Hostname: page-component-cb9f654ff-hqlzj Total loading time: 0 Render date: 2025-08-24T11:58:43.714Z Has data issue: false hasContentIssue false

Colocalization of substance P and GABA in retinal ganglion cells: A computer-assisted visualization

Published online by Cambridge University Press:  02 June 2009

Daniel M. Caruso
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit
Michael T. Owczarzak
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit
Roberta G. Pourcho
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ganglion cells in the albino rat retina were retrogradely labeled with the fluorescent dye, diamidino-yellow, from the superior colliculus. Preembedding and postembedding immunocytochemical techniques were employed in conjunction with computer-assisted image processing to visualize SP- and GABA-immunoreactivity. Examination of flatmount and sectioned retinas revealed that approximately 3% of the ganglion cells projecting to the contralateral superior colliculus exhibit SP-immunoreactivity. Moreover, these cells were found to comprise a subpopulation of the GABA-immunoreactive cells projecting to the rat tectum.

Information

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Brecha, N., Johnson, D., Bolz, J., Sharma, S., Parnavelas, J.G. & Liberman, A.R. (1987). Substance P-immunoreactive retinal ganglion cells and their central axon terminals in rabbit. Nature 327, 155158.CrossRefGoogle ScholarPubMed
Brecha, N.C., Eldred, W., Kuljis, R.O. & Karten, H.J. (1984). Identification and localization of biologically active peptides in the vertebrate retina. In Progress in Retinal Research, Vol. 3, ed. Osborne, N. & Chader, G., pp. 185226. Oxford, England: Pergamon.Google Scholar
Caruso, D.M., Owczarzak, M.T., Goebel, D.J., Hazlett, J.C. & Pourcho, R.G. (1989). GABA immunoreactivity in ganglion cells of the rat retina. Brain Research 476, 129134.CrossRefGoogle ScholarPubMed
Ehrlich, D., Keyser, K.T. & Karten, H.J. (1987). Distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Gallus gallus). Journal of Comparative Neurology 266, 220233.CrossRefGoogle ScholarPubMed
Enestrom, S. & Hed, J. (1982). Combined immunomorphological examination of Epon embedded kidney biopsies. American Journal of Clinical Pathology 77, 249258.Google ScholarPubMed
Hayhaw, W.R., Sefton, A. & Webb, C. (1962). Primary optic centres in the rat in relation to the terminal distribution of the crossed and uncrossed optic nerve fibers. Journal of Comparative Neurology 118, 187216.Google Scholar
Hurd, L.B. & Eldred, W.D. (1989). Localization of GABA- and GAD-like immunoreactivity in the turtle retina. Visual Neuroscience 3, 920.CrossRefGoogle ScholarPubMed
Kuljis, R.O. & Karten, H.J. (1982). Laminar organization of peptidelike immunoreactivity in anuran optic tectum. Journal of Comparative Neurology 212, 188201.CrossRefGoogle ScholarPubMed
Kuljis, R.O., Krause, J.E. & Karten, H.J. (1984). Peptide-like immunoreactivity in anuran optic nerve fibers. Journal of Comparative Neurology 226, 222237.CrossRefGoogle ScholarPubMed
Linden, R. & Perry, V.H. (1983). Massive retinotectal projections in rats. Brain Research 272, 145149.CrossRefGoogle ScholarPubMed
Lund, R.D. (1965). Uncrossed visual pathways of hooded and albino rats. Science 149, 15061507.CrossRefGoogle ScholarPubMed
Lund, R.D., Land, P.W. & Boles, J. (1980). Normal and abnormal uncrossed retinotectal pathways in rats: an HRP study in adults. Journal of Comparative Neurology 189, 711720.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1988 a). Colocalization of substance P and gamma-aminobutyric acid in amacrine cells of the cat retina. Brain Research 447, 164168.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1988 b). Substance P-like immunoreactive amacrine cells in the cat retina. Journal of Comparative Neurology 275, 542552.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Owczarzak, M.T. (1989). Distribution of GABA immunoreactivity in the cat retina: a light- and electron-microscopic study. Visual Neuroscience 2, 425435.CrossRefGoogle ScholarPubMed
Rieder, C.L. & Bowser, S.S. (1985). Correlative immunofluorescence and electron microscopy on the same section of epon-embedded material. Journal of Histochemistry and Cytochemistry 33(2), 165171.CrossRefGoogle ScholarPubMed
Vaney, D.I., Whitington, G.E. & Young, H.M. (1989). The morphology and topographic distribution of substance P-like immunoreactive amacrine cells in the cat retina. Proceedings of the Royal Society B (London) 237, 471488.Google ScholarPubMed
Yu, B.C.-Y., Watt, C.B., Lam, D.M.K. & Fry, K.R. (1988). GABAergic ganglion cells in the rabbit retina. Brain Research 439, 376382.CrossRefGoogle ScholarPubMed
Zalutsky, R.A. & Miller, R.F. (1990). The physiology of substance P in the rabbit retina. Journal of Neuroscience 10(2), 394402.CrossRefGoogle ScholarPubMed