projections $\{e_{pP}: p\in P\}$ satisfying the relations in (1) and

\begin{equation*} \prod_{p\in F}(1-e_{pP})=0 \text{ for every foundation set}\ F\subseteq P. \end{equation*}

2.4. Semigroups from self-similar actions

Let $\Lambda_\theta$ be a single-vertex $\mathsf{k}$-graph. By $\Lambda^\epsilon$, we denote the set of all edges of $\Lambda_\theta$: $\Lambda^\epsilon=\bigcup_{i=1}^{\mathsf{k}}\{e\in \Lambda: d(e)=\epsilon_i\}$. Suppose that ${\mathbb{Z}}=\langle a \rangle$ acts on $\Lambda_\theta$ self-similarly. Then one can naturally associate a semigroup to the self-similar $\mathsf k$-graph $({\mathbb{Z}}, \Lambda_\theta)$ as follows:

(2)\begin{align} \mathsf{S}_{{\mathbb{N}}, \Lambda_\theta} :=\left\langle a, e: \begin{array}{ll} a e=a\cdot e a|_{e} &\text{if}\ e\in \Lambda_\theta^\epsilon\ \text{and}\ a|_e\ge 0, \\ a e (a|_{e})^{-1}=a\cdot e &\text{if}\ e\in \Lambda_\theta^\epsilon\ \text{and}\ a|_e \lt 0, \end{array} \; e\in\Lambda_\theta^\epsilon \right\rangle^+. \end{align}

This is the semigroup we focus on in this paper. Because of its importance, it deserves a name.

Definition 2.9. The semigroup $\mathsf{S}_{{\mathbb{N}}, \Lambda_\theta}$ defined in (2) is called the semigroup of the self-similar $\mathsf k$-graph $({\mathbb{Z}}, \Lambda_\theta)$.

Here are another semigroup and a group which are closely related to the semigroup $\mathsf{S}_{{\mathbb{N}}, \Lambda_\theta}$:

\begin{align*} \mathsf{S}_{{\mathbb{Z}}, \Lambda_\theta} &:=\langle a, a^{-1}, e: a e=a\cdot e a|_e, \, e\in \Lambda_\theta^\epsilon \rangle^+,\\ \mathsf{G}_{{\mathbb{Z}}, \Lambda_\theta} &:=\langle a, e: a e=a\cdot e a|_e, \, e\in \Lambda_\theta^\epsilon \rangle. \end{align*}

Remark 2.10. Some remarks are in order.

  1. (i) We should mention that ${\mathbb{N}}$ used in $\mathsf{S}_{{\mathbb{N}}, \Lambda_\theta}$ emphasizes that only non-negative integers from ${\mathbb{Z}}$ are involved, although the self-similar graph $({\mathbb{Z}}, \Lambda_\theta)$ is considered.

  2. (ii) We have intended to call $\mathsf{S}_{{\mathbb{N}}, \Lambda_\theta}$ the self-similar monoid/semigroup of $({\mathbb{Z}}, \Lambda_\theta)$. But the term ‘self-similar monoids/semigroups’ is already used in the literature for a very different meaning (see, e.g., [Reference Barlak, Omland and Stammeier4]) and is similar to the notion of groups over self-similar $\mathsf{k}$-graphs given in [Reference Li33].

  3. (iii) At first glance, it seems that the semigroup $\mathsf{S}_{{\mathbb{N}}, \Lambda_\theta}$ has been considered in [Reference Laca, Raeburn, Ramagge and Whittaker32, Section 3]. But one should notice that it is required that the restriction map is surjective in [Reference Laca, Raeburn, Ramagge and Whittaker32]. This is a rather strong condition. Most semigroups $\mathsf{S}_{{\mathbb{N}}, \Lambda_\theta}$ studied in this paper are not covered there.

3. Rank 1 case: more than GBS semigroups

For $1\le n\in {\mathbb{N}}$, let $\mathsf{E}_n$ denote the single-vertex (directed) graph with n edges. Suppose that $({\mathbb{Z}}, \mathsf E_n)$ is a self-similar graph. Assume that the action of ${\mathbb{Z}}$ on the edge set $\mathsf{E}_n^1$ has κ orbits ${\mathcal{E}}_i:=\{e_s^i: a\cdot e_s^i = e_{s+1\!\!\mod n_i}^i, s\in [n_i]\}$ for each $1\le i\le \kappa$. Thus

\begin{equation*} n=\sum_{i=1}^\kappa n_i \quad\text{and}\quad \mathsf{E}_n^1=\bigsqcup_{i=1}^\kappa {\mathcal{E}}_i. \end{equation*}

For $1\le i\le \kappa$, let

\begin{equation*} m_i:=\sum_{s\in [n_i]} a|_{e_s^i} \quad \text{and}\quad m:=\sum\limits_{i=1}^\kappa m_i. \end{equation*}

Clearly the self-similar action of $({\mathbb{Z}}, \mathsf{E}_n)$ induces a self-similar graph $({\mathbb{Z}}, \mathsf{E}_{n_i})$ for each $1\le i\le \kappa$. Conversely, if there is a self-similar action ${\mathbb{Z}}$ on each $\mathsf{E}_{n_i}$, then these κ self-similar graphs $({\mathbb{Z}}, \mathsf{E}_{n_i})$ determine a self-similar graph $({\mathbb{Z}}, \mathsf{E}_n)$.

So, in the rank 1 case, one can rewrite

\begin{align*} \mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n} :=\left \langle a, e\in \mathsf{E}_n^1: \!\! \begin{array}{ll} a e=a\cdot e a|_{e} & \text{if }a|_e\ge 0\\ a e (a|_{e})^{-1}=a\cdot e & \text{if }a|_e \lt 0 \end{array} \right\rangle^+. \end{align*}

Before going further, we should mention that [Reference Li and Yang38] also deals with the rank 1 case. But there, in terms of our terminology, the action of ${\mathbb{Z}}$ on the infinite path space $\mathsf E_n^\infty$ is assumed to be faithful. This in particular implies that the self-similar graph $({\mathbb{Z}}, \mathsf E_n)$ is aperiodic. Thus this eliminates all interesting (periodic) self-similar graphs (cf. propositions 3.18, 3.22, 3.23, and theorem 3.20).

Throughout this section, we assume that

(†)\begin{equation} m_i\ne 0 \text{ for all }1\le i\le \kappa. \tag{(\dagger)} \end{equation}

This condition assures that the self-similar graph $({\mathbb{Z}}, \mathsf E_n)$ is pseudo-free (lemma 3.11), which is required in [Reference Duwenig, Gillaspy, Norton, Reznikoff and Wright22, Reference Li33, Reference Li and Yang34].

Remark 3.1. It is worth mentioning that, under the assumptions (), $\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n}$ is embedded into the group $\mathsf{G}_{{\mathbb{Z}}, \mathsf{E}_n}$ [Reference Adjan1].

A special class of self-similar graphs is worth mentioning for later use.

Example 3.2. ((n, m)-odometer $\mathsf E(n,m)$)

For $1\le n\in {\mathbb{N}}$ and $0\ne m \in {\mathbb{Z}}$, an (n, m)-odometer is a self-similar graph $({\mathbb{Z}}, \mathsf{E}_n)$ with the action and restriction given by

\begin{align*} a\cdot e_s &= \begin{cases} e_{s+1} & \text{if } 0\le s \lt n-1, \\ e_0 & \text{if } s=n-1; \end{cases}\\ a|_{e_s} &= \begin{cases} 0 &\text{if } 0\le s \lt n-1 , \\ a^{m} & \text{if } s=n-1. \end{cases} \end{align*}

The (n, m)-odometer is denoted as $\mathsf E(n,m)$. The case of m = 1 yields the classical odometers which have been extensively studied in the literature (see, e.g., [Reference Li39] and the references therein).

In the sequel, we provide two examples of important semigroups which can be realized as semigroups of self-similar graphs.

Example 3.3. (BS semigroups)

For $1\le n\in {\mathbb{N}}$ and $0\ne m \in {\mathbb{Z}}$, the (BS) semigroup is

\begin{align*} \operatorname{BS}^+(n, m) :=\left\langle a, b\mid\!\! \begin{array}{ll} a^n b=b a^{m} &\text{if}\ m \gt 0 \\ a^{n} b a^{-m}=b &\text{if}\ m \lt 0 \end{array} \right\rangle^+. \end{align*}

The semigroup $\operatorname{BS}^+(n, m)$ can be realized as the semigroup of an (n, m)-odometer.

From now on, we use the semigroups $\operatorname{BS}^+(n,m)$ and (n, m)-odometer interchangeably.

Example 3.4. (GBS semigroups)

As the name indicates, this example generalizes BS semigroups in example 3.3. Let $1\le \kappa\in {\mathbb{N}} \cup\{\infty\}$. For $1\le n_i\in {\mathbb{N}}$ and $0\ne m_i\in {\mathbb{Z}}$ ( $1\le i\le \kappa$), the GBS semigroup is

\begin{align*} \operatorname{GBS}_\kappa^+(n_i, m_i) :=\left\langle a, b_i\mid \!\! \begin{array}{ll} a^{n_i} b_i=b_i a^{m_i} &\text{if}\ m_i \gt 0, \\ a^{n_i} b_i a^{-m_i}=b_i &\text{if}\ m_i \lt 0, \end{array} \ 1\le i\le \kappa\right\rangle^+. \end{align*}

The GBS semigroup $\operatorname{GBS}_k^+(n_i, m_i)$ can also be realized as the semigroup of a self-similar graph as follows. Let $\mathsf{E}$ be the single-vertex directed graph with the edge set $\{e^i_s: 1\le i\le \kappa, s\in [n_i]\}$. To each $1\le i\le \kappa$, we associate an $(n_i, m_i)$-odometer. Then $\operatorname{GBS}_\kappa^+(n_i, m_i)\cong \textsf{S}_{{\mathbb{N}}, \mathsf{E}}$.

Therefore, semigroups of self-similar graphs encompass GBS semigroups.

Remark 3.5. In this remark, let us mention some connections with the literature.

  1. (i) BS semigroups usually provide a nice class of examples or counter-examples for some properties (e.g., [Reference an Huef, Laca, Raeburn and Sims2, Reference Brown, Nagy, Reznikoff, Sims and Williams7]). They have been attracting a lot of operator algebraists’ attention recently. For instance, in [Reference Rudolph44], the boundary quotient of the semigroup C*-algebra $\operatorname{BS}^+(n,m)$ is first investigated via the C*-algebra for a category of paths. In [Reference Chen and Li12], the KMS states of the semigroup C*-algebra of quasi-lattice ordered BS semigroups are studied. This is generalized to all BS semigroups later in [Reference Brown, Nagy, Reznikoff, Sims and Williams7].

  2. (ii) Very recently, in [Reference Carlsen, Ruiz, Sims and Tomforde11] Chen–Li study the C*-algebras for a class of semigroups, which are graphs of semigroups which are constructed very similarly to graphs of groups in [Reference Nekrashevych43]. There is some intersection: For instance, their semigroups encompass GBS semigroups. However, theirs do not include all semigroups $\mathsf{S}_{{\mathbb{Z}}, \Lambda_\theta}$. Most importantly, theirs do not include any ‘genuine’ higher rank BS semigroups studied in § 4 below.

3.1. Some basic properties

The two lemmas below will be used frequently. One can prove the first one by simple calculations, and the second one by applying remark 3.1. Their proofs are omitted here.

Lemma 3.6. Let $({\mathbb{Z}}, \mathsf{E}_n)$ be a self-similar graph. Then, for $\ell\in {\mathbb{Z}}$, $1\le i\le \kappa$, and $p\in [n_i]$, one has

  1. (i) $a^{\ell n_i+ p}\cdot{e_s^i}=e_{(s+p)\!\!\mod\! n_i}^i$;

  2. (ii) $ a^{\ell n_i+ p}|_{e_s^i}= \begin{cases} a^{\ell m_i} &\text{if}\ p=0,\\ a^{\ell m_i} \prod_{q=0}^{p-1} a|_{e_{(s+q)\!\!\mod\! n_i}^i} & \text{if}\ 0 \lt p \lt n_i-1. \end{cases} $

Lemma 3.7. Every element $x\in \mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n}$ has a unique representation $x= e_\mu a^\ell$ for some $\mu \in \mathsf{E}_n^*$ and $\ell\in {\mathbb{Z}}$.

Proposition 3.8. $\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n}$ is right LCM.

Proof. Consider $e_\mu a^k$ and $e_\nu a^\ell$ in $\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n}$. It is not hard to see that they have a right common upper bound if, and only if either $e_\mu = e_\nu e_{\tilde \mu}$ for some $e_{\tilde \mu}\in \mathsf E_n^*$ or $e_\nu = e_\mu e_{\tilde \nu}$ for some $e_{\tilde \nu}\in \mathsf E_n^*$. WLOG we assume that $e_\nu = e_\mu e_{\tilde \nu}$ for some $e_{\tilde \nu}\in \mathsf E_n^*$. Let $e_\alpha:=a^{-k}\cdot e_{\tilde \nu}$. Then one can show the following: If $a^\ell \ge a^k|_{e_\alpha}$ (resp. $a^\ell \lt a^k|_{e_\alpha}$), then $e_\nu a^\ell$ (reps. $e_\nu a^k|_{e_\alpha}$) is a least right common upper bound of $e_\mu a^k$ and $e_\nu a^\ell$ (in $\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n}$).\hfill▪

Remark 3.9. If $a|_e\ge 0$ for all $e\in \mathsf{E}_n$, then $\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n}$ is a Zappa–Szép product of the semigroups ${\mathbb{N}}$ and $\mathbb{F}_n^+$ [Reference Brownlowe, Larsen, Ramagge and Stammeier8].

Since $\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n}$ is right LCM, from § 2.3 and the analysis above, one has the following

Corollary 3.10. $ {\mathcal{Q}}(\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n})\cong{\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_n}\cong {\mathcal{Q}}(\mathsf{S}_{{\mathbb{Z}}, \mathsf{E}_n}). $

Proof. By proposition 3.8, the sets $\{a\}$ and $\{e_i: i\in [n]\}$ are foundation sets of $\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n}$. Then the map

\begin{equation*} {\mathcal{Q}}(\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n})\to{\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_n},\ v_{e_\mu a^\ell} \mapsto s_{e_\mu} u_{a^\ell},\ e_{e_\mu a^\ell\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n}}\mapsto s_{e_\mu} s_{e_\mu}^* \end{equation*}

yields an isomorphism. The proof of ${\mathcal{Q}}(\mathsf S_{{\mathbb{Z}}, \mathsf E_n})\cong{\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_n}$ is even simpler.\hfill▪

3.2. Pseudo-freeness of $({\mathbb{Z}}, \mathsf{E}_n)$

Let $({\mathbb{Z}}, \mathsf{E}_n)$ be a self-similar graph satisfying our standing assumption .

Lemma 3.11. The self-similar graph $({\mathbb{Z}}, \mathsf{E}_n)$ is pseudo-free.

