Hostname: page-component-6bb9c88b65-bw5xj Total loading time: 0 Render date: 2025-07-19T22:48:47.023Z Has data issue: false hasContentIssue false

New marine reservoir effect corrections for coasts of Mexico

Published online by Cambridge University Press:  03 July 2025

Maikel Díaz-Castro*
Affiliation:
Instituto Superior de Tecnología y Ciencias Aplicadas, Universidad de la Habana, Ave. Salvador Allende y Luaces, Plaza de la Revolución, Cuba
María Rodríguez-Ceja
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510, Ciudad de México, México
Corina Solís
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510, Ciudad de México, México
Luis Álvarez-Lajonchere
Affiliation:
Museo de Historia Natural Felipe Poey. Facultad Biología. Universidad de la Habana, U.H., San Lazaro y Calle L, CP 10400, Havana, Cuba
*
Corresponding author: Maikel Díaz-Castro; Email: mikefncu@gmail.com

Abstract

Radiocarbon (14C) activity in aquatic environments is usually different from that of the atmosphere, the result being that organisms that grow in these different environments will have different 14C ages, even though they are contemporary. This age offset in marine samples is known as the “marine reservoir effect.” The marine calibration curve takes this effect into account as a global approximation, but local variations due to ocean dynamics and other factors must be individually studied and corrected for. With a littoral of more than 11,000 km and a great interest in dating malacological marine samples, Mexico has scarce local reservoir effect studies. Most of the available data come from studies done in the 1960s and 1990s. In this study, we present new reservoir effect corrections for four sites in the Pacific Ocean with positive ΔR values as expected, and one from the Caribbean Sea with a negative average value of ΔR. The results were obtained by dating known-age shells from the malacological collection of the Natural History Museum Felipe Poey, in Havana, Cuba. This new data will be useful to do more precise reservoir effect corrections to malacological samples of the region, with special interest in contexts where it is difficult to date other kinds of organic samples, due to difficulties in their preservation.

Information

Type
Conference Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Selected Papers from the 2nd Latin American Radiocarbon Conference, Mexico City, 4–8 Sept. 2023

