We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that there exists some $\delta > 0$ such that, for any set of integers B with $|B\cap[1,Y]|\gg Y^{1-\delta}$ for all $Y \gg 1$, there are infinitely many primes of the form $a^2+b^2$ with $b\in B$. We prove a quasi-explicit formula for the number of primes of the form $a^2+b^2 \leq X$ with $b \in B$ for any $|B|=X^{1/2-\delta}$ with $\delta < 1/10$ and $B \subseteq [\eta X^{1/2},(1-\eta)X^{1/2}] \cap {\mathbb{Z}}$, in terms of zeros of Hecke L-functions on ${\mathbb{Q}}(i)$. We obtain the expected asymptotic formula for the number of such primes provided that the set B does not have a large subset which consists of multiples of a fixed large integer. In particular, we get an asymptotic formula if B is a sparse subset of primes. For an arbitrary B we obtain a lower bound for the number of primes with a weaker range for $\delta$, by bounding the contribution from potential exceptional characters.
In this paper, we prove a one level density result for the low-lying zeros of quadratic Hecke L-functions of imaginary quadratic number fields of class number 1. As a corollary, we deduce, essentially, that at least $(19-\cot (1/4))/16 = 94.27\ldots \%$ of the L-functions under consideration do not vanish at 1/2.
This chapter returns to more elementary mathematics, introducing Dirichlet, Hecke, and Artin L-functions. A proof of Dirichlet’s theorem on arithmetic progressions is given, by the method expounded by Serre; it would however be a shame to omit Dirichlet’s original method, which gave additional information and anticipated the analytic class number formulae. The two main generalisations of Dirichlet’s L-functions are then introduced: those of Hecke and Artin. Hecke’s main theorem is stated without proof: existence of an analytic continuation and a functional equation, and it is then explained how Artin and Brauer derived the same results for non-abelian L-functions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.