Proof. This follows from lemma 3.6. In fact, suppose that $g\cdot \mu=\mu$ and $g|_\mu=0$. If $|\mu|=1$, it then follows from lemma 3.6 and the assumption ( $\dagger$) that g = 0. Now suppose that $g\cdot \mu=\mu$ and $g|_\mu=0$ with $|\mu|=k$ imply g = 0. Let $g\cdot(\mu e_s^i)=\mu e_s^i$ and $g|_{\mu e_s^i}=0$ for some edge $e_s^i$ in the i-th orbit. Then $g\cdot \mu g|_\mu\cdot e_s^i=\mu e_s^i\implies g\cdot \mu=\mu$ and $g|_\mu\cdot e_s^i=e_s^i$. So the latter implies $g|_\mu=a^{\ell n_i}$ for some $\ell\in{\mathbb{Z}}$. But also $g|_{\mu e_s^i}=0$ implies that $0=g|_\mu|_{e_s^i}=a^{\ell n_i}|_{e_s^i}=a^{\ell m_i}$. Hence $\ell=0$ as $m_i\ne 0$. Therefore, $g\cdot \mu=\mu$ and $g|_\mu=0$. By our inductive assumption, we have g = 0. This proves the pseudo-freeness of $({\mathbb{Z}}, \mathsf{E}_n)$.\hfill▪

Remark 3.12. Lemma 3.11 is no longer true if $m_i=0$ for some $1\le i\le \kappa$. For example, consider the self-similar graph $({\mathbb{Z}}, \textsf{E}_2)$ with $ae_1=e_2a$ and $ae_2=e_1a^{-1}$. Then $a^2e_i=e_i$ for $i=1,2$, and $a^2|_{e_i}=0$. Clearly, this self-similar graph $({\mathbb{Z}}, \mathsf{E}_2)$ is not pseudo-free.

3.3. The periodicity of $({\mathbb{Z}}, \mathsf{E}_n)$

In this subsection, we study the periodicity of self-similar graphs $({\mathbb{Z}}, \mathsf{E}_n)$ in detail. We first analyze the case when κ = 1, and then use it to study the general case.

Recall that κ is the number of orbits of ${\mathbb{Z}}$ on $\mathsf{E}_n$.

3.3.1. The case of κ = 1

Proposition 3.13. If κ = 1, then $({\mathbb{Z}}, \mathsf{E}_n)$ is periodic if and only if $n\!\mid\! m$.

Proof. Suppose that $m=n\ell$ for some $\ell \in {\mathbb{Z}}$. Let $x=e_{i_1}e_{i_2}\cdots\in \mathsf{E}_n^\infty$ be an infinite path. Repeatedly applying lemma 3.6 gives

\begin{equation*} a^{nk}\cdot x=a^{nk}\cdot e_{i_1} a^{n k}|_{e_{i_1}}\cdot (e_{i_2}\cdots)=e_{i_1} a^{n\ell k}\cdot(e_{i_2}\cdots)=\cdots=x \quad\text{for all}\quad k\in {\mathbb{Z}}. \end{equation*}

This shows that every infinite path $x\in \mathsf{E}_n^\infty$ is ${\mathbb{Z}}$-periodic in the sense of [Reference Li and Yang34]. So $({\mathbb{Z}}, \mathsf{E}_n)$ is periodic.

It remains to show that if $n\nmid m$ then $({\mathbb{Z}},\mathsf{E}_n)$ is aperiodic. To the contrary, assume that $({\mathbb{Z}}, \mathsf{E}_n)$ is periodic. It follows from [Reference Li33, Theorem 3.7] $({\mathbb{Z}}, \mathsf{E}_n)$ has a non-trivial cycline triple $(\mu, g, \nu)$. That is, $\mu g\cdot x=\nu x$ for all $x\in \mathsf{E}_n^\infty$ with $g\ne 0$ or $\mu\ne \nu$.

Case (a): $|\mu| \lt |\nu|$. Then there is a unique $\nu'\in \mathsf{E}_n^*\setminus \mathsf{E}_n^0$ such that $\nu=\mu\nu'$. Thus $g\cdot x=\nu'x$ and so $g\cdot x(0, |\nu'|)=\nu'$ for all $x\in \mathsf{E}_n^\infty$. This is impossible by noticing that n has to be greater than 1.

Case (b): $|\mu| \gt |\nu|$. Since $x\in \mathsf{E}_n^\infty$ is arbitrary, we replace x with $g^{-1}\cdot x$ and then apply case (a).

Case (c): $|\mu|=|\nu|$. Then $\mu=\nu$ and $g\cdot x=x$ for all $x\in \mathsf{E}_n^\infty$. Let $d:=\gcd(m,n) \gt 0$. Write $m=dm_0$ and $n=dn_0$. Since $n\nmid m$, we have $n_0\nmid m_0$. Write $x=e_{i_1}e_{i_2}\cdots$ with $i_j\in [n]$. Then

\begin{equation*} g\cdot (e_{i_1}e_{i_2}\cdots)=e_{i_1}e_{i_2}\cdots\implies g\cdot e_{i_1}=e_{i_1}, \ g|_{e_{i_1}}\cdot e_{i_2}=e_{i_2},\ \ldots \end{equation*}

Hence there is a sequence $\{k_i\}_{i\ge 1}\subseteq {\mathbb{Z}}$ of (non-zero) integers such that

\begin{equation*} g=a^{k_1 n}, \ a^{k_1 m}=a^{k_2 n},\ a^{k_2 m}=a^{k_3 n}, \ a^{k_3 m}=a^{k_4 n}, \ \ldots. \end{equation*}

So

\begin{equation*} k_1 m = k_2 n,\ k_2 m=k_3n, \ldots \end{equation*}

imply

\begin{equation*} k_1 m_0 = k_2 n_0,\ k_2 m_0=k_3n_0, \ldots. \end{equation*}

Thus one has that $m_0^p k_1 = n_0^p k_{p+1}$ for all $p\ge 1$. In particular $n_0^p\!\mid\! k_1$ for all $p\ge 1$ as $\gcd(m_0, n_0)=1$. But $n\!\nmid\! m$ implies $n_0 \gt 1$. So $k_1=0$ and hence g = 0. Then $(\mu, g, \nu)=(\mu, 0, \mu)$ is a trivial cycline triple. This is a contradiction.\hfill▪

Remark 3.14. Let $(G, \Lambda)$ be a self-similar $\mathsf{k}$-graph. As mentioned in [Reference Li and Yang34], it is easy to see that if Λ is periodic, then $(G, \Lambda)$ is periodic. But the converse is not true. Here is a class of counter-examples: It is well-known that $\mathsf{E}_n$ is aperiodic if n > 1. But proposition 3.13 shows that $({\mathbb{Z}}, \mathsf{E}_n)$ is periodic whenever $n\!\mid\! m$. Therefore, the periodicity of $(G, \Lambda)$ is more complicated than that of the ambient graph Λ.

We now determine all cycline triples of $({\mathbb{Z}}, \mathsf{E}_n)$ when κ = 1. Notice that all cycline triples are trivial if $({\mathbb{Z}}, \mathsf{E}_n)$ is aperiodic by theorem 2.8. Hence it suffices to consider periodic self-similar graphs $({\mathbb{Z}}, \mathsf{E}_n)$.

When n = 1, there is a unique infinite path. So the following is straightforward.

Lemma 3.15. If n = 1, then every triple $(\mu, a^\ell, \nu)$ is cycline.

Proposition 3.16. Suppose that κ = 1, n > 1, and $({\mathbb{Z}}, \mathsf{E}_n)$ is periodic. Then $(\mu, g, \nu)$ is cycline if and only if $\mu=\nu$ and $g=a^{\ell n}$ for some $\ell \in {\mathbb{Z}}$.

Proof. ‘If’ part is clear. For the ‘Only if’ part, assume that $(\mu, g, \nu)$ is cycline. Then

\begin{equation*} \mu g\cdot x= \nu x \text{ for all }x\in \mathsf{E}_n^\infty. \end{equation*}

If $|\mu|=|\nu|$, then $\mu=\nu$ and $g\cdot x=x$ for all $x\in \mathsf{E}_n^\infty$. As in the proof of proposition 3.13, one can see that $g=a^{\ell n}$ for some $\ell\in {\mathbb{Z}}$.

If $|\mu|\ne |\nu|$, WLOG, $|\nu| \gt |\mu|$. Then $\nu=\mu\nu'$ for some $\nu'\in \mathsf{E}_n^*\setminus\mathsf{E}_n^0$ and $g\cdot x= \nu' x$. This is impossible as n > 1.\hfill▪

Combining [Reference Li and Yang34, Theorem 6.6, Theorem 6.13] with corollary 3.10 yields

Theorem 3.17. ${\mathcal{Q}}(\mathsf{S}_{{\mathbb{N}}, \mathsf{E}_n})$ with κ = 1 satisfies UCT. It is simple iff $n\!\nmid\! m$. So it is a Kirchberg algebra iff $n\!\nmid\! m$.

3.3.2. The general case

For the general $\kappa\ge 1$, we begin with a relation between the periodicity of $({\mathbb{Z}}, \mathsf{E}_n)$ and that of its restrictions on orbits.

For simplification, let $\mathfrak N:=\operatorname{lcm}(n_i:1\le i\le \kappa)$.

Proposition 3.18. $({\mathbb{Z}}, \mathsf{E}_n)$ is periodic, if and only if the restriction $({\mathbb{Z}}, \mathsf{E}_{n_i})$ is periodic for each $1\le i\le \kappa$, if and only if $n_i\!\mid\! m_i$ for every $1\le i\le \kappa$.

Proof. If there is $1\le i\le \kappa$ such that $n_i\!\nmid\! m_i$, then $({\mathbb{Z}}, \mathsf{E}_{n_i})$ is aperiodic by proposition 3.16. Then clearly $({\mathbb{Z}}, \mathsf{E}_{n})$ is aperiodic.

Now let us assume that $n_i\!\mid\! m_i$ for all $1\le i\le \kappa$. Say $m_i=n_i \widetilde{m}_i$ with $0\ne \widetilde m_i\in{\mathbb{Z}}$ for $1\le i\le \kappa$. Then

\begin{equation*} a^{\mathfrak N} \, e_{s_1}^{i_1}\cdots e_{s_p}^{i_p}=e_{s_1}^{i_1}\cdots e_{s_p}^{i_p} \, a^{\mathfrak N\, \widetilde m_{i_1}\cdots\widetilde m_{i_p}}. \end{equation*}

Thus one can check that for arbitrary $x\in \mathsf{E}_n^\infty$ one has $a^{\mathfrak N} \cdot x= x$. Therefore, every infinite path x is ${\mathbb{Z}}$-periodic, and so $({\mathbb{Z}}, \mathsf{E}_n)$ is periodic.

We now determine all cycline triples. If n = 1, this is provided in lemma 3.15.

Proposition 3.19. If $({\mathbb{Z}}, \mathsf{E}_n)$ is periodic with n > 1, then $(\mu, g, \nu)$ is cycline if and only if $\mu=\nu$ and $g=a^{\ell \mathfrak N}$ for some $\ell \in {\mathbb{Z}}$.

Proof. ‘If’ part is clear. For the ‘Only if’ part, assume that $(\mu, g, \nu)$ is cycline. Then

\begin{equation*} \mu g\cdot x= \nu x \text{ for all }x\in \mathsf{E}_n^\infty. \end{equation*}

If $|\mu|=|\nu|$, then $\mu=\nu$ and $g\cdot x=x$ for all $x\in \mathsf{E}_n^\infty$. It is now not hard to see that $g=a^{\ell \mathfrak N}$ for some $\ell\in {\mathbb{Z}}$.

If $|\mu|\ne |\nu|$, WLOG, $|\nu| \gt |\mu|$. Then $\nu=\mu\nu'$ for some $\nu'\in \mathsf{E}_n^*\setminus\mathsf{E}_n^0$ and $g\cdot x= \nu' x$. This is impossible as n > 1.\hfill▪

Combining [Reference Li and Yang34, Theorem 6.6, Theorem 6.13] with corollary 3.10 yields

Theorem 3.20. ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_n}$ satisfies UCT. It is simple iff $n_i\!\nmid\! m_i$ for some $1\le i\le \kappa$. So it is a Kirchberg algebra iff $n_i\!\nmid \! m_i$ for some $1\le i\le \kappa$.

Remark 3.21. It is well-known that the roles of n and m in BS groups $\operatorname{BS}(n,m)$ are symmetric in the sense of $\operatorname{BS}(n,m)\cong \operatorname{BS}(m,n)$. So $\mathrm{C}^*(\operatorname{BS}(n,m))\cong \mathrm{C}^*(\operatorname{BS}(m,n))$. However, the symmetry is lost for BS semigroups. For instance, If $0 \lt n\ne m\in {\mathbb{N}}$ satisfies $n\!\mid\!m$, then ${\mathcal{Q}}(\operatorname{BS}^+(n,m))$ is not simple while ${\mathcal{Q}}(\operatorname{BS}^+(m,n))$ is simple.

3.4. Cartan subalgebras of ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_n}$

We begin with the definition of Cartan subalgebras. Let ${\mathcal{B}}$ be an abelian C*-subalgebra of a given C*-algebra ${\mathcal{A}}$. ${\mathcal{B}}$ is called a Cartan subalgebra in ${\mathcal{A}}$ if

  1. (i) ${\mathcal{B}}$ contains an approximate unit in ${\mathcal{A}}$;

  2. (ii) ${\mathcal{B}}$ is a MASA;

  3. (iii) ${\mathcal{B}}$ is regular: the normalizer set $N({\mathcal{B}})=\{x\in {\mathcal{A}}: x{\mathcal{B}} x^*\cup x^*{\mathcal{B}} x\subseteq {\mathcal{B}}\}$ generates ${\mathcal{A}}$;

  4. (iv) there is a faithful conditional expectation ${\mathcal{E}}$ from ${\mathcal{A}}$ onto ${\mathcal{B}}$.

In this subsection, we show that there is a canonical Cartan subalgebra for each ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf E_n}$. It is closely related to the fixed point algebra ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_n}^\gamma$ of the gauge action γ. However, there is an essential difference between the cases of n = 1 and n > 1.

3.4.1. The case of n = 1

The case of n = 1 is a special case of § 4.4 below with $\mathsf k=1$ (i.e., rank 1), which does not use any results from this section. So we record the result below just for completeness.

In what follows, to simplify our writing, let us set ${\mathcal{F}}:={\mathcal{O}}_{{\mathbb{Z}}, \mathsf E_n}^\gamma$, and ${\mathcal{F}}'$ to be the (relative) commutant of ${\mathcal{F}}$ in ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf E_n}$.

Proposition 3.22. Keep the above notation. Then ${\mathcal{F}}'=\overline{\operatorname{span}}\{s_{e^p} a^\ell s_{e^q}^*: m^p=m^q, \ell \in {\mathbb{Z}}\}$ and ${\mathcal{F}}'$ is a Cartan subalgebra of ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf E_1}$.

It is worth noticing that there are three possible cases for ${\mathcal{F}}'$:

  • If m = 1, then ${\mathcal{F}}'=\overline{\operatorname{span}}\{s_{e^p} u_{a^\ell} s_{e^q}^*: p,q\in {\mathbb{N}}, \ell \in {\mathbb{Z}}\}={\mathcal{O}}_{{\mathbb{Z}}, \mathsf E_1} \cong {\mathrm{C}}({\mathbb{T}}^2)$.

  • If $m=-1$, then ${\mathcal{F}}'=\overline{\operatorname{span}}\{s_{e^p} u_{a^\ell} s_{e^q}^*: p,q\in {\mathbb{N}} \text{ with }p-q\in 2{\mathbb{Z}}, \ell \in {\mathbb{Z}}\}$.