References

Abbott, RT and Morris, PA (2001) A field guide to shells: Atlantic and Gulf coasts and the West Indies. Houghton Mifflin Harcourt.Google Scholar
Alves, EQ, Macario, K, Ascough, P and Bronk Ramsey, C (2018) The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms, and prospects. Reviews of Geophysics 56(1), 278305. doi: 10.1029/2017RG000588.CrossRefGoogle Scholar
Athié, G, Candela, J, Sheinbaum, J, Badan, A and Ochoa, J (2011) Yucatán Current variability through the Cozumel and Yucatán channels. Ciencias Marinas 37(4a), 471492.10.7773/cm.v37i4A.1794CrossRefGoogle Scholar
Berger, R, Taylor, RE and Libby, WF (1966) Radiocarbon content of marine shells from the California and Mexican west coast. Science 153, 864866.10.1126/science.153.3738.864CrossRefGoogle ScholarPubMed
Dawson, EY (1951) A further study of upwelling and associated vegetation along Pacific Baja California, Mexico. Journal of Marine Research 10(1).Google Scholar
Delgadillo-Hinojosa, FV, Camacho-Ibar, MA, Huerta-Díaz, V, Torres-Delgado, P, Pérez-Brunius, L, Lares, SG, Marinone, JA, Segovia, JL, Peña-Manjarrez, E, García-Mendoza R and Castro R (2015) Seasonal behavior of dissolved cadmium and Cd/PO4 ratio in Todos Santos Bay: A retention site of upwelled waters in the Baja California peninsula, Mexico. Marine Chemistry 168, 3748.10.1016/j.marchem.2014.10.010CrossRefGoogle Scholar
Díaz, M, Macario, KD, Gomes, PRS, Álvarez-Lajonchere, L, Aguilera, O and Alves, EQ (2017) Radiocarbon marine reservoir effect on the northwestern coast of Cuba. Radiocarbon 59(2), 333341.10.1017/RDC.2016.59CrossRefGoogle Scholar
Douka, K, Higham, TF and Hedges, RE (2010) Radiocarbon dating of shell carbonates: Old problems and new solutions. Munibe Suplemento 31, 1827.Google Scholar
Druffel, EM (1980) Radiocarbon in annual coral rings of Belize and Florida. Radiocarbon 22(2), 363371.10.1017/S0033822200009656CrossRefGoogle Scholar
Frantz, BR, Kashgarian, M, Coale, KH and Foster, MS (2000) Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnology and Oceanography 45, 17731777.10.4319/lo.2000.45.8.1773CrossRefGoogle Scholar
Gaudinski, JB, Trumbore, SE, Davidson, EA and Zheng, S (2000) Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51, 3369.10.1023/A:1006301010014CrossRefGoogle Scholar
Goodfriend, GA and Flessa, KW (1997) Radiocarbon reservoir ages of the Gulf of California: Roles of upwelling and flow from the Colorado River. Radiocarbon 39, 139148.10.1017/S0033822200051985CrossRefGoogle Scholar
Greer, L, Clark, T, Waggoner, T, Busch, J, Guilderson, TP, Wirth, K, Zhao, J and Curran, HA (2020) Coral Gardens Reef, Belize: A refugium in the face of Caribbean-wide Acropora spp. coral decline. Plos One 15(9), e0239367.10.1371/journal.pone.0239267CrossRefGoogle ScholarPubMed
Hadden, CS, Hutchinson, I and Martindale, A (2023) Dating marine shell: A guide for the wary North American archaeologist. American Antiquity 88(1), 6278.10.1017/aaq.2022.82CrossRefGoogle Scholar
Heaton, TJ, Köhler, P, Butzin, M, Bard, E, Reimer, RW, Austin, WE, Bronk Ramsey, C, Grootes, PM, Hughen, KA, Kromer, B, Reimer, PJ, Adkins, J, Bueke, A, Cook, MS, Olsen, J and Skinner, LC (2020) Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62(4), 779820.10.1017/RDC.2020.68CrossRefGoogle Scholar
Hogg, A, Higham, T and Dahm, J (1997) 14C dating of modern marine and estuarine shellfish. Radiocarbon 40(2), 975984.10.1017/S0033822200018944CrossRefGoogle Scholar
Ingram, BL and Southon, JR (1996) Reservoir ages in eastern Pacific coastal and estuarine waters. Radiocarbon 38, 573582.10.1017/S0033822200030101CrossRefGoogle Scholar
Lluch-Cota, SE (2000) Coastal upwelling in the eastern Gulf of California. Oceanologica Acta 23(6), 731740.10.1016/S0399-1784(00)00121-3CrossRefGoogle Scholar
Mangerud, J (1972) Radiocarbon dating of marine shells including a discussion of the apparent age of recent shells from Norway. Boreas 1(1), 143172.10.1111/j.1502-3885.1972.tb00147.xCrossRefGoogle Scholar
Martínez Becerril, YB (2013) Efecto reservorio en caracoles del género Pachychilus provenientes del abrigo Santa Marta, Chiapas. Thesis, Licenciatura en Arqueología, Universidad Veracruzana, Facultad de Antropología.Google Scholar
