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Abstract

With models and research designs ever increasing in complexity, the foundational question of model
identification is more important than ever. The determination of whether or not a model can be fit at all or
fit to some particular data set is the essence of model identification. In this article, we pull from previously
published work on data-independent model identification applicable to a broad set of structural equation
models, and extend it further to include extremely flexible exogenous covariate effects and also to include
data-dependent empirical model identification. For illustrative purposes, we apply this model identification
solution to several small examples for which the answer is already known, including a real data example
from the National Longitudinal Survey of Youth; however, the method applies similarly to models that are
far from simple to comprehend. The solution is implemented in the open-source OpenMx package in R.
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1. Introduction

Model identification is a vitally important aspect of all model building. To the extent that vast swaths of
research depend on model building, these areas similarly depend on model identification. Informally,
a model is identified when the parameters of a model have unique estimates. When a model is not
identified, more than one set of parameter values—often infinitely many values—provide identical fit
to a set of data.

There are obvious practical problems that arise when a model is not identified, but there are
theoretical concerns as well. On the practical side, a model that is not identified might yield different
parameter estimates when subjected to repeated model fitting of the same model to the same data.
Similarly, the optimization method used for determining parameter estimates might produce extreme
and implausible values for some or all of the parameters. Likewise, standard errors that are valuable for
statistical inference might be missing, negative, or absurd values. Finally, the software might output the
often-dreaded, cryptic “Hessian is non-positive definite” message. For all of the previously-mentioned
practical problems, a non-identified model is not the only culprit, but it often stands in line among the
usual suspects.
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On the theoretical side, the question of model identification determines which models are even
possible to fit. Thus, some theoretical questions cannot be answered definitively because the model
that answers those questions is not identified. Furthermore, non-unique parameter estimates might
not be able to distinguish between competing theoretical explanations of data. The test of a theory
might depend on the parameters of a model which in turn depend on a research design that identifies
these parameters. Pragmatically, a researcher can plan their data collection design to ensure their
theoretically-inspired model is identified. Failure to take model identification into account during the
planning phases of research (grant writing, data collection, pre-registration, etc.) can lead to massive
wasted resources and slow the progress of scientific knowledge.

Previous work on model identification has allowed researchers across a wide array of social science
disciplines to build and fit models that test important research questions. Much of this work began in
econometrics with procedures for determining whether systems of linear and nonlinear equations could
be solved (Fisher, 1963, 1965; Koopmans, 1949; Wald, 1950) and culminating in a classic book on the
topic by Franklin Fisher (1976). Critically, this work was often limited to systems of equations involving
strictly observed variables and free parameters, with no latent variables or factors.

Along a separate track, identification procedures for latent variable factor models began with tests of
the convergence properties of iterative procedures for estimating these models (Jöreskog, 1967; Lawley
& Maxwell, 1963), and further developed into some inspection techniques for finding trade-offs between
pairs of parameters (Jöreskog, 1970, p. 247) and the number of restrictions necessary for identification
(Jöreskog, 1978, p. 456). Eventually, cross-pollination between economic, sociological, and psycholog-
ical statistics led to the development of a general model for covariances among multiple variables,
including latent variables (Duncan, 1966; Jöreskog, 1970, 1971, 1978; Jöreskog & Goldberger, 1975).
These models and their close relatives collectively became known as structural equation models (SEMs).

Today, SEMs are one commonly used tool for the development and testing of theories in social and
behavioral sciences. In his landmark SEM textbook, Bollen (1989) presented and developed a number of
identification rules for models without latent variables (p. 104), confirmatory factor models (p. 247), and
general SEMs (p. 332). However, these rules were far less specific for models with latent variables than
those without. In particular, no rule provided in this popular book was both necessary and sufficient for
identification for models with latent variables. A well-known necessary-but-not-sufficient identification
rule is what Bollen (1989) call the “t Rule”: namely, that the number of estimated free parameters in
an SEM must be less than the number of unique elements of the covariance matrix. In the parlance
of Rodgers (2019), the t Rule is a check for positive degrees of freedom, that there is enough statistical
capital (degrees of freedom) to “pay for” (estimate) the model. Although advances in SEM identification
have occurred (e.g., Davis, 1993; O’Brien, 1994; O’Brien, 1994; Reilly, 1995; Rigdon, 1995) and some
books cover this topic extremely well (e.g., Skrondal & Rabe-Hesketh, 2004; Wansbeek & Meijer, 2000)
modern SEM books and instruction continue to rely on a series of makeshift, incomplete identification
procedures (e.g., Little, 2024; Loehlin, 2004; Maruyama, 1998).