  • If $m\ne \pm 1$, then ${\mathcal{F}}'={\mathcal{F}}$.

3.4.2. The case of n > 1

Recall that $\mathfrak N =\operatorname{lcm}(n_i:1\le i\le \kappa)$ and $n=\sum\limits_{i=1}^\kappa n_i$.

Proposition 3.23. If n > 1, then the cycline C*-subalgebra ${\mathcal{M}}:=\mathrm{C}^*(s_\mu u_{a^{\ell\mathfrak{N}}} s_\mu^*: \mu \in \mathsf{E}_n^*, \ell\in {\mathbb{Z}})$ is a MASA in ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_n}$.

Proof. We first show that ${\mathcal{M}}$ is abelian. Compute

\begin{align*} &(s_\mu u_{a^{K\mathfrak{N}}}s_\mu^*)(s_\nu u_{a^{L\mathfrak{N}}}s_\nu^*)\\ &= \begin{cases} s_\mu u_{a^{(K+L)\mathfrak{N}}}s_\mu^*& \text{if }\mu=\nu,\\ s_\mu u_{a^{K\mathfrak{N}}}s_{\nu'} u_{a^{L\mathfrak{N}}}s_\nu^*=s_\mu s_{\nu'} u_{a^{K\mathfrak{N}}|_{\nu'}}u_{a^{L\mathfrak{N}}}s_\nu^* =s_\nu u_{a^{K\mathfrak{N}}|_{\nu'}}u_{a^{L\mathfrak{N}}}s_\nu^* & \text{if }\nu=\mu\nu',\\ s_\mu u_{a^{K\mathfrak{N}}}s_{\mu'}^* u_{a^{L\mathfrak{N}}}s_\nu^*=s_\mu u_{a^{K\mathfrak{N}}} u_{(a^{-L{\mathbf{n}}}|_{a^{L\mathfrak{N}}\cdot\mu'})^{-1}}s_{\mu'}^* s_\nu^* & \text{if }\mu=\nu\mu',\\ =s_\mu u_{a^{K\mathfrak{N}}} u_{a^{L\mathfrak{N}}|_{\mu'}}s_{\mu}^*&\\ 0&\text{otherwise}. \end{cases} \end{align*}

Similar calculations yield

\begin{align*} (s_\nu u_{a^{L\mathfrak{N}}}s_\nu^*)(s_\mu u_{a^{K\mathfrak{N}}}s_\mu^*) = \begin{cases} s_\nu u_{a^{(K+L)\mathfrak{N}}}s_\nu^* &\text{if }\mu=\nu,\\ s_\nu u_{a^{L\mathfrak{N}}} u_{a^{K\mathfrak{N}}|_{\nu'}}s_{\nu}^*& \text{if }\nu=\mu\nu',\\ s_\mu u_{a^{L\mathfrak{N}}|_{\mu'}}u_{a^{K\mathfrak{N}}}s_\mu^*& \text{if }\mu=\nu\mu',\\ 0&\text{otherwise}. \end{cases} \end{align*}

Thus ${\mathcal{M}}$ is abelian.

As in [Reference Li33], let ${\mathcal{G}}_{{\mathbb{Z}}, \mathsf{E}_n}$ be the groupoid associated with the self-similar graph $({\mathbb{Z}}, \mathsf{E}_n)$. It follows from [Reference Li33, Lemma 5.2] and proposition 3.19 that $\text{Iso}({\mathcal{G}}_{{\mathbb{Z}}, \mathsf{E}_n})^\circ=\bigcup\limits_{\mu\in \mathsf{E}_n^*, \ell\in {\mathbb{Z}}} Z(\mu, a^{\ell\mathfrak{N}}, \mu)$. Also notice that ${\mathcal{M}}\cong \mathrm{C}^*(\text{Iso}({\mathcal{G}}_{{\mathbb{Z}}, \mathsf{E}_n})^\circ)$. So $\mathrm{C}^*(\text{Iso}({\mathcal{G}}_{{\mathbb{Z}}, \mathsf{E}_n})^\circ)$ is abelian. Hence, by [Reference Bruce and Scarparo10, Corollary 5.4], ${\mathcal{M}}$ is a MASA.

Remark 3.24. By lemma 3.15, when n = 1, the cycline subalgebra of ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_1}$ coincides with ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_1}$, which is generally not abelian. So proposition 3.23 does not hold true for n = 1.

Remark 3.25. Keep the same notation in the proof above. If $\text{Iso}({\mathcal{G}}_{{\mathbb{Z}}, \mathsf{E}_n})^\circ$ is closed, then applying [Reference Bratteli and Robinson6, Corollary 4.5] one can conclude that ${\mathcal{M}}$ is Cartan in ${\mathcal{O}}_{{\mathbb{Z}}, \mathsf{E}_n}$. But, unfortunately, $\text{Iso}({\mathcal{G}}_{{\mathbb{Z}}, \mathsf{E}_n})^\circ$ needn’t be closed in general.

3.5. Some old examples revisited

Recall the flip (single-vertex) rank 2 graphs

\begin{equation*} \Lambda_{\text{flip}}=\langle{\mathbf{e}}_i, {\mathbf{f}}_j: {\mathbf{e}}_i {\mathbf{f}}_j = {\mathbf{f}}_i {\mathbf{e}}_j, i, j\in [n]\rangle^+ \ (n\ge 2) \end{equation*}

and the square rank 2 graph

\begin{equation*} \Lambda_{\text{square}} = \langle {\mathbf{x}}_i, {\mathbf{y}}_j: {\mathbf{x}}_i {\mathbf{y}}_j={\mathbf{y}}_{i+1} {\mathbf{x}}_j, i, j\in [2] \rangle^+. \end{equation*}

Example 3.26. In [Reference Chen and Li12], it is shown that ${\mathcal{Q}}(\operatorname{BS}^+(n,n))\cong {\mathrm{C}}({\mathbb{T}}) \otimes {\mathcal{O}}_n$. From what we have obtained so far, we can prove this by relating to rank 2 graphs. In fact, we have

\begin{equation*} {\mathcal{Q}}(\operatorname{BS}^+(n,n))\cong {\mathrm{C}}({\mathbb{T}}) \otimes {\mathcal{O}}_n\cong {\mathcal{O}}_{\Lambda_{\text{flip}}}. \end{equation*}

To see this, we construct an explicit isomorphism from ${\mathcal{O}}_{\Lambda_{\text{flip}}}$ onto ${\mathcal{Q}}(\operatorname{BS}^+(n,n))$. Let $\pi: {\mathcal{O}}_{\Lambda_{\text{flip}}}\to {\mathcal{Q}}(\operatorname{BS}^+(n,n))$ be the homomorphism determined by

(3)\begin{align} s_{{\mathbf{e}}_i}\mapsto E_i:=s_{e_i}, \ s_{{\mathbf{f}}_j}\mapsto F_j:=u_{a^n} s_{e_j} \ (i, j\in [n]). \end{align}

It is easy to see that $E_iF_j=F_iE_j$ as $u_{a^n}$ is in the center of ${\mathcal{Q}}(\operatorname{BS}^+(n,n))$. Also π is surjective as from $a e_i=e_{i+1}$ $(0\le i\le n-2$) and $a e_{n-1}=e_0 a^n$ one has

\begin{align*} \sum_{i=0}^{n-1}u_a s_{e_i} s_{e_i}^* &=\sum_{i=0}^{n-2} s_{e_{i+1}} s_{e_i}^* + s_{e_0} u_{a^n} s_{e_{n-1}}^* =\sum_{i=0}^{n-2} s_{e_{i+1}} s_{e_i}^* + u_{a^n} s_{e_0} s_{e_{n-1}}^*\\ &=\sum_{i=0}^{n-2} s_{e_{i+1}} s_{e_i}^* + F_0 s_{e_{n-1}}^*. \end{align*}

Conversely, define $\rho: {\mathcal{Q}}(\operatorname{BS}^+(n,n))\to {\mathcal{O}}_{\Lambda_{\text{flip}}}$ by

\begin{equation*} s_{e_i}\mapsto s_{{\mathbf{e}}_i}, \ u_a\mapsto \sum_{i=0}^{n-2} s_{{\mathbf{e}}_{i+1}}s_{{\mathbf{e}}_i}^* + s_{{\mathbf{f}}_0} s_{{\mathbf{e}}_{n-1}}^*. \end{equation*}

Then ρ determines a homomorphism. Also one can check that π and ρ are the inverse to each other. Therefore one has $ {\mathcal{Q}}(\operatorname{BS}^+(n,n))\cong {\mathcal{O}}_{\Lambda_{\text{flip}}}$, which is also isomorphic to ${\mathrm{C}}({\mathbb{T}}) \otimes {\mathcal{O}}_n$ by [Reference Davidson, Power and Yang17].

Example 3.27. In this example, through $\operatorname{BS}^+(2,2)$, we are able to show that ${\mathcal{O}}_{\Lambda_{\text{square}}}\cong {\mathcal{O}}_{\Lambda_{\text{flip}}}$, which seems unclear in [Reference Davidson, Power and Yang17] although both ${\mathcal{O}}_{\Lambda_{\text{flip}}}$ and ${\mathcal{O}}_{\Lambda_{\text{square}}}$ are well-studied there.

Let $W:=s_{{\mathbf{e}}_1} s_{{\mathbf{e}}_0}^*+ s_{{\mathbf{f}}_0} s_{{\mathbf{e}}_1}^*$. Then $W^2=s_{{\mathbf{f}}_0} s_{{\mathbf{e}}_0}^*+s_{{\mathbf{f}}_1} s_{{\mathbf{e}}_1}^*$. Define $\pi: {\mathcal{O}}_{\Lambda_{\text{square}}}\to {\mathcal{O}}_{\Lambda_{\text{flip}}}$ via

\begin{equation*} s_{{\mathbf{x}}_0}\mapsto s_{{\mathbf{e}}_0},\ s_{{\mathbf{x}}_1}\mapsto s_{{\mathbf{e}}_1} W^*,\ s_{{\mathbf{y}}_0}\mapsto W s_{{\mathbf{e}}_0},\ s_{{\mathbf{y}}_1}\mapsto W s_{{\mathbf{e}}_1} W^*. \end{equation*}

Then one can verify that π is a homomorphism.

Let $F:=s_{{\mathbf{y}}_1} s_{{\mathbf{x}}_1}^* + s_{{\mathbf{y}}_0} s_{{\mathbf{x}}_0}^*$. Then $F^2=\sum_{i, j\in [2]} s_{{\mathbf{y}}_i{\mathbf{y}}_j} s_{{\mathbf{x}}_{(i+1)}{\mathbf{x}}_j}^*$. Let $\rho: {\mathcal{O}}_{\Lambda_{\text{flip}}}\to {\mathcal{O}}_{\Lambda_{\text{square}}}$ be defined as

\begin{equation*} s_{{\mathbf{e}}_0}\mapsto s_{{\mathbf{x}}_0},\ s_{{\mathbf{e}}_1}\mapsto s_{{\mathbf{x}}_1} F,\ s_{{\mathbf{f}}_0}\mapsto F^2 s_{{\mathbf{x}}_0}=s_{{\mathbf{x}}_0} F^2,\ s_{{\mathbf{f}}_1}\mapsto F^2 s_{{\mathbf{x}}_1} F=s_{{\mathbf{x}}_1} F^3 . \end{equation*}

Then ρ is a homomorphism. Moreover, π and ρ are the inverse to each other, and $\rho(W)=F$ and $\pi(F)=W$.

4. Rank $\mathsf k$ case: more than higher rank BS semigroups

In this section, we first propose a notion of higher rank BS semigroups $\Lambda_\theta(\mathfrak n, \mathfrak m)$. We then briefly describe how higher rank BS semigroups relate to Furstenberg’s $\times p, \times q$ conjecture. Our main focus here are two cases— $\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})$ and $\Lambda_{\mathsf d}(\mathbb{ 1}_{\mathsf k}, \mathfrak m)$. For $\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})$, it is related to products of odometers studied in [Reference Laca, Raeburn, Ramagge and Whittaker32]. Applying some results in [Reference Laca, Raeburn, Ramagge and Whittaker32, Reference Li33], one can easily characterize the simplicity of ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$ and see that the cycline subalgebra is Cartan in ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$. But, here, we first show the fixed point algebra ${\mathcal{F}}$ of the gauge action γ is a Bunce–Deddens algebra, and so ${\mathcal{F}}$ has a unique faithful tracial state τ. Then composing with the conditional expectation Φ from ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$ onto ${\mathcal{F}}$ yields a state $\omega=\tau\circ\Phi$. We then study the associated von Neumann algebra $\pi_\omega({\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})})^{\prime\prime}$ in the same vein of [Reference Serre46, Reference Spielberg47]. More precisely, we provide some characterizations of when $\pi_\omega({\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})})^{\prime\prime}$ is a factor and further obtain its type. For $\Lambda_{\mathsf d}(\mathbb{ 1}_{\mathsf k}, \mathfrak m)$, it is intimately related to Furstenberg’s $\times p, \times q$ conjecture. In this case, we obtain a canonical Cartan for ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathbb{ 1}_{\mathsf k}, \mathfrak m)}$, which is generally a proper subalgebra of its cycline subalgebra. We will continue studying ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathbb{ 1}_{\mathsf k}, \mathfrak m)}$ and its relative(s) in a forthcoming paper.

4.1. Higher rank BS semigroups

Consider $\mathsf{k}$ given self-similar graphs $({\mathbb{Z}}, \mathsf{E}_{n_i})$ with $\mathsf{E}_{n_i}=\{{\mathbf{x}}_{\mathfrak{s}}^i: s\in [n_i]\}$ ( $1\le i\le \mathsf k$). Suppose that ${\mathbf{x}}^i_{\mathfrak{s}}$’s satisfy the commutation relations $\theta_{ij}({\mathbf{x}}_{\mathfrak{s}}^i, {\mathbf{x}}_{\mathfrak{t}}^j)= ({\mathbf{x}}_{{\mathfrak{t}}'}^j , {\mathbf{x}}_{{\mathfrak{s}}'}^i)$ for $1 \leq i \lt j \leq \mathsf{k}$. Applying [Reference Laca, Raeburn, Ramagge and Whittaker32, Proposition 4.1], one has

Proposition 4.1. Keep the same notation. The $\mathsf k$ self-similar graphs $({\mathbb{Z}}, \mathsf{E}_{n_i})$ with the commutation relations θij’s determine a self-similar $\mathsf k$-graph $({\mathbb{Z}}, \Lambda_\theta)$ if and only if

(4)\begin{align} (a\cdot {\mathbf{x}}_{\mathfrak{s}}^i)(a|_{{\mathbf{x}}_{\mathfrak{s}}^i} \cdot {\mathbf{x}}_{\mathfrak{t}}^j) &= (a \cdot {\mathbf{x}}_{{\mathfrak{t}}'}^j)(a|_{{\mathbf{x}}_{{\mathfrak{t}}'}^j} \cdot {\mathbf{x}}_{{\mathfrak{s}}'}^i) \end{align}

for all $1 \leq i \lt j \leq \mathsf{k}$, ${\mathfrak{s}}\in [n_i]$, ${\mathfrak{t}}\in [n_j]$.