O’Connor, S, Ulm, S, Fallon, SJ, Barha, MA and Loch, I (2010) Pre-bomb marine reservoir variability in the Kimberley region, Western Australia. Radiocarbon 52(2–3), 11581165.10.1017/S0033822200046233CrossRefGoogle Scholar
Reimer, PJ, McCormac, FG, Moore, J, McCormick, F and Murray, EV (2002) Marine radiocarbon reservoir corrections for the mid-to late Holocene in the eastern subpolar North Atlantic. The Holocene 12(2), 129135.10.1191/0959683602hl528rpCrossRefGoogle Scholar
Reimer, PJ and Reimer, RW (2001) A marine reservoir correction database and on-line interface. Radiocarbon 43(2A), 461463.10.1017/S0033822200038339CrossRefGoogle Scholar
Reimer, RW and Reimer, PJ (2016) An online application for ∆R calculation. Radiocarbon 59(5), 16231627.10.1017/RDC.2016.117CrossRefGoogle Scholar
Rosenberg, G (2009) Malacolog 4.1.1: A Database of Western Atlantic Marine Mollusca.Google Scholar
Ruiz, AA and Reyes Bonilla, H (2021) Characterization of food guilds of the class Gastropoda on the rocky coasts northeast of the Gulf of California. CICIMAR Oceánides 36(1–2), 3748.10.37543/oceanides.v36i1-2.262CrossRefGoogle Scholar
Ruppert, EE and Fox, RS (1988) Seashore Animals of the Southeast: A Guide to Common Shallow-Water Invertebrates of the Southeastern Atlantic Coast. University of South Carolina Press.Google Scholar
Russell, N, Cook, GT, Ascough, PL, Scott, EM and Dugmore, AJ (2011) Examining the inherent variability in ΔR: New methods of presenting ΔR values and implications for MRE studies. Radiocarbon 53(2), 277288.10.1017/S003382220005654XCrossRefGoogle Scholar
Sheinbaum, J, Candela, J, Badan, A and Ochoa, J (2002) Flow structure and transport in the Yucatan Channel. Geophysical Research Letters 29(3), 10–1.10.1029/2001GL013990CrossRefGoogle Scholar
Sigman, DM and Boyle, EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859869.10.1038/35038000CrossRefGoogle ScholarPubMed
Simanca, J, Ramírez, O, Fernandez, L, Arriaza, L, Rodas, L, Esponda, S, Garcia, R, Alburquerque, O and García, I (2012) Variability of marine currents in the Yucatan Channel: “Cuban Side.” Serie Oceanológica 10, 1–10.Google Scholar
Solís, C, Chávez-Lomelí, E, Ortiz, ME, Huerta, A, Andrade, E and Barrios, E (2014) A new AMS facility in Mexico. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 331, 233237.10.1016/j.nimb.2014.02.015CrossRefGoogle Scholar
Stuiver, M and Polach, H (1977) Reporting of 14C data. Radiocarbon 19(3), 355363.10.1017/S0033822200003672CrossRefGoogle Scholar
Stuiver, M, Pearson, G and Braziunas, T (1986) Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B), 9801021.10.1017/S0033822200060264CrossRefGoogle Scholar
Treinen-Crespo, C, Barbara, L, Villaescusa, JA, Schmidt, S, Pearson, A and Carriquiry, JD (2021) Revisiting the marine reservoir age in Baja California continental margin sediments using 14C and 210Pb dating. Quaternary Geochronology 66, 101178.10.1016/j.quageo.2021.101178CrossRefGoogle Scholar
Varela, R, Lima, FP, Seabra, R, Meneghesso, C and Gómez-Gesteira, M (2018) Coastal warming and wind-driven upwelling: A global analysis. Science of The Total Environment 639, 15011511.10.1016/j.scitotenv.2018.05.273CrossRefGoogle ScholarPubMed
Wacker, L, Fülöp, RH, Hajdas, I, Molnár, M and Rethemeyer, J (2013) A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 214217.10.1016/j.nimb.2012.08.030CrossRefGoogle Scholar
Wagner, AJ, Guilderson, TP, Slowey, NC and Cole, JE (2009) Pre-bomb surface water radiocarbon of the Gulf of Mexico and Caribbean as recorded in hermatypic corals. Radiocarbon 51, 947954.10.1017/S0033822200034020CrossRefGoogle Scholar
Ward, GK and Wilson, SR (1978) Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1), 1931.10.1111/j.1475-4754.1978.tb00208.xCrossRefGoogle Scholar
Zaytsev, O, Cervantes-Duarte, R, Montante, O and Gallegos-García, A (2003) Coastal upwelling activity on the Pacific shelf of the Baja California Peninsula. Journal of Oceanography 59(4), 489502.10.1023/A:1025544700632CrossRefGoogle Scholar