For far too long, identification of SEMs has been plagued by heuristics, half-truths, supposed deep
mysteries, and incomplete “rules of thumb.” The basic criterion for identification used in the present
article was first established over 70 years ago by Abraham Wald (1950), yet it is not widely known or
used for identification of SEMs. The present article provides an analytic solution to data-independent
model identification for completely general SEMs, and makes this solution available in the open-source
OpenMx (Neale et al., 2016) software. Moreover, we provide a solution for local model identification
of SEMs that has clear implications for empirical identification, and apply this solution both to several
common longitudinal model structures and to an empirical application on cognitive ability data from
the National Longitudinal Survey of Youth (NLSY).

Because a very large class of SEMs make parametric models of the multivariate Gaussian distribution,
model identification is actually a long-solved problem, yet the solution is not widely known or easily
available in commonly-used statistical software. Although publicizing this solution is not the only
contribution of the present work, it may be the most important. The new contributions of the present
work are threefold. (1) We broaden the SEM identification solution to models with a very general kind
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of exogenous covariate effect called definition variables. (2) We propose a new method for identification
depending on the pattern of observed and missing values in the data. Finally, (3) we provide an open-
source software implementation of the above identification methods, including a less-known previously
existing method that reports which parameters are not identified, if any.

The structure of this article is as follows. First, we provide a broad way of thinking about SEMs
that facilitates later procedures for model identification. Second, we describe the previously pub-
lished solution to local model identification for parametric models of the multivariate Gaussian
distribution. Third, we extend these previously published results to identify models with special
exogenous variables in the data—called definition variables—that arbitrarily alter model characteristics.
We implement both the previously published solution and its novel extension in the open source
OpenMx (Neale et al., 2016) R (R Core Team, 2023) package for extended SEMs as a function
called mxCheckIdentification(). Fourth, we use several classic models from longitudinal data
analysis to illustrate the model identification solution, emphasizing its strengths and limitations. Fifth
and finally, we apply this identification procedure to a model of cognitive development in the NLSY. In
this empirical illustration, we show that the standard method of local identification fails to account
for problems with empirical identification, but that a further extension of data-independent model
identification to some aspects of empirical identification is quite possible.

2. A general conception of SEMs

Broadly, an SEM is a parameterized model for a multivariate Gaussian distribution. That is, every SEM
implies a means vector μ(θ) and a covariance matrix Σ(θ) as functions of a vector of free parameters θ.
At various times and under varying traditions, different sets of matrices have been used to create μ(θ)
and Σ(θ). Then the matrices used to create μ(θ) and Σ(θ) are functions of the free parameters. Each
of these sets of matrices can be thought of as a modeling framework for SEM: a way to think about all
SEMs.

Examples of important sets of such matrices are the factor model, the linear structural components
(LISCOMP; Muthén & Satorra, 1995) model, and the reticular action model (RAM; McArdle &
McDonald, 1984), just to name a few.1 The factor model has Σ(θ) = ΛΨΛT +Θ for factor loadings
Λ, factor covariances Ψ, and residual covariances Θ. The LISCOMP model has Σ(θ) = Λ(I −B)−1Ψ
(I−B)−TΛT+Θ which extends the factor model with the B matrix of regression effects between factors.
Finally, the RAM has Σ(θ) = F(I−A)−1S(I−A)−TFTwhere F filters latent versus observed variables, A
contains all asymmetric relations (i.e., unidirectional regressions) between variables, and S contains all
symmetric relations (i.e., bidirectional variances and covariances) between variables. The means implied
by the factor model, the LISCOMP model, and RAM follow similar patterns to the implied covariances.