Based on example 3.3, it is reasonable to introduce the following notion.

Definition 4.2. A self-similar $\mathsf k$-graph obtained from $(n_i, m_i)$-odometers with the commutation relations θij’s is called a rank $\mathsf k$ BS semigroup, denoted as $\Lambda_\theta((n_1, \ldots, n_{\mathsf k}), (m_1, \ldots, m_{\mathsf k}))$, or simply $\Lambda_\theta(\mathfrak n, \mathfrak m)$ if the context is clear. The ambient $\mathsf k$-graph is still written as $\Lambda_\theta$.

Here are some examples of higher rank BS semigroups.

Example 4.3. A standard product of odometers studied in [Reference Laca, Raeburn, Ramagge and Whittaker32] is a rank $\mathsf{k}$ BS semigroup induced from $(n_i, 1)$-odometers $\mathsf E(n_i, 1)$ ( $1\le i\le \mathsf{k}$) with the division commutation relations (refer to example 2.2 for $\mathsf d$). So it is of the form $\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})$.

Example 4.4. Consider $(n_i, m_i)$-odometers with the trivial permutation θij ( $1\le i \lt j\le \mathsf k$) (see example 2.1). Then they induce a rank $\mathsf k$ BS semigroup if and only if $n_i=1$ for each $1\le i\le \mathsf{k}$. In fact, the condition (4) in proposition 4.1 implies $n_i = 1$ for all $1\le i\le \mathsf{k}$. Then the trivial relation is the same as the division commutation relation. The rank $\mathsf{k}$ BS semigroup obtained in this case is of the form $\Lambda_{\mathsf d}(\mathbb{ 1}_{\mathsf k}, \mathfrak m)$.

Example 4.5. Suppose that $n_i=n$ for all $1 \le i\le \mathsf{k}$, and that θij is the division permutation. Then one necessarily has $\theta_{ij}(s,t)=(t,s)$. One can check that this yields a rank $\mathsf{k}$ BS semigroup if and only if either $m_i = m_j$ for all $1\le i,j\le \mathsf{k}$, or $n\!\mid\!m_i$ for all $1\le i\le \mathsf{k}$. These are rank $\mathsf{k}$ BS semigroups of the form $\Lambda_{\mathsf d}((n,\ldots, n), (m, \ldots, m))$, or $\Lambda_{\mathsf d}((n,\ldots, n), (n\widetilde m_1, \ldots, n \widetilde m_{\mathsf k}))$.

So the class obtained in example 4.4 is a special case here with n = 1.

In the sequel, we provide some interesting C*-algebras studied in the literature, which can be realized from higher rank BS semigroups.

  1. (1) It is shown in [Reference Laca, Raeburn, Ramagge and Whittaker32] that the Cuntz algebra ${\mathcal{Q}}_{\mathbb{N}}$ is isomorphic to the boundary quotient of a semigroup of the form in example 4.3.

  2. (2) For $2\le p\in {\mathbb{N}}$, the p-adic C*-algebra ${\mathcal{Q}}_p$ can also be recovered from a semigroup of the form in example 4.3 (cf. [Reference Laca, Raeburn, Ramagge and Whittaker32] for p = 2 in terms of standard product of odometers).

  3. (3) ${\mathcal{Q}}_{\mathbb{N}}$ can be also realized as a boundary quotient of the left ax + b semigroup ${\mathbb{N}}\rtimes {\mathbb{N}}^\times$ studied in [Reference Laca and Raeburn31]. The C*-algebra of ${\mathbb{N}}\rtimes {\mathbb{N}}^\times$ itself is also related to higher rank BS semigroups.

  4. (4) The boundary $\partial {\mathcal{T}}({\mathbb{N}}^\times \lt imes {\mathbb{N}})$ of the right ax + b semigroup ${\mathbb{N}}^\times \lt imes {\mathbb{N}}$ is a boundary quotient of a higher-rank BS semigroup of the form given in example 4.4.

  5. (5) The C*-algebra ${\mathcal{O}}(E_{n,m})$ studied by Katsura in [Reference Katsura28] is isomorphic to ${\mathcal{O}}_{\mathsf E(n,m)}$ (see examples 3.2 and 3.3).

Remark 4.6. The C*-algebras of both the left ax + b semigroup ${\mathbb{N}}\rtimes {\mathbb{N}}^\times$ and the right ax + b semigroup ${\mathbb{N}}^\times \lt imes {\mathbb{N}}$ are related to higher rank BS semigroups. This will be studied elsewhere.

4.2. Relation to Furstenberg’s $\times p, \times q$ conjecture

We first give a very brief introduction on Furstenberg’s $\times p, \times q$ conjecture. For all undefined notions or any further information, refer to [Reference Brownlowe, Ramagge, Robertson and Whittaker9, Reference Fowler and Sims24, Reference Furstenberg25, Reference Nekrashevych42].

Let $2\le p,q\in {\mathbb{N}}$ be multiplicatively independent, i.e., $\frac{\ln p}{\ln q}\not\in {\mathbb{Q}}$. Define $T_p: {\mathbb{T}}\to {\mathbb{T}}$ by $T_p(z)=z^p$ for all $z\in {\mathbb{T}}$. Similarly for Tq. A subset of ${\mathbb{T}}$ is said to be $\times p, \times q$-invariant if it is invariant under both Tp and Tq. Furstenberg classifies all closed $\times p, \times q$-invariant subsets of ${\mathbb{T}}$ in [Reference Fowler and Sims24]: Such a subset is either finite or ${\mathbb{T}}$ itself. Then he conjectures the following:

Conjecture (Furstenberg’s $\times p, \times q$ conjecture). An ergodic $\times p, \times q$-invariant Borel probability measure of ${\mathbb{T}}$ is either finitely supported or the Lebesgue measure.

According to our best knowledge, this conjecture is still open. The best known result so far is the following theorem, which is proved by Rudolph when p and q are coprime in [Reference Nekrashevych41] and later improved by Johnson in [Reference Huang and Wu26].

Theorem (Rudolph–Johnson). If µ is an ergodic $\times p, \times q$-invariant measure on ${\mathbb{T}}$, then either both entropies of Tp and Tq with respect to µ are 0, or µ is the Lebesgue measure.

When both entropies of Tp and Tq with respect to µ are 0, Furstenberg’s $\times p, \times q$ conjecture is reduced to studying the C*-algebra $\mathrm{C}^*(G)$ of the group G, where

(5)\begin{align} G:=\langle s, t, z: st=ts, \ sz=z^p s,\ tz=z^q t\rangle. \end{align}

It turns out that $\mathrm{C}^*(G)\cong \mathrm{C}^*({\mathbb{Z}}[\frac{1}{pq}])\rtimes {\mathbb{Z}}^2\cong \mathrm{C}^*({\mathbb{Z}}[\frac{1}{pq}]\rtimes {\mathbb{Z}}^2)$. In [Reference Furstenberg25], the representation theory of $\mathrm{C}^*({\mathbb{Z}}[\frac{1}{pq}])\rtimes {\mathbb{Z}}^2$ is studied. In particular, the authors focus on which kind of its representations are induced by $\times p, \times q$-invariant measures on ${\mathbb{T}}$. Later, the following equivalence is shown in [Reference Brownlowe, Ramagge, Robertson and Whittaker9]: Furstenberg’s $\times p, \times q$ conjecture holds true if and only if the canonical trace is the only faithful extreme tracial state on $\mathrm{C}^*(G)\cong \mathrm{C}^*({\mathbb{Z}}[\frac{1}{pq}]\rtimes {\mathbb{Z}}^2)$.

Our purpose here is to connect Furstenberg’s conjecture with higher rank BS semigroups. For this, from (5) one has

\begin{align*} t^{-1}s^{-1}=s^{-1}t^{-1}, \ z^{-1}s^{-1}=s^{-1}z^{-p} ,\ z^{-1}t^{-1}=t^{-1}z^{-q}. \end{align*}

Let $\tilde G$ be the group

(6)\begin{align} \tilde G:=\langle \tilde s, \tilde t, \tilde z: \tilde t\tilde s=\tilde s\tilde t, \ \tilde z\tilde s=\tilde s \tilde z^{p} ,\ \tilde z \tilde t=\tilde t \tilde z^{q}\rangle. \end{align}

Thus $G\cong \tilde G$ and so $\mathrm{C}^*(G)\cong \mathrm{C}^*(\tilde G)$. The upshot by doing so is $\mathrm{C}^*(G)\cong {\mathcal{O}}_{\Lambda_{\mathsf d}((1,1),(p,q))}$.

Now return to (5) again. Let $G^+$ be the corresponding semigroup

(7)\begin{align} G^+:=\langle s, t, z: st=ts, \ sz=z^p s,\ tz=z^q t\rangle^+. \end{align}

Then we claim that ${\mathcal{Q}}(G^+)\cong {\mathcal{O}}_{\Lambda_{\mathsf d}((p,q),(1,1))}$. In fact, let $e_i:=z^i s$ and $f_j:=z^j t$ for $i\in [p]$ and $j\in [q]$. Then $st=ts\iff e_0 f_0=f_0e_0$. For $k\in [p]$ and $\ell \in [q]$, let $k'\in [p]$ and $\ell'\in [q]$ be the unique ones such that $k+\ell p= \ell' + k' q$. Then we have

\begin{align*} e_k f_\ell =z^k s z^\ell t=z^k z^{\ell p} st= z^{\ell'} z^{k' q} ts=z^{\ell'} tz^{k'}s=f_{\ell'} e_{k'}. \end{align*}

Thus there is a homomorphism

\begin{equation*} \pi: {\mathcal{O}}_{\Lambda_{\mathsf d}((p,q),(1,1))} = {\mathcal{O}}_{{\mathbb{Z}}, \Lambda_{\mathsf d}} \to {\mathcal{Q}}(G^+), \ s_{{\mathbf{x}}_i^1}\mapsto v_{e_i},\ s_{{\mathbf{x}}_j^2}\mapsto v_{f_j},\ u_a\mapsto v_z, \end{equation*}

which is an isomorphism as it has an inverse given by

\begin{equation*} v_s\mapsto s_{{\mathbf{x}}^1_0},\ v_t\mapsto s_{{\mathbf{x}}^2_0},\ v_z\mapsto u_a. \end{equation*}

Hence ${\mathcal{O}}_{\Lambda_{\mathsf d}((p,q),(1,1))} \cong {\mathcal{Q}}(G^+)$.

To sum up, we have shown that

(8)\begin{align} \mathrm{C}^*(G)\cong {\mathcal{O}}_{\Lambda_{\mathsf d}((1,1),(p,q))} \text{ and }{\mathcal{Q}}(G^+)\cong {\mathcal{O}}_{\Lambda_{\mathsf d}((p,q),(1,1))}. \end{align}

Based on the above, in what follows, we focus on two extreme, but rather interesting, classes of higher rank BS semigroups: $\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})$ with $\mathbb{ 1}_{\mathsf k}\le \mathfrak n\in {\mathbb{N}}^{\mathsf k}$ and $\Lambda_{\mathsf d}(\mathbb{ 1}_{\mathsf k}, \mathfrak m)$ with $m_i\ne 0$ for all $1\le i\le \mathsf k$.

From now on, to unify our notation, the set $\{0,1\ne p_i \in {\mathbb{Z}}: 1\le i\le \mathsf k\}$ is said to be multiplicatively independent if there is no $\mathbf 0\ne q\in {\mathbb{Z}}^{\mathsf k}$ such that $\prod\limits_{i=1}^{\mathsf k} p_i^{q_i}=1$. When all pi’s are also $\ge 1$, $\{p_i: 1\le i\le \mathsf k\}$ is multiplicatively independent if and only if $\{\ln p_i: 1\le i\le \mathsf k\}$ is rationally independent.

4.3. The case of $\mathfrak m=\mathbb{ 1}_{\mathsf k}$

The C*-algebra of the self-similar $\mathsf k$-graph $\Lambda_{\mathsf d} (\mathfrak n, \mathbb{ 1}_{\mathsf k})$ is studied in [Reference Laca, Raeburn, Ramagge and Whittaker32]. It is shown there that ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$ is simple if and only if $\{n_i: 1\le i\le \mathsf k\}$ is multiplicatively independent, and that its cycline subalgebra is Cartan by [Reference Li33, Theorem 5.6]. In what follows, we identify the center of ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$, which is overlooked in [Reference Laca, Raeburn, Ramagge and Whittaker32, Reference Li33]. A useful lemma first:

Lemma 4.7. (i) Let $\mu,\nu\in \Lambda_{\mathsf d}^{\mathbf p}$ $(\mathsf p\in {\mathbb{N}}^{\mathsf k}$) and $m\in {\mathbb{Z}}$. Then there is $\ell\in {\mathbb{Z}}$ such that $ \nu a^m = a^\ell \mu$.

(ii) ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}=\overline{\operatorname{span}}\{u_{a^m} s_\alpha s_\beta^*: m\in {\mathbb{Z}}, \alpha, \beta\in \Lambda_{\mathsf d}\}$.

Proof. (i) We first prove the lemma holds true for the classical odometer action $\mathsf E(n, 1)$. We argue this by induction with respect to the lengths of µ and ν. If $\mu:=e_i$ and $\nu:=e_j$. WLOG we assume that $i\ge j\in [n]$. For any $m \in {\mathbb{Z}}$, by lemma 3.6, one can verify that $a^{mn+i-j} \nu = \mu a^m$. Assume that this is true for any $m\in {\mathbb{Z}}$ and all $\mu, \nu \in \mathsf{E}_n^*$ with $|\mu|=|\nu|\le k$. Now consider $e_s \mu$ and $e_t \nu$ with $|\mu|=|\nu|=k$. Let $m\in {\mathbb{Z}}$. By our inductive assumption, we have $e_s \mu a^m = e_s a^{\ell'} \nu = a^{\ell} e_t\nu$ for some $\ell', \ell\in {\mathbb{Z}}$. This proves the $\mathsf E(n, 1)$ case.

Now return to $\Lambda_{\mathsf d}$. Let $\mu, \nu\in \Lambda_d$ with $d(\mu)=d(\nu)=\mathbf p\in {\mathbb{N}}^{\mathsf k}$. Then by the unique factorization property $\mu = \mu_1\cdots \mu_{\mathsf k}$ and $\nu = \nu_1\cdots \nu_{\mathsf k}$ with $\mu_i, \nu_i \in \Lambda_{\mathsf d}^{p_i \epsilon_i}$ for $1\le i\le \mathsf k$. Then for any $m\in {\mathbb{Z}}$, apply the above to $\mu_{\mathsf k} a^m$ in $\mathsf E(n_{\mathsf k}, 1)$, there is $\ell_{\mathsf k}\in {\mathbb{Z}}$ such that $\mu a^m = \mu_1\cdots \mu_{\mathsf k -1} a^{\ell_{\mathsf k}} \nu_{\mathsf k}$. Repeatedly using the above gives $\mu a^m = a^\ell \nu$ for some $\ell \in {\mathbb{Z}}$.

(ii) This follows from (i) and proposition 2.7 (i).\hfill▪

By [Reference Li33, Theorem 7.5] (or Appendix there), $\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})$ and $\Lambda_{\mathsf d}$ share the same periodicity $\{\mathbf p\in {\mathbb{Z}}^{\mathsf k}: \mathfrak n^{\mathbf p}=1\}$. Thus, for each pair $(\mathbf p, \mathbf q)\in {\mathbb{N}}^{\mathsf k}\times {\mathbb{N}}^{\mathsf k}$ with $\mathfrak n^{\mathbf p}=\mathfrak n^{\mathbf q}$, there is a bijection $\phi_{\mathbf p, \mathbf q}: \Lambda_{\mathsf d}^{\mathbf p} \to \Lambda_{\mathsf d}^{\mathbf q} $ satisfying

(9)\begin{align} \mu \nu = \phi_{\mathbf p, \mathbf q}(\mu) \phi_{\mathbf p, \mathbf q}^{-1}(\nu),\ \phi_{\mathbf p, \mathbf q}^{-1}(\nu)\phi_{\mathbf p, \mathbf q}(\mu)=\nu \mu \end{align}

for every pair $(\mu, \nu)\in \Lambda_{\mathsf d}^{\mathbf p}\times \Lambda_{\mathsf d}^{\mathbf q}$ [Reference Davidson and Yang18, Theorem 7.1] (or [Section 5]). Let

\begin{equation*} V_{\mathbf p, \mathbf q}:=\sum_{\mu\in \Lambda_{\mathsf d}^{\mathbf p}} s_\mu s_{\phi_{\mathbf p, \mathbf q}(\mu)}^*. \end{equation*}

By [Reference Davidson and Yang18, Theorem 4.9], each $V_{\mathbf p, \mathbf q}$ is a unitary in ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$.

Proposition 4.8. The center of ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$ is given by

\begin{equation*} {\mathcal{Z}}({\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}) =\mathrm{C}^*(V_{\mathbf p, \mathbf q}: (\mathbf p, \mathbf q)\in {\mathbb{N}}^{\mathsf k}\times {\mathbb{N}}^{\mathsf k},\ \mathfrak n^{\mathbf p}=\mathfrak n^{\mathbf q}). \end{equation*}

In particular, ${\mathcal{Z}}({\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})})$ is trivial, if and only if $\{n_i: 1\le i\le \mathsf k\}$ is multiplicatively independent.

Proof. Suppose that $A\in {\mathcal{Z}}({\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})})$. Then by proposition 2.7, one has $A\in {\mathcal{Z}}({\mathcal{O}}_{\Lambda_{\mathsf d}})$. But ${\mathcal{Z}}({\mathcal{O}}_{\Lambda_{\mathsf d}})=\mathrm{C}^*(V_{\mathbf p, \mathbf q}: (\mathbf p, \mathbf q)\in {\mathbb{N}}^{\mathsf k}\times {\mathbb{N}}^{\mathsf k},\ \mathfrak n^{\mathbf p}=\mathfrak n^{\mathbf q})$ [Reference Davidson and Yang18].

It remains to show that each $V_{\mathbf p, \mathbf q}$ is indeed in ${\mathcal{Z}}({\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})})$. This has been proved in [Reference Davidson and Yang18, Theorem 4.9]. In what follows, we prove this by invoking lemma 4.7.

We first show that ua commutes with $V_{\mathbf p, \mathbf q}$. Then on one hand, we have

\begin{align*} a\cdot (\mu \nu)=a\cdot(\phi_{\mathbf p, \mathbf q}(\mu) \phi_{\mathbf p, \mathbf q}^{-1}(\nu)) \implies a\cdot \mu a|_\mu\cdot \nu = a\cdot \phi_{\mathbf p, \mathbf q}(\mu) a|_{\phi(\mu)}\cdot \phi_{\mathbf p, \mathbf q}^{-1}(\nu). \end{align*}

On the other hand, we have

\begin{equation*} a\cdot \mu a|_\mu\cdot \nu = \phi_{\mathbf p, \mathbf q}(a\cdot \mu) \phi_{\mathbf p, \mathbf q}^{-1}(a|_\mu\cdot \nu). \end{equation*}

Thus

(10)\begin{align} & a^{-1}\cdot \phi_{\mathbf p, \mathbf q}(\mu) a^{-1}|_{\phi_{\mathbf p, \mathbf q}(\mu)}\cdot \phi_{\mathbf p, \mathbf q}^{-1}(\nu) =\phi_{\mathbf p, \mathbf q}(a^{-1}\cdot \mu) \phi_{\mathbf p, \mathbf q}^{-1}(a^{-1}|_\mu\cdot \nu) \nonumber\\ &\implies a^{-1}\cdot \phi_{\mathbf p, \mathbf q}(\mu) =\phi_{\mathbf p, \mathbf q}(a^{-1}\cdot \mu) \quad \text{and} \quad a^{-1}|_{\phi_{\mathbf p, \mathbf q}(\mu)}\cdot \phi_{\mathbf p, \mathbf q}^{-1}(\nu)=\phi_{\mathbf p, \mathbf q}^{-1}(a^{-1}|_\mu\cdot \nu) \end{align}

Then one can easily see $g\cdot \phi_{\mathbf p, \mathbf q}(\mu) = \phi_{\mathbf p, \mathbf q}(g\cdot \mu)$ for any $g\in {\mathbb{Z}}$. Similarly, one gets from the second identity of (9) that $g\cdot \phi_{\mathbf p, \mathbf q}^{-1}(\nu) = \phi_{\mathbf p, \mathbf q}^{-1}(g\cdot \nu)$ for any $g\in {\mathbb{Z}}$. Thus the second identity of (10) yields $a^{-1}|_{\phi_{\mathbf p, \mathbf q}(\mu)}=a^{-1}|_\mu$, and so $ (a^{-1}|_{\phi_{\mathbf p, \mathbf q}(\mu)})^{-1}=(a^{-1}|_\mu)^{-1}. $ Therefore

(11)\begin{align} a|_{a^{-1}\cdot \phi_{\mathbf p, \mathbf q}(\mu)}=a|_{a^{-1}\cdot \mu}. \end{align}

Now compute

\begin{align*} u_a V_{\mathbf p, \mathbf q}& = \sum_{d(\mu)=\mathbf p} s_{a\cdot \mu}u_{a|_\mu} s_{\phi_{\mathbf p, \mathbf q}(\mu)}^* = \sum_{d(\mu)=\mathbf p} s_\mu u_{a|_{a^{-1}\cdot \mu}} s_{\phi_{\mathbf p, \mathbf q}(a^{-1}\cdot\mu)}^*\\ &= \sum_{d(\mu)=\mathbf p} s_\mu u_{a|_{a^{-1}\cdot \phi_{\mathbf p, \mathbf q}(\mu)}} s_{a^{-1}\cdot\phi_{\mathbf p, \mathbf q}(\mu)}^* \ (\text{from } (10)\text{and }(11))\\ &= \sum_{d(\mu)=\mathbf p} s_\mu u_{({a^{-1}|_ {\phi_{\mathbf p, \mathbf q}(\mu)})^{-1}}} s_{a^{-1}\cdot\phi_{\mathbf p, \mathbf q}(\mu)}^* = \left(\sum_{d(\mu)=\mathbf p} s_\mu s_{\phi_{\mathbf p, \mathbf q}(\mu)}^*\right)u_a\\ &= V_{\mathbf p, \mathbf q}\, u_a . \end{align*}

Then

\begin{align*} (u_{a^m} s_\alpha s_\beta^*) V_{\mathbf p, \mathbf q} = u_{a^m} V_{\mathbf p, \mathbf q} s_\alpha s_\beta^* = V_{\mathbf p, \mathbf q} (u_{a^m} s_\alpha s_\beta^*). \end{align*}

By lemma 4.7 (ii), $\sum\limits_{d(\mu)=\mathbf p} s_\mu s_{\phi_{\mathbf p, \mathbf q}(\mu)}^*\in {\mathcal{Z}}({\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})})$.\hfill▪

For ${\mathbf{m}}\in {\mathbb{N}}^{\mathsf{k}}$, let ${\mathcal{F}}_{{\mathbf{m}}}:=\overline{\operatorname{span}}\{s_\mu a^n s_\nu^*: \mu,\nu\in \Lambda_{(\mathfrak n, \mathbb{ 1}_{\mathsf k})} \text{with } d(\mu)=d(\nu)={\mathbf{m}}, n\in {\mathbb{Z}}\}$, and so ${\mathcal{F}}=\overline{\bigcup\limits_{m\in {\mathbb{N}}^{\mathsf{k}}} {\mathcal{F}}_{{\mathbf{m}}}}^{\|\cdot\|}$. Also notice that, due to the Cuntz–Krieger relations, we have ${\mathcal{F}}=\lim\limits_{\stackrel{\longrightarrow}{m\in {\mathbb{N}}}}{\mathcal{F}}_{m\mathbb{1}_{\mathsf k}}$.

Let $d:=\prod\limits_{i=1}^{\mathsf{k}}\prod\limits_{p\in {\mathcal{P}}, \, p|n_i} p$, the product of all primes dividing some ni’s.

Lemma 4.9. ${\mathcal{F}}$ is a Bunce–Deddens algebra of type $d^\infty$. In particular, ${\mathcal{F}}$ has a unique faithful tracial state.

Proof. The proof below is motivated by the proof of [Reference Li and Yang35, Theorem 3.16].

For ${\mathbf{m}} \in {\mathbb{N}}^{\mathsf k}$, let $\{e_{\mu,\nu}\}_{\mu,\nu\in \Lambda^{{\mathbf{m}}}_{\mathsf d}}$ be the matrix entries of $K(\ell^2(\Lambda_{\mathsf d}^{\mathbf{m}})).$ To simplify our notation, let $\{a^n\}_{n\in {\mathbb{Z}}}$ be the generating unitaries of $\mathrm{C}^*({\mathbb{Z}})$. Clearly, there is a homomorphism

\begin{equation*} \rho_1: K(\ell^2(\Lambda_{\mathsf d}^{m\mathbb{1}_{\mathsf k}}))\to {\mathcal{F}}_{m\mathbb{1}_{\mathsf k}},\ e_{\mu,\nu}\mapsto s_\mu s_\nu^*, \end{equation*}

and

\begin{equation*} \rho_2:{\mathrm{C}}({\mathbb{T}})\to {\mathcal{F}}_{m\mathbb{1}_{\mathsf k}},\ a^n\mapsto \sum_{\mu\in\Lambda_{\mathsf d}^{m\mathbb{1}_{\mathsf k}}} s_\mu u_{a^n} s_\mu^*. \end{equation*}

Some simple calculations show the images of ρ 1 and ρ 2 commute. By [Reference Li and Yang37, Theorem 6.3.7], there is a homomorphism $\rho: K(\ell^2(\Lambda_{\mathsf d}^{m\mathbb{1}_{\mathsf k}}))\otimes \mathrm{C}^*({\mathbb{Z}})\to {\mathcal{F}}_{m\mathbb{1}_{\mathsf k}}$ satisfying $\rho(e_{\mu, \nu}\otimes a^n)= s_\mu u_{a^n} s_\nu^*$. It is not hard to see that ρ is also invertible and so an isomorphism.

Set $\mu_0:={\mathbf{x}}_0^1\cdots {\mathbf{x}}^{\mathsf k}_0$ and $\mu_{\mathfrak n -\mathbb{1}}:={\mathbf{x}}^1_{n_1-1}\cdots {\mathbf{x}}^{\mathsf k}_{n_{\mathsf k}-1}$. Embed $K(\ell^2(\Lambda_{\mathsf d}^{m\mathbb{ 1}_{\mathsf k}}))\otimes \mathrm{C}^*({\mathbb{Z}})$ into $K(\ell^2(\Lambda_{\mathsf d}^{(m+1)\mathbb{ 1}_{\mathsf k}}))\otimes \mathrm{C}^*({\mathbb{Z}})$ as follows:

\begin{equation*} e_{\mu, \nu}\otimes a^n\mapsto \sum\limits_{\alpha\in \Lambda_{\mathsf d}^{\mathbb{1}}}e_{\mu a^n\cdot \alpha, \nu\alpha}\otimes a^n|_\alpha. \end{equation*}

Notice that $a|_\alpha=a$ if $\alpha=\mu_{\mathfrak n -\mathbb{1}_{\mathsf k}}$, and $a|_\alpha=0$, otherwise.

Now we have

\begin{align*} u_a &=u_a \sum_{\mu\in\Lambda^{m\mathbb{1}_{\mathsf k}}} s_\mu s_\mu^* =\sum_{\mu\in\Lambda_{\mathsf d}^{m\mathbb{1}_{\mathsf k}}} s_{a\cdot\mu} u_{a|_\mu} s_\mu^*\\ &=\sum_{\mu\ne \mu_{\mathfrak n-\mathbb{1}_{\mathsf k}}} s_{a\cdot\mu} s_\mu^*+s_{a\cdot\mu_{\mathfrak n-\mathbb{1}_{\mathsf k}}} u_a s_{\mu_{\mathfrak n-\mathbb{1}_{\mathsf k}}}^*\\ &=\sum_{\mu\ne \mu_{\mathfrak n-\mathbb{1}_{\mathsf k}}} s_{a\cdot\mu} s_\mu^*+s_{\mu_0} u_a s_{\mu_{\mathfrak n-\mathbb{1}_{\mathsf k}}}^*. \end{align*}

Therefore ${\mathcal{F}}$ is isomorphic to a Bunce–Deddens algebra of type of $d^\infty$, and so it has a unique faithful tracial state [Reference Connes and Marcolli14].\hfill▪

Remark 4.10. It is worth mentioning the following: If $S:=\{n_1,\ldots, n_{\mathsf k}\}\subset {\mathbb{N}}$ is a set of mutually coprime natural numbers, then ${\mathcal{F}}$ is isomorphic to BS in [Reference an Huef, Nucinkis, Sehnem and Yang3].

By lemma 4.9 and [Reference Connes and Marcolli14], ${\mathcal{F}}$ has a unique faithful tracial state, say τ, given by

\begin{equation*} \tau(s_\mu u_{a^n} s_\mu^*)=\mathfrak n^{-d(\mu)}\delta_{n,0}. \end{equation*}

Recall that $\Phi_{\mathbf 0}$ is the faithful conditional expectation from ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1})}$ onto ${\mathcal{F}}$ via the gauge action γ (see § 2.2). Then $\omega:=\tau\circ \Phi_{\mathbf 0}$ is a state of ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$.

We recall the notion of KMS states from [Reference Bartholdi, Grigorchuk and Nekrashevych5] (also see [Reference Clark, an Huef and Raeburn13]) and give some basic properties of KMS states for ${\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$.

Definition 4.11. Let A be a C*-algebra, α be an action of ${\mathbb{R}}$ on A, and Aa be the set of all analytic elements of A. Let $0 \lt \beta \lt \infty$. A state τ of A is called a KMS $_\beta$ state of $(A,\mathbb{R},\alpha)$ if $\tau(xy)=\tau(y \alpha_{i\beta}(x))$ for all $x,y \in A^a$.