In each of these sets of matrices, the free parameters determine the matrices which in turn determine
the expected means and covariances. In the factor model, Λ, Ψ, and Θ are functions of free parameters
which create the model-implied means and covariances. The pattern is similar for the LISCOMP and
RAM sets as well. It can be useful to think of a chain of functions that maps free parameters to model-
implied means and covariances. In the factor model, θ→ (Λ,Ψ,Θ) → (μ,Σ). In the LISCOMP model,
θ→ (Λ,Ψ,B,Θ) → (μ,Σ). In RAM, θ→ (A,S,F) → (μ,Σ).

All of these sets of matrices are sufficiently general to specify any SEM. With regard to the model
identification approach we outline, the particular set of matrices is largely irrelevant. The key feature of
SEM identification is not that a particular set of matrices is used; it is not that any of these matrices have
some set of special characteristics or properties. Rather, the key feature is how the free parameters create
the model-implied means and covariances. If this mapping from free parameters to model-implied
moments has certain properties, then the SEM is identified.

1Note that the terminology commonly used is not particularly precise or formal. It would be more precise to refer to the
“factor set of matrices,” “LISCOMP set of matrices,” and the “RAM set of matrices” rather than the “factor model,” “LISCOMP
model,” and the “RAM,” but the gain in precision leads to exceedingly uncommon phrasing.
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Consider the mapping from the free parameters to the model-implied means and covariances.
Mathematically, we define f as in Equation (1).

f (θ) = ( μ(θ)
vech(Σ(θ)) ) (1)

That is, f (θ) is a function that maps the free parameters of an SEM to the combined vector of the
model-implied means and the unique elements of the model-implied covariance matrix (i.e., the half-
vectoriztion denoted by vech(⋅)). The property of the function f (θ) needed for local identification
of an SEM is the mapping from the free parameters to the model-implied means and covariances
must preserve the full dimension of the free parameters. This property is known as the rank criterion
for local identification (Bekker & Wansbeek, 2001; Wald, 1950). Although other ways of determining
identification exist (e.g., the existence of the inverse information matrix; Rothenberg, 1971), we focus
on the rank criterion for its ease of understanding, ease of computation, and highly useful diagnostics.

3. Identification identified

An intuitive understanding of model identification holds that each parameter of a model has a unique,
separable effect on the fit of the model, that no parameters can trade-off to create equivalent effects.
The official term for these parameter trade-offs is observational equivalence, a concept which is used to
formally define model identification. A model is identified when there are no observationally equivalent
sets of parameter values. Although the purpose of the present work is not a formal presentation of model
identification, Appendix A provides these more technical details.

For the present purposes, we can think about the function f (θ) in Equation (1) and how we might
investigate its properties. Consider nudging each free parameter and observing how the model-implied
means and covariances change in response. Nudge one free parameter and only the variances change;
nudge a different free parameter and two variances and several covariances change. We want each free
parameter to have its own special effect on the means and covariances that cannot be replicated by other
free parameters or combinations of them. This idea of nudging free parameters to find their effects on
the model provides the basis for understanding model identification.

Before proceeding, it is important to understand several subtypes of model identification The
subtypes of model identification most relevant to the present work are local identification, global
identification, and empirical identification. Local and global identification purely deal with the model
per se, whereas empirical identification depends on features of both the model and the data together.
For local identification, there are no observationlly equivalent parameter values only within some local
region—technically an open neighborhood—of parameter space, whereas for global identification, there
are no observationally equivalent parameter values across the entire parameter space. In empirical
identification, the model itself may identified, but it critically depends on certain features of the
data which might or might not be present. A model might be locally identified, but not globally
identified. However, any globally identified model must necessarily be locally identified. Because local
and global identification are features of the model and do not depend on the data, we call these kinds
of identification data-independent identification and we call empirical identification data-dependent
identification. Note that even a globally identified model might be empirically unidentified depending
on the data.