Recall the gauge action $\gamma:{\mathbb{T}}^{\mathsf k} \to \operatorname{Aut}({\mathcal{O}}_{\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})})$:

\begin{equation*} \gamma_z(s_\mu)=z^{d(\mu)}s_\mu\text{and } \gamma_z(u_g)=u_g\quad\text{for all}\quad z \in {\mathbb{T}}^{\mathsf k}, \mu \in \Lambda,g \in {\mathbb{Z}}. \end{equation*}

Let $\mathsf{r}=(\ln n_1, \ldots, \ln n_{\mathsf k})\in {\mathbb{R}}^{\mathsf k}$. Define a strongly continuous homomorphism $\alpha^{\mathsf{r}}:\mathbb{R} \to \operatorname{Aut}({\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n,\mathbb{ 1}_{\mathsf k})})$ by $\alpha^{\mathsf{r}}_t:=\gamma_{e^{it\mathsf{r}}}$. Notice that, for $\mu,\nu \in \Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k}), g \in {\mathbb{Z}}$, the function $\mathbb{C} \to {\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1})}$, $\xi \mapsto e^{i \xi \mathsf{r} \cdot (d(\mu)-d(\nu))}s_\mu u_g s_\nu^*$ is an entire function. So $s_\mu u_g s_\nu^*$ is an analytic element. By proposition 2.7, in order to check the KMS $_\beta$ condition, it is sufficient to check whether it is valid on the set $\{s_\mu u_g s_\nu^*:\mu,\nu \in \Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k}), g\in {\mathbb{Z}}\}$. In this section, we study basic properties of KMS $_\beta$ states of the one-parameter dynamical system $(\mathcal{O}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1})},\mathbb{R},\alpha^{\mathsf{r}})$.

Lemma 4.12. Suppose that $\{n_i: 1\le i\le \mathsf k\}$ is multiplicatively independent. Then ω is the unique KMS1 state on ${\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$.

Proof. An easy calculation shows

\begin{align*} \omega(s_\mu u_{a^n} s_\nu^*)=\delta_{\mu, \nu} \delta_{n,0} \, \mathfrak n^{-d(\mu)}. \end{align*}

By [Reference Li33, Theorems 6.11 and 6.12], ω is the unique KMS1 state of ${\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1})}$ (also see [Reference Li33, Theorem 7.1]).\hfill▪

As in [Reference Serre46, Reference Spielberg47], let $L^2({\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})})$ be the GNS Hilbert space determined by the state ω: $\langle A, B\rangle:=\omega(A^*B)$ for all $A, B\in {\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$. For $A \in {\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$, we denote the left action of A by $\pi (A): \pi(A)B = AB$ for all $B \in {\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1})}$. Let $ {\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})}^c$ stand for the algebra as the finite linear span of the generators $s_\mu u_g s_\nu^*$.

Define

\begin{align*} S(A):=A^*,\ F(s_\mu u_{a^n} s_\nu^*):=\mathfrak n^{d(\mu)-d(\nu)} s_\nu u_{a^{-n}} s_\mu^*, \quad\text{for}\quad A\in {\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})}^c. \end{align*}

Then $F=S^*$. Also, if

\begin{equation*} J(s_\mu u_{a^n} s_\nu^*):=\mathfrak n^{\frac{d(\mu)-d(\nu)}{2}} s_\nu u_{a^{-n}} s_\mu^*, \ \Delta (s_\mu u_{a^n} s_\nu^*):=\mathfrak n^{d(\nu)-d(\mu)} s_\mu u_{a^n} s_\nu^*, \end{equation*}

one has

\begin{equation*} S=J\Delta^{\frac{1}{2}}=\Delta^{-\frac{1}{2}} J,\ F=J\Delta^{-\frac{1}{2}}= \Delta^{\frac{1}{2}}J. \end{equation*}

Let $\pi_\omega({\mathcal{O}}_{\Lambda_d(\mathfrak n, \mathbb{ 1}_{\mathsf k})})^{\prime\prime}$ be the von Neumann algebra generated by the GNS representation of ω. Then $\pi_\omega({\mathcal{O}}_{\Lambda_d(\mathfrak n, \mathbb{ 1}_{\mathsf k})})^{\prime\prime}$ coincides with the left von Neumann algebra of $ {\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})}^c$.

The proof of the following theorem can now be easily adapted from [Reference Serre46, Reference Spielberg47] combined with [Reference Laca, Raeburn, Ramagge and Whittaker32, Reference Li33] and is left to the interested reader.

Theorem 4.13. The following statements are equivalent:

  1. (i) ${\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})}$ is simple.

  2. (ii) ${\mathcal{O}}_{\Lambda_{\mathsf d}}$ is simple.

  3. (iii) $\{n_i: 1\le i\le \mathsf k\}$ is multiplicatively independent.

  4. (iv) $\Lambda_{\mathsf d}(\mathfrak n, \mathbb{ 1}_{\mathsf k})$ is aperiodic.

  5. (v) The ambient $\mathsf k$-graph $\Lambda_{\mathsf d}$ is aperiodic.

  6. (vi) $\pi_\omega({\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})})^{\prime\prime}$ is a factor.

When $\pi_\omega({\mathcal{O}}_{\Lambda_\mathsf d(\mathfrak n, \mathbb{ 1}_{\mathsf k})})^{\prime\prime}$ is a factor,

  • it is an AFD factor of type III $_{\frac{1}{n}}$ if $\mathsf k=1$; and

  • it is an AFD factor of type III1 if $\mathsf k\ge 2$.

4.4. The case of $\mathfrak n=\mathbb{ 1}_{\mathsf k}$

Since there is only one edge for each colour i, in order to ease our notation, we write ${\mathbf{x}}_i$ (instead of the notation ${\mathbf{x}}_1^i$ used above) for this unique edge. Thus ${\mathbf{x}}_i {\mathbf{x}}_j={\mathbf{x}}_j {\mathbf{x}}_i$ for all $1\le i\ne j\le \mathsf k$. Since this is the unique commutation relation on ${\mathbf{x}}_i$’s, we denote $\Lambda_\mathsf d(\mathbb{ 1}_{\mathsf k}, \mathfrak m)$ simply as $\Lambda(\mathbb{ 1}_{\mathsf k}, \mathfrak m)$. The ambient $\mathsf k$-graph is just denoted as $\Lambda_{\mathbb{ 1}_{\mathsf k}}$.

We should mention that it seems that the case of $\mathfrak n=\mathbb{ 1}_{\mathsf k}$ is also studied in [Reference Li33]. However, this is exactly the case which is completely ignored there. This could be due to two reasons: one is that $\Lambda_\mathsf d(\mathbb{ 1}_{\mathsf k}, \mathfrak m)$ is clearly not locally faithful, which is the crucial property required in [Reference Li33]; the other is that this case, at first glance, seems too special.

Observation 4.14. The observations below are obvious and will be used frequently later without any further mention.

  1. (i) For every $\mathbf p\in {\mathbb{N}}^k$, $\Lambda_{\mathbb{ 1}_{\mathsf k}}^{\mathbf p}$ is a singleton: $\Lambda_{\mathbb{ 1}_{\mathsf k}}^{\mathbf p}=\{{\mathbf{x}}^{\mathbf p}:={\mathbf{x}}_1^{p_1}\cdots {\mathbf{x}}_{\mathsf k}^{p_{\mathsf k}}\}$. Also, sµ is a unitary for every $\mu\in\Lambda_{\mathbb{ 1}_{\mathsf k}}$.

  2. (ii) $\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)$ is pseudo-free. In fact, some computations show $a^n|_\mu=a^{n{\mathfrak m}^{d(\mu)}}$ and so $a^n|_\mu =0\iff n=0$.

Our next goal is to show that $\Lambda_{\mathsf d}(\mathbb{ 1}_{\mathsf k}, \mathfrak m)$ has a canonical Cartan subalgebra. In particular, this canonical Cartan subalgebra is ${\mathcal{F}}$ if $\{|m_i|: 1\le i\le \mathsf k\}$ is multiplicatively independent; it properly contains ${\mathcal{F}}$, otherwise.

Lemma 4.15. ${\mathcal{F}}=\overline{\operatorname{span}}\{s_\mu u_{a^\ell} s_\mu^*: \mu \in \Lambda_{\mathbb{ 1}_{\mathsf k}}, \ell\in {\mathbb{Z}}\}=\overline{\operatorname{span}}\{s_\mu^n u_{a^\ell} s_\mu^{-n}: d(\mu)=\mathbb{1}_{\mathsf k}, n\in {\mathbb{N}}, \ell\in {\mathbb{Z}}\}$.

Proof. It is known and easy to see that ${\mathcal{F}}=\overline{\operatorname{span}}\{s_\mu u_{a^m} s_\nu^*\mid \mu,\nu\in \Lambda_{\mathbb{ 1}_{\mathsf k}}, d(\mu)=d(\nu), m\in {\mathbb{Z}}\}$. It follows from observation 4.14 that $d(\mu)=d(\nu)$ forces $\mu=\nu$, say equal to ${\mathbf{x}}^{\mathbf n}$ for some $\mathbf n\in {\mathbb{N}}^{\mathsf k}$. WLOG, we assume that $n_1-n_2=l \ge 0$. Then

\begin{align*} s_{{\mathbf{x}}^{\mathbf n}} u_{a^m} s_{{\mathbf{x}}^{\mathbf n}}^{-1} =&s_{{\mathbf{x}}_3^{n_3}\cdots {\mathbf{x}}_{\mathsf k}^{n_{\mathsf k}}} s_{{\mathbf{x}}_1^{n_1}} s_{{\mathbf{x}}_2^{n_2}} u_{a^m} s_{{\mathbf{x}}_2^{n_2}}^{-1} s_{{\mathbf{x}}_1^{n_1}} ^{-1} s_{{\mathbf{x}}_3^{n_3}\cdots {\mathbf{x}}_{\mathsf k}^{n_{\mathsf k}}}^{-1}\\ =&s_{{\mathbf{x}}_3^{n_3}\cdots {\mathbf{x}}_{\mathsf k}^{n_{\mathsf k}}} s_{{\mathbf{x}}_1^{n_1}} s_{{\mathbf{x}}_2^{n_2}} s_{{\mathbf{x}}_2^\ell} u_{a^m|_{{\mathbf{x}}_2^\ell}} s^{-1}_{{\mathbf{x}}_2^\ell} s_{{\mathbf{x}}_3^{n_3}\cdots {\mathbf{x}}_{\mathsf k}^{n_{\mathsf k}}}^{-1} s_{{\mathbf{x}}_2^{n_2}}^{-1} s_{{\mathbf{x}}_1^{n_1}}^{-1}\\ =&s_{{\mathbf{x}}_3^{n_3}\cdots {\mathbf{x}}_{\mathsf k}^{n_{\mathsf k}}} s_{{\mathbf{x}}_1^{n_1}} s_{{\mathbf{x}}_2^{n_1}} u_{a^m|_{{\mathbf{x}}_2^\ell}} s_{{\mathbf{x}}_3^{n_3}\cdots {\mathbf{x}}_{\mathsf k}^{n_{\mathsf k}}}^{-1} s_{{\mathbf{x}}_2^{n_1}}^{-1} s_{{\mathbf{x}}_1^{n_1}}^{-1}. \end{align*}

After repeating this process, all the ${\mathbf{x}}_i$’s will have the same exponent.\hfill▪

Lemma 4.16. ${\mathcal{F}}$ is commutative.

Proof. Compute

\begin{align*} (s_\mu u_{a^l} s_\mu^*)(s_\nu u_{a^n} s_\nu^*) &=s_\mu u_{a^l} s_\nu s_\mu^* u_{a^n} s_\nu^*\ (\text{as}\ s_\mu^*s_\nu= s_\nu s_\mu^*)\\ &=s_\mu s_\nu u_{a^l|_{\nu}} (u_{a^{-n}} s_\mu)^* s_\nu^*\ (\text{as}\ a^l\cdot \nu =\nu)\\ &=s_\mu s_\nu u_{a^l|_{\nu}} (u_{a^{-n}}|_{\mu})^{-1} s_\mu^* s_\nu^*\\ &=s_\mu s_\nu u_{a^l|_{\nu}} u_{a^n|_{a^{-n}\cdot \mu}} s_\mu^* s_\nu^*\\ &=s_\mu s_\nu u_{a^l|_{\nu}} u_{a^n|_\mu} s_\mu^* s_\nu^*\ (\text{as}\ a^{-n}\cdot \mu =\mu)\\ &=(s_\nu u_{a^n} s_\nu^*)(s_\mu u_{a^l} s_\mu^*). \end{align*}

It now follows from lemma 4.15 that ${\mathcal{F}}$ is commutative.\hfill▪

Lemma 4.17. ${\mathcal{F}}'=\overline{\operatorname{span}} \{s_\mu u_{a^n} s_{\nu}^*:\mu,\nu\in\Lambda_{\mathbb{ 1}} \text{with } \mathfrak m^{d(\mu)}=\mathfrak m^{d(\nu)},\ n\in {\mathbb{Z}}\}$.

Proof. Similar to [Reference Takeda48], it suffices to show $x\in \operatorname{Ran} \Phi_{\mathbf p}\cap{\mathcal{F}}'$ has the given form. By the Cuntz–Krieger relation, one could assume that $x=s_\mu A s_\nu^*$ with $d(\mu)-d(\nu)=\mathbf p$ and $A\in \mathrm{C}^*(u_a)$. One could further assume that $A=f(u_a)$, where $f(z)=\sum_{i=1}^{n} \lambda_{i} z^{M_i}\ne 0$ for some $0\ne \lambda_i\in {\mathbb{C}}$ and $M_i\in {\mathbb{Z}}$.

Also, it is clear that $s_\mu s_\nu= s_\nu s_\mu$ and $\ s_\mu s_\nu^*= s_\nu^* s_\mu$ for all $\mu, \nu\in \Lambda_{\mathbb{ 1}_{\mathsf k}}$. Then, for all $N\in {\mathbb{Z}}$ and $\omega\in \Lambda_{\mathbb{ 1}_{\mathsf k}}$, one has

\begin{align*} &\ s_\mu A s_{\nu}^*s_{\omega}u_{a^N} s_{\omega}^* - s_{\omega} u_{a^N} s_{\omega}^*s_\mu A s_{\nu}^*\\ =& \ s_\mu \left( \sum_{i=1}^{n} \lambda_i u_{a^{M_i}} \right) s_\omega s_{\nu}^* u_{a^N} s_{\omega}^* - s_{\omega} u_{a^N} s_\mu s_{\omega}^* \left( \sum_{i=1}^{n} \lambda_i u_{a^{M_{i}}} \right) s_{\nu}^* \\ = &\ s_\mu s_\omega \left( \sum_{i=1}^{n} \lambda_{i} u_{a^{M_{i}\mathfrak m^{d(\omega)}}} \right) u_{a^{N\mathfrak m^{d(\nu)}}} s_{\nu}^* s_{\omega}^* - s_{\omega} s_\mu u_{a^{N{\mathbf{m}}^{d(\mu)}}} \left( \sum_{i=1}^{n} \lambda_{i} u_{a^{M_{i} \mathfrak m^{d(\omega)}}} \right) s_{\omega}^* s_{\nu}^* \\ = &\ s_{\mu}s_{\omega} \left( \sum_{i=1}^{n} \lambda_{i} u_{a^{M_{i}\mathfrak m^{d(\omega)}}} \right) \left(u_{a^{N\mathfrak m^{d(\nu)}}} - u_{a^{N{\mathfrak m}^{d(\mu)}}}\right) s_{\omega}^* s_{\nu}^*\\ = &\ s_{\mu}s_{\omega} f\big(u_{a^{\mathfrak m^{d(\omega)}}} \big)\left(u_{a^{N\mathfrak m^{d(\nu)}}} - u_{a^{N{\mathfrak m}^{d(\mu)}}}\right) s_{\omega}^* s_{\nu}^*. \end{align*}

After identifying $\mathrm{C}^*(a)$ with ${\mathrm{C}}({\mathbb{T}})$ (see proposition 2.7), the above is equal to 0 iff

\begin{equation*} f\big(z^{\mathfrak m^{d(\omega)}} \big)\left(z^{N\mathfrak m^{d(\nu)}} - z^{N{\mathfrak m}^{d(\mu)}}\right)=0, \end{equation*}

and therefore, if and only if $\mathfrak m^{d(\mu)}=\mathfrak m^{d(\nu)}$.\hfill▪

Lemma 4.18. ${\mathcal{F}}'$ is a MASA of ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k}, \mathfrak m)}$.

Proof. We first show that ${\mathcal{F}}'$ is abelian. For this, let $A:=s_\mu u_{a^M} s_{\nu}^*$ and $B:=s_\alpha u_{a^N} s_\beta ^*$ be two standard generators in ${\mathcal{F}}'$. Then

\begin{align*} AB=s_\mu u_{a^M} s_{\nu}^*s_\alpha u_{a^N} s_\beta^* &=s_\mu u_{a^M} s_\alpha s_{\nu}^* u_{a^N} s_\beta^* =s_\mu s_\alpha u_{a^{M{\mathbf{n}}^{d(\alpha)}}}u_{a^{N{\mathbf{m}}^{d(\nu)}}} s_{\nu}^*s_\beta^*, \\ BA=s_\alpha u_{a^N} s_\beta^* s_\mu u_{a^M} s_{\nu}^* &=s_\alpha u_{a^N} s_\mu s_{\beta}^* u_{a^M} s_\nu^* =s_\mu s_\alpha u_{a^{N{\mathbf{n}}^{d(\mu)}}}u_{a^{M{\mathbf{m}}^{d(\beta)}}} s_{\nu}^*s_\beta^*. \end{align*}

But $\mathfrak m^{d(\mu)}=\mathfrak m^{d(\nu)}$ and $\mathfrak m^{d(\alpha)}=\mathfrak m^{d(\beta)}$ as $A, B\in {\mathcal{F}}'$. Thus AB = BA and so ${\mathcal{F}}'$ is abelian.

Now we show ${\mathcal{F}}'$ is a MASA. Let $s_\alpha u_{a^N} s_{\beta}^*\in {\mathcal{F}}'$ and $s_\mu A s_{\nu}^*\in \operatorname{Ran}\Phi_{\mathbf p}\cap {\mathcal{F}}^{\prime\prime}$ with $A\in \mathrm{C}^*(u_a)$. Similar to the proof of lemma 4.17, we have for all $\mu,\nu\in\Lambda_{\mathbb{ 1}_{\mathsf k}}$ and $N\in {\mathbb{Z}}$

\begin{align*} &\ s_\mu A s_{\nu}^*s_{\alpha} u_{a^N} s_{\beta}^* -s_{\alpha} u_{a^N} s_{\beta}^*s_\mu A s_{\nu}^*\\ =& \ s_\mu \left( \sum_{i=1}^{n} \lambda_{i} u_{a^{M_{i}}} \right) s_\alpha s_{\nu}^* u_{a^N} s_{\beta}^* - s_{\alpha} u_{a^N} s_\mu s_{\beta}^* \left( \sum_{i=1}^{n} \lambda_{i} u_{a^{M_{i}}} \right) s_{\nu}^* \\ =&\ s_\mu s_\alpha \left( \sum_{i=1}^{n} \lambda_{i} u_{a^{M_{i}\mathfrak m^{d(\alpha)}}} \right) u_{a^{N\mathfrak m^{d(\nu)}}} s_{\nu}^* s_{\beta}^* - s_{\alpha} s_\mu u_{a^{N\mathfrak m^{d(\mu)}}} \left( \sum_{i=1}^{n} \lambda_{i} u_{a^{M_{i} \mathfrak m^{d(\beta)}}} \right) s_{\beta}^* s_{\nu}^* \\ =&s_{\alpha} s_\mu \left[\left( \sum_{i=1}^{n} \lambda_{i} u_{a^{M_{i}\mathfrak m^{d(\alpha)}}} \right) u_{a^{N{\mathbf{m}}^{d(\nu)}}} - u_{a^{N\mathfrak m^{d(\mu)}}} \left( \sum_{i=1}^{n} \lambda_{i} u_{a^{M_{i} \mathfrak m^{d(\beta)}}} \right)\right] s_{\beta}^* s_{\nu}^*. \end{align*}

Identify $\mathrm{C}^*(u_a)$ with ${\mathrm{C}}({\mathbb{T}})$ and notice $ m^{d(\alpha)}= m^{d(\beta)}$. Then the above is equal to 0, iff

\begin{equation*} f\big(z^{\mathfrak m^{d(\alpha)}}\big)\left(z^{N\mathfrak m^{d(\nu)}} - z^{N\mathfrak m^{d(\mu)}}\right)=0 \iff \mathfrak m^{d(\mu)}=\mathfrak m^{d(\nu)}. \end{equation*}

Hence $s_\mu A s_{\nu}^*\in {\mathcal{F}}'$ and therefore ${\mathcal{F}}'={\mathcal{F}}^{\prime\prime}$.\hfill▪

Now suppose that $\{|m_i|: 1\le i\le k\}$ is multiplicatively independent. Then ${\mathcal{F}}'={\mathcal{F}}$, which is also the diagonal subalgebra of ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$. So there is a conditional expectation Φ from ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$ onto ${\mathcal{F}}$. Therefore ${\mathcal{F}}$ is a Cartan subalgebra of ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$.

Corollary 4.19. Suppose that $\{|m_i|: 1\le i\le \mathsf k\}$ is multiplicatively independent. Then ${\mathcal{F}}$ is a Cartan subalgebra of ${\mathcal{O}}_{\Lambda(\mathbb{ 1},\mathfrak m)}$.

Suppose that $m_i \gt 0$ $(1\le i\le \mathsf k$). For convenience, we use the convention: If $a|_\mu=a^n$, then $t^{\ln a|_\mu}:=t^{\ln n}$. Thus

\begin{align*} \ln a|_{\mu\nu} =\ln \mathfrak m^{d(\mu\nu)} =\ln \mathfrak m^{d(\mu)}+\ln\mathfrak m^{d(\nu)}=\ln a|_\mu+\ln a|_\nu. \end{align*}

Therefore, we obtain action α of ${\mathbb{T}}$ on ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$ as follows:

\begin{equation*} \alpha_t(s_\mu)=t^{\ln a|_\mu} s_\mu, \ \alpha_t(u_a)=u_a \text{for all }\mu \in \Lambda_{\mathbb{ 1}_{\mathsf k}}\text{and }t\in {\mathbb{T}}. \end{equation*}

Define

\begin{equation*} \Psi(x):=\int_{{\mathbb{T}}} \alpha_t(x) d t\quad\text{for all}\quad x\in {\mathcal{O}}_{\Lambda(\mathbb{ 1},\mathfrak m)}. \end{equation*}

Lemma 4.20. Suppose that $m_i \gt 0$ $(1\le i\le \mathsf k$). Then ${\mathcal{F}}'$ is the fixed point algebra of α. Furthermore, Ψ a faithful conditional expectation from ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$ onto ${\mathcal{F}}'$.

Proof. We only need to show the faithfulness of Ψ here, as other parts can be proved similarly to the corresponding parts for $\Phi_{\mathbf 0}$. Let $\Phi_{\mathbf 0}|_{{\mathcal{F}}'}$ be the restriction of $\Phi_{\mathbf 0}$ onto ${\mathcal{F}}'$, and Ψ be the expectation induced from α above. Then one can check that $\Phi_{\mathbf 0}=\Phi|_{{\mathcal{F}}'}\circ \Psi$. The faithfulness of Ψ follows from that of $\Phi_{\mathbf 0}$.\hfill▪

Theorem 4.21. Suppose that $m_i \gt 0$ $(1\le i\le \mathsf k$). Then ${\mathcal{F}}'$ is a Cartan subalgebra of ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$.

Proof. It remains to show that ${\mathcal{F}}'$ is regular. For this, let $A:=s_\mu u_a^M s_{\nu}^*\in {\mathcal{F}}'$ and $B:=s_\alpha u_a^N s_\beta ^*\in {\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$. Then

\begin{align*} B^*AB &=s_\beta u_{a^{-N}} s_\alpha^* s_\mu u_{a^M} s_{\nu}^*s_\alpha u_{a^N} s_\beta^* \\ &=s_\beta u_{a^{-N}} s_\mu s_\alpha^* u_{a^M} s_\alpha s_{\nu}^* u_{a^N} s_\beta^* \\ &=s_\beta s_\mu u_{a^{-N\mathfrak m^{d(\mu)}}} u_{a^{M\mathfrak m^{d(\alpha)}}} s_\alpha^* s_\alpha s_{\nu}^* u_{a^N} s_\beta^* \\ &=s_\beta s_\mu u_{a^{-N\mathfrak m^{d(\mu)}}} u_{a^{M\mathfrak m^{d(\alpha)}}} u_{a^{N\mathfrak m^{d(\nu)}}} s_{\nu}^* s_\beta^* \\ &=s_\beta s_\mu u_{a^{M\mathfrak m^{d(\alpha)}}} s_\nu^* s_\beta^* \text{(as}\ \mathfrak m^{d(\mu)}=\mathfrak m^{d(\nu)}\text{)}\\ &\in {\mathcal{F}}'. \end{align*}

Therefore ${\mathcal{F}}'$ is regular.

Let G be a discrete (countable) group. A subgroup $S\subseteq G$ is called immediately centralizing if, for every $g\in G$, we either have $\{xgx^{-1}: x\in S\}=\{g\}$ or $\{xgx^{-1}: x\in S\}$ is infinite. This definition is slightly different from the one used in [Reference Duwenig, Gillaspy, Norton, Reznikoff and Wright22] but mentioned in [Reference Duwenig20] and [Reference Duwenig, Gillaspy and Norton21]. Thanks to Anna Duwenig and Rachael Norton for some discussion.

Theorem 4.22. ${\mathcal{F}}'$ is a Cartan subalgebra of ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$.

Proof. Let $G:=\langle a, {\mathbf{x}}_i: a{\mathbf{x}}_i={\mathbf{x}}_i a^{m_i}, 1\le i\le \mathsf k\rangle$. Then it it easy to see that ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}\cong \mathrm{C}^*(G)$ via $u_a\mapsto a$ and $s_{{\mathbf{x}}_i} \mapsto {\mathbf{x}}_i$. By [Reference Li and Yang34], ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$ is amenable and so is $\mathrm{C}^*(G)$. Thus ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}\cong \mathrm{C}^*(G)\cong \mathrm{C}^*_{\text r}(G)$.

Let $S:=\{\mu a^n \nu^{-1}: \mathfrak m^{d(\mu)}=\mathfrak m^{d(\nu)}, n\in {\mathbb{Z}}\}$. Similar to the proof of theorem 4.21, one can easily show that S is a normal subgroup of G. Also, analogous to the proof of lemma 4.18, one can show that, for $\alpha a^k \beta^{-1}\in G$, if the set $\{(\mu a^n \nu^{-1})(\alpha a^k \beta^{-1})(\nu a^{-n} \mu^{-1}): \mu, \nu \in \Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m), n\in {\mathbb{Z}}\}$ is not a singleton, then it has to be infinite. Indeed,

\begin{align*} (\mu a^n \nu^{-1})(\alpha a^k \beta^{-1})(\nu a^{-n} \mu^{-1}) &= (\mu' a^{n'} \nu'^{-1})(\alpha a^k \beta^{-1})(\nu' a^{-n'} \mu'^{-1})\\ &\iff n \mathfrak{m}^{d(\mu')}=n' \mathfrak{m}^{d(\mu)}. \end{align*}

Hence S is immediately centralizing. By [Reference Duwenig, Gillaspy and Norton21, Theorem 3.1], $\mathrm{C}^*_{\text r}(S)$ is Cartan in $\mathrm{C}^*_{\text r}(G)$. Therefore ${\mathcal{F}}'$ is Cartan in ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$.

Remark 4.23. Notice that, since $\Lambda_{\mathbb{ 1}_{\mathsf k}}$ has a unique infinite path, every triple $(\mu, a^n, \nu)$ is cycline. So the cycline subalgebra of ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$ coincides with ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}$ and does not provide much information of the canonical Cartan subalgebra ${\mathcal{F}}'$ in general.

4.5. The spectrum of ${\mathcal{F}}$

We end this paper by computing the spectrum of ${\mathcal{F}}$ to connect with Furstenberg’s $\times p, \times q$ conjecture in the viewpoint of [Reference Brownlowe, Ramagge, Robertson and Whittaker9, Reference Furstenberg25]. Let $1\le p_1, \ldots, p_n\in {\mathbb{N}}$ and

\begin{equation*} \varphi: {\mathbb{T}}\to {\mathbb{T}}, \ z\mapsto z^{p_1\cdots p_n}. \end{equation*}

Then the inverse limit

\begin{equation*} \varprojlim({\mathbb{T}}, \varphi):=\left\{(x_n)_{n\in {\mathbb{N}}}\in \prod_{n\in {\mathbb{N}}} {\mathbb{T}}: x_n =\varphi(x_{n+1}) \text{for all }n \in {\mathbb{N}}\right\} \end{equation*}

is a solenoid, denoted as $S_{p_1\cdots p_n}$.

Let $\mathfrak{e}:={\mathbf{x}}_1\cdots {\mathbf{x}}_{\mathsf k}$, the unique path in $\Lambda_{\mathbb{ 1}_{\mathsf k}}$ of degree $\mathbb{ 1}_{\mathsf k}$. For $n \in {\mathbb{N}}$, we have

\begin{align*} {\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}}&= \overline{\text{span}}\{s_{\mathfrak{e}^n} u_{a^m} s_{\mathfrak{e}^n}^* | \ m \in {\mathbb{Z}} \},\\ {\mathcal{F}} &= \overline{\text{span}}\{s_{\mathfrak{e}^n} u_{a^m} s_{\mathfrak{e}^n}^* | \ n \in {\mathbb{N}}, m \in {\mathbb{Z}} \}=\overline{\bigcup_{n\in {\mathbb{N}}}{\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}}}. \end{align*}

Note that for any $n \in {\mathbb{N}}$, $s_{\mathfrak{e}^n} u_a s_{\mathfrak{e}^n}^*$ is a unitary that generates ${\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}}$. Then one can see that there is an isomorphism $\psi_n:{\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}} \to {\mathrm{C}}({\mathbb{T}})$.

Let $\mathfrak M:=\prod_{i=1}^{\mathsf k} m_i$.

Proposition 4.24. Consider the subalgebras ${\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}}$ along with the inclusions $\varphi_n: {\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}} \hookrightarrow {\mathcal{F}}_{(n+1)\mathbb{ 1}_{\mathsf k}}$ given by $\varphi_n(s_{\mathfrak{e}^n} u_{a^p} s_{\mathfrak{e}^n}^*) = s_{\mathfrak{e}^{n+1}} u_{a^{p\mathfrak M}} s_{\mathfrak{e}^{n+1}}^*$. Then ${\mathcal{F}} = \varinjlim\limits_{n\to \infty} {\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}}$, and the spectrum of ${\mathcal{F}}$ is homeomorphic to $S_{\mathfrak M}$.