Due to theorems that have been proven elsewhere (originally Wald, 1950, p. 244, Theorem 3.3; see
Bekker et al., 1994 and Bekker & Wansbeek, 2001 for modern treatments; and see Rigdon, 1997 for a
brief review), we know that a model is locally identified at some particular set of values for the free
parameters θp if and only if the matrix of first derivatives of f at θp has full column rank. In essence,
this full column rank requirement means that any small change in the free parameters has a unique
and separable effect on the model-implied means and covariances: that no linear combination of free
parameters can trade off to produce the same resulting model-implied means and covariances as another
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linear combination of free parameters. Nudging each free parameter has a different effect from nudging
any other free parameter.

Suppose a model has p observed variables and J free parameters. Thus, there are I = p+p(p+1)/2
model-implied means and covariances. We will call these means and covariances the summary statistics.
Although the model-implied means and covariances are not technically statistics, we use the term
“model-implied summary statistics” to evoke their counterparts which are estimated from data, and
to not confuse them with the free parameters of a model. Because f (θ) maps J dimensions to I, the
matrix of first derivatives is called a Jacobian and has the general structure shown in Equation (2)

∂f (θ)
∂θ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂f1

∂θ1

∂f1

∂θ2
⋯ ∂f1

∂θJ
∂f2

∂θ1

∂f2

∂θ2
⋯ ∂f2

∂θJ
⋮ ⋮ ⋱ ⋮
∂fI

∂θ1

∂fI

∂θ2
⋯ ∂fI

∂θJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2)

where f (θ)i is the ith summary statistic, and θj is the jth free parameter. This Jacobian directly
instantiates the notion of nudging each free parameter and observing what effect is has on the summary
statistics. The jth column nudges the jth free parameter and records its effect on all of the summary
statistics, one for each row. The rank of the matrix in Equation (2) then must be equal to the number
of free parameters for a just-identified model and greater than the number of free parameters for an
identified model. If the derivative values are known, the rank of this Jacobian can be efficiently computed
with any rank-revealing QR decomposition (e.g., Lay, 2003, pp. 402–426).

The same theorems that derive the conditions for local identification via the rank of the Jacobian
show that the null space of the Jacobian yields the set of non-identified free parameters. Thus, the
Jacobian not only indicates whether or not a model is locally identified, but also indicates which free
parameters are not locally identified. Knowing which free parameters cannot be uniquely determined is
often hugely beneficial to researchers when debugging issues with model non-convergence or when
building preliminary models for which the identification is not fully understood by the researcher.
Again, if the derivative values in Equation (2) are known, then the null space is efficiently computed
by any of the many algorithms for the QR-decomposition.

Analytically computing the derivatives in Equation (2) requires either (a) symbolic matrix calculus
on a computer or (b) researcher knowledge of matrix calculus. For a set of simple SEMs, these derivatives
are known and can be computed analytically. For example, a simple version of the factor model has a
closed form identification reported by Bekker and colleagues (Bekker, 1986; Bekker & ten Berge, 1997).
However, the general case of any set of matrices combined in an arbitrary way to produce a set of
means and covariances is far from solved. An alternative strategy from closed-form analytic solutions
is to numerically compute all the derivatives required by Equation (2). Fortunately, the vast majority
of situations applied modelers face are very easy and relatively fast to compute numerically (e.g., with
Richardson extrapolation; see, Fornberg & Sloan, 1994). Therefore, we need not rely on the specific form
of the model or the structure of its free parameters. A custom-built identification method for specialized
sets of models might be faster and more efficient for those special cases (cf. Hunter et al., 2021), but the
numerical approach outlined here can determine the identification of a much broader class of models.