Proof. Notice that

\begin{equation*} s_{\mathfrak{e}^n} u_{a^p} s_{\mathfrak{e}^n}^* = s_{\mathfrak{e}^n} s_{\mathfrak{e}}s_{\mathfrak{e}}^* u_{a^p} s_{\mathfrak{e}^n}^* = s_{\mathfrak{e}^{n+1}} u_{a^{p\mathfrak M}} s_{\mathfrak{e}^{n+1}}^*. \end{equation*}

This shows that φn is indeed an inclusion of C*-algebras. Since the union $\bigcup_{n=0}^{\infty} {\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}}$ is dense in ${\mathcal{F}}$ (actually they are equal), we have that ${\mathcal{F}}$ is isomorphic to the direct limit of $({\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}},\varphi_n)$ (see [Reference Li and Yang37, Remark 6.1.3]).

Due to [Reference Scarparo45, Theorem 2], the spectrum of ${\mathcal{F}}$ is the projective limit of the spectra of the subalgebras ${\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}}$, with the maps $\phi_{n+1}:\widehat{{\mathcal{F}}_{(n+1)\mathbb{ 1}_{\mathsf k}}} \rightarrow \widehat{{\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}}}$ which induce the maps φn. However, we will work with an isomorphic direct system in order to make things more concrete. Observe that we have an isomorphism ψn between ${\mathcal{F}}_{n\mathbb{ 1}_{\mathsf k}}$ and ${\mathrm{C}}({\mathbb{T}})$ that sends the element $s_{\mathfrak{e}^n} a s_{\mathfrak{e}^n}^* \in {\mathcal{F}}_n$ to the function $f(z) = z$ in ${\mathrm{C}}({\mathbb{T}})$, which we will just denote by z (note that z is a unitary element that generates ${\mathrm{C}}({\mathbb{T}})$ ). Let $\varphi'_{n}: {\mathrm{C}}({\mathbb{T}}) \rightarrow {\mathrm{C}}({\mathbb{T}})$ be the map defined by sending the function z to $z^{\mathfrak M}$. Then by a direct calculation the following diagram commutes:

By [Reference Scarparo45, Proposition 2], ${\mathcal{F}}$ is then isomorphic to the direct limit of the system $({\mathrm{C}}({\mathbb{T}}), \varphi'_{n,n+1})$. We now observe that homeomorphism $\rho:{\mathbb{T}} \rightarrow {\mathbb{T}}$ defined by $\rho(z) = z^{\mathfrak M}$ induces the maps $\varphi'_n:{\mathrm{C}}({\mathbb{T}})\rightarrow {\mathrm{C}}({\mathbb{T}})$, and so the spectrum ${\mathcal{F}}$ is homeomorphic to the projective limit of

\begin{equation*} {\mathbb{T}} \xleftarrow{\rho} {\mathbb{T}} \xleftarrow{\rho} {\mathbb{T}} \xleftarrow{\rho} {\mathbb{T}} \xleftarrow{\rho} \ldots \end{equation*}

which is precisely $S_{\mathfrak M}$.\hfill▪

Remark 4.25. One can show that ${\mathcal{O}}_{\Lambda(\mathbb{ 1}_{\mathsf k},\mathfrak m)}\cong {\mathcal{F}} \lt imes {\mathbb{Z}}^{\mathsf k}\cong {\mathrm{C}}(S_{\mathfrak M}) \lt imes {\mathbb{Z}}^{\mathsf k}$. In fact, the action of ${\mathbb{Z}}^{\mathsf k}$ on ${\mathcal{F}}$ is given by

\begin{equation*} \alpha: {\mathbb{Z}}^{\mathsf k}\to \operatorname{Aut}{\mathcal{F}}, \ \alpha_{\mathbf n}(A)= s_\nu A s_\nu^*, \end{equation*}

where ν is the unique path in $\Lambda_{\mathbb{ 1}_{\mathsf k}}$ of degree $\mathbf n$.

Acknowledgements

Some results in this paper were presented at COSy 2023 and the workshop ‘Groups and Group Actions’ in Thematic Program on Operator Algebras and Applications in 2023. The second author is very grateful to the organizers for the invitations and providing great opportunities to present our results. Also, thanks go to Boyu Li for some discussion at the early stage of this paper, and the anonymous referee for careful reading.

R.V. was partially supported by Queen Elizabeth II Graduate Scholarship in Science and Technology (QEII-GSST), and D.Y. was partially supported by an NSERC Discovery Grant.

References

Adjan, S. I.. Defining Relations and Algorithmic Problems for Groups and Semigroups, English translation of XXXVIII 357 by M. Greendlinger, Amer. Math. Soc., Providence, RI, 1967. Proceedings of the Steklov Institute of Mathematics, No. 85 (1966), .Google Scholar
an Huef, A., Laca, M., Raeburn, I. and Sims, A.. KMS states on the C*-algebra of a higher-rank graph and periodicity in the path space. J. Funct. Anal. 268 (2015), 18401875.10.1016/j.jfa.2014.12.006CrossRefGoogle Scholar
an Huef, A., Nucinkis, B., Sehnem, C. and Yang, D.. Nuclearity of semigroup C*-algebras. J. Funct. Anal. 280 (2021), 1–46.10.1016/j.jfa.2020.108793CrossRefGoogle Scholar
Barlak, S., Omland, T. and Stammeier, N.. On the K-theory of C*-algebras arising from integral dynamics. Ergodic Theory Dynam. Systems. 38, 832862.10.1017/etds.2016.63CrossRefGoogle Scholar
Bartholdi, L., Grigorchuk, R. and Nekrashevych, V.. From Fractal Groups to Fractal sets. (Erwin Schrödinger International Institute for Mathematical Physics, 2002).Google Scholar
Bratteli, O. and Robinson, D. W.. Operator Algebras and Quantum Statistical mechanics. 2, Equilibrium states. Models in Quantum Statistical Mechanics. , (Springer-Verlag, Berlin, 1997).Google Scholar
Brown, J. H., Nagy, G., Reznikoff, S., Sims, A. and Williams, D. P.. Cartan sub-algebras in C*-algebras of Hausdorff étale groupoids. Integral Equations Operator Theory. 85 (2016), 109126.10.1007/s00020-016-2285-2CrossRefGoogle Scholar
Brownlowe, N., Larsen, N., Ramagge, J. and Stammeier, N.. C*-algebras of right LCM monoids and their equilibrium states. Trans. Amer. Math. Soc. 373 (2020), 52355273.10.1090/tran/8097CrossRefGoogle Scholar
Brownlowe, N., Ramagge, J., Robertson, D. and Whittaker, M.. Zappa-szép products of semigroups and their C*-algebras. Journal of Functional Analysis. 266 (2014), 39373967.10.1016/j.jfa.2013.12.025CrossRefGoogle Scholar
Bruce, C. and Scarparo, E.. A tracial characterization of Furstenberg’s $\times p, \times q$ conjecture. Canad. Math. Bull. 67 (2024), 244256.10.4153/S0008439523000693CrossRefGoogle Scholar
Carlsen, T. M., Ruiz, E., Sims, A. and Tomforde, M.. Reconstruction of groupoids and C*-rigidity of dynamical systems. Adv. Math. 390 (2021), .10.1016/j.aim.2021.107923CrossRefGoogle Scholar
Chen, C. and Li, X.. Semigroup C*-algebras arising from graphs of monoids. Int. Math. Res. Not. IMRN. 2023 (2023), 1760017655.10.1093/imrn/rnac332CrossRefGoogle Scholar
Clark, L., an Huef, A. and Raeburn, I.. Phase transition on the Toeplitz algebra of Baumslag-Solitar semigroups. Indiana Univ. Math. J. 65 (2016), 21372173.Google Scholar
Connes, A. and Marcolli, M.. Noncommutative geometry, Quantum Fields and Motives. , (Hindustan Book Agency, Providence, RI; New Delhi, 2008).Google Scholar
Davidson, K. R.. C*-Algebras by example, Fields Inst Monogr. 6. , (American Mathematical Society, Providence, RI, 1996).Google Scholar
Davidson, K. R., Power, S. and Yang, D.. Atomic representations of rank 2 graph algebras. J. Funct. Anal. 255 (2008), 819853.10.1016/j.jfa.2008.05.008CrossRefGoogle Scholar
Davidson, K. R., Power, S. and Yang, D.. Dilation theory for rank 2 graph algebras. J. Operator Theory. 63 (2010), 245270.Google Scholar
Davidson, K. R. and Yang, D.. Periodicity in rank 2 graph algebras. Canad. J. Math. 61 (2009), 12391261.10.4153/CJM-2009-058-0CrossRefGoogle Scholar
Davidson, K. R. and Yang, D.. Representations of higher rank graph algebras. New York J. Math. 15 (2009), 169198.Google Scholar
Duwenig, A.. ECNU-Cartan, private communication.Google Scholar
Duwenig, A., Gillaspy, E. and Norton, R.. Analyzing the Weyl construction for dynamical Cartan subalgebras. Int. Math. Res. Not. IMRN. 2022 (2022), 1572115755.10.1093/imrn/rnab114CrossRefGoogle Scholar
Duwenig, A., Gillaspy, E., Norton, R., Reznikoff, S. and Wright, S.. Cartan subalgebras for non-principal twisted groupoid C*-algebras. J. Funct. Anal. 279 (2020), .10.1016/j.jfa.2020.108611CrossRefGoogle Scholar
Exel, R. and Pardo, E.. Self-similar graphs, a unified treatment of Katsura and Nekrashevych ${\rm} \mathrm{C}^*$-algebras. Adv. Math. 306 (2017), 10461129.10.1016/j.aim.2016.10.030CrossRefGoogle Scholar
Fowler, N. J. and Sims, A.. Product systems over right-angled Artin semigroups. Trans. Amer. Math. Soc. 354 (2002), 14871509.10.1090/S0002-9947-01-02911-7CrossRefGoogle Scholar
Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory. 1 (1967), 149.10.1007/BF01692494CrossRefGoogle Scholar
Huang, H. and Wu, J.. Ergodic invariant states and irreducible representations of crossed product C*-algebras. J. Operator Theory. 78 (2017), 159172.10.7900/jot.2016jun11.2141CrossRefGoogle Scholar
Johnson, A.. Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers. Israel J. Math. 77 (1992), 211240.10.1007/BF02808018CrossRefGoogle Scholar
Katsura, T.. A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras. IV. Pure in_niteness. J. Funct. Anal. 254 (2008), 11611187.10.1016/j.jfa.2007.11.014CrossRefGoogle Scholar
Katsura, T.. A construction of actions on Kirchberg algebras which induce given actions on their K-groups. J. Reine Angew. Math. 617 (2008), 2765.Google Scholar
Kumjian, A. and Pask, D.. Higher rank graph C*-algebras. New York J. Math. 6 (2000), 120.Google Scholar
Laca, M. and Raeburn, I.. Phase transitions on the Toeplitz algebra of the a_ne semigroup over the natural numbers. Adv. Math. 225 (2010), 643688.10.1016/j.aim.2010.03.007CrossRefGoogle Scholar
Laca, M., Raeburn, I., Ramagge, J. and Whittaker, M. F.. Equilibrium states on operator algebras associated to self-similar actions of groupoids on graphs. Adv. Math. 331 (2018), 268325.10.1016/j.aim.2018.03.030CrossRefGoogle Scholar
Li, B.. Wold decomposition on odometer semigroups. Proc. Roy. Soc. Edinburgh Sect. A. 152 (2022), 738755.10.1017/prm.2021.31CrossRefGoogle Scholar
Li, B. and Yang, D.. Wold decomposition and C*-envelopes of self-similar semigroup actions on graphs. J. Math. Anal. Appl. 537 (2024), . https://doi.org/10.1016/j.jmaa.2024.128395.CrossRefGoogle Scholar
Li, H. and Yang, D.. Boundary quotient $C^*$-algebras of products of odometers. Canad. J. Math. 71 (2019), 183212.10.4153/CJM-2017-034-5CrossRefGoogle Scholar
Li, H. and Yang, D.. KMS states of self-similar k-graph C*-algebras. J. Funct. Anal. 276 (2019), 37953831.10.1016/j.jfa.2019.03.003CrossRefGoogle Scholar
Li, H. and Yang, D.. Self-similar k-graph C*-algebras. Int. Math. Res. Not. IMRN. 15 (2021), 1127011305.10.1093/imrn/rnz146CrossRefGoogle Scholar
Li, H. and Yang, D.. The ideal structures of self-similar k-graph C*-algebras. Ergodic Theory Dynam. Systems. 41 (2021), 24802507.10.1017/etds.2020.52CrossRefGoogle Scholar
Li, X.. Semigroup C*-algebras and amenability of semigroups. J. Funct. Anal. 262 (2012), 43024340.10.1016/j.jfa.2012.02.020CrossRefGoogle Scholar
Murphy, G. J.. C*-Algebras and Operator Theory. (Academic Press, 2004).Google Scholar
Nekrashevych, V.. Cuntz-Pimsner algebras of group actions. J. Operator Theory. 52 (2004), 223249.Google Scholar
Nekrashevych, V.. Self-Similar Groups. , (American Mathematical Society, Providence, RI, 2005).10.1090/surv/117CrossRefGoogle Scholar
Nekrashevych, V.. C*-algebras and self-similar groups. J. Reine Angew. Math. 630 (2009), 59123.Google Scholar
Rudolph, D.. $\times 2, \times 3$ invariant measures and entropy. Ergod. Th. and Dynam. Syst. 10 (1990), 395406.10.1017/S0143385700005629CrossRefGoogle Scholar
Scarparo, E.. A torsion-free algebraically C*-unique group. Rocky Mountain J. Math. 50 (2020), 18131815.10.1216/rmj.2020.50.1813CrossRefGoogle Scholar
Serre, J. -P.. Trees. Translated From the French by John Stillwell. (Springer-Verlag, Berlin-New York, 1980).Google Scholar
Spielberg, J.. C*-algebras of categories of paths associated to the Baumslag-Solitar groups. J. London Math. Soc. 86 (2012), 728754.10.1112/jlms/jds025CrossRefGoogle Scholar
Takeda, Z.. Inductive limit and infinite direct product of operator algebras. Tohoku Mathematical Journal. 7 (1955), 12.10.2748/tmj/1178245105CrossRefGoogle Scholar
Yang, D.. Endomorphisms and modular theory of 2-graph C*-algebras. Indiana Univ. Math. J. 59 (2010), 495520.10.1512/iumj.2010.59.3973CrossRefGoogle Scholar
Yang, D.. Type III von Neumann algebras associated with 2-graphs. Bull. Lond. Math. Soc. 44 (2012), 675686.10.1112/blms/bdr132CrossRefGoogle Scholar
Yang, D.. Cycline subalgebras of k-graph C*-algebras. Proc. Amer. Math. Soc. 144 (2016), 29592969.10.1090/proc/12939CrossRefGoogle Scholar
Yang, D.. The interplay between k-graphs and the Yang-Baxter equation. J. Algebra. 451 (2016), 494525.10.1016/j.jalgebra.2016.01.001CrossRefGoogle Scholar