4. Identification generalized

Equations (1) and (2) were shown for the case of all continuous observed variables, a single group, and
without constraints, however the same methodology extends to all these cases.2 In the case of ordinal
variables, Hunter et al. (2023, Appendix B, p. 55) showed that ordinal variables require only a slight

2Bekker & Wansbeek (2001, pp. 151–153) calls these constraints “prior information.”
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alteration to the usual mean and covariances summary statistics by providing full analytic criteria for
identifying ordinal variable SEMs. Although a detailed description of ordinal variable identification
is beyond the scope of the present work, Hunter et al. (2023, Appendix B, pp. 55–58) provided full
mathematical derivations for this situation. We only state their conclusions here. Briefly, underlying
each ordinal variable, we assume there is an underlying continuous, latent, Gaussian3 variable. These
underlying continuous latent variables have no intrinsic scale and thus can be assumed without loss of
generality to be standard normal (i.e., with means of zero and variances of unity). This assumption does
not limit the researcher from choosing any of 13 possible families of scaling for ordinal variables in
their models that are not standard normal (see Hunter et al., 2023, p. 57 for details), although some
software limits these choices. To identify ordered categorical variables, thresholds that determine the
boundaries between ordinal responses must be added to the summary statistics.4 The thresholds can all
be gathered in a matrix T5. Thus, for ordinal variables the appropriate mapping between free parameters
and summary statistics is

f (θ) = ( vechs(Σ(θ))
vec(T(θ)) ) (3)

where vechs(⋅) is the strict half-vectorization that omits the diagonal elements of a matrix and vec(⋅) is
the full vectorization that concatenates all the elements of a matrix. The combination of some ordinal and
some continuous variables (Pritikin et al., 2018) can be handled by appropriately combining Equations
(1) and (3) such that continuous variables have means and variances included in the summary statistics
but ordinal variables have only covariances and thresholds.

Just as this method of identification applies to ordinal and continuous variables, it also applies
to models with constraints and multiple group models. Parameter equality constraints—where one
parameter appears in multiple model matrices—directly reduce the dimension of the free parameter
vector θ and require no special handling. For all other constraints, let c(θ) be a vector-valued function
of the free parameter vector (cf. Satorra & Bentler, 2001, p. 509). Each element of c(θ) is a univariate,
possibly nonlinear constraint function. Essentially, each univariate constraint acts as a new observed
statistic. So, the function for the summary statistics and the function for the constraints combine as in
Equation (4) (Magnus & Neudecker, 1988, pp. 334–336):

g(θ) = ( f (θ)
c(θ) ) (4)

Then the Jacobian is similarly the concatenation of the Jacobian for the summary statistics with respect
to the free parameters and the Jacobian of the constraint functions with respect to the free parameters
as in Equation (5):

∂g(θ)
∂θ

=
⎛
⎜⎜⎜
⎝

∂f (θ)
∂θ

∂c(θ)
∂θ

⎞
⎟⎟⎟
⎠

(5)

The rank of the matrix in Equation (5) then must be equal to the number of free parameters for a just-
identified model and greater than the number of free parameters for an identified model.

3If we add the requirement that each underlying latent variable is independent conditional on the conventional SEM
latent variables, then we are creating a probit model for the ordinal variables. However, this conditional independence is
not a requirement for identification: the underlying latent continuous variables can be mutually correlated. As Skrondal &
Rabe-Hesketh (2004, Chapter 5) noted, univariate probit and logit models for the underlying latent variables have different
identification requirements.

4Alternatively and equivalently, the observed proportion of each response category can be added to the observed statistics
(see Hunter et al., 2023, p. 57, Equation (52) for the relevant equivalence in the Jacobian)

5To allow different variables to have a differing number of thresholds, this matrix may be jagged.

https://doi.org/10.1017/psy.2025.19 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.19


424 Hunter et al.

A similar concatenation process solves the multiple group SEM problem. If f 1(θ) is the mapping
from all the free parameters across all groups to the summary statistics for group 1 and f 2(θ) is the
mapping from all the free parameters across all groups to the summary statistics of group 2, then the
new function g(θ) simply combines these as in Equation (6):

g(θ) =
⎛
⎜
⎝

f 1(θ)
f 2(θ)
c(θ)

⎞
⎟
⎠

(6)

The Jacobian of g(θ) in Equation (6) follows the same pattern as has been shown in Equations 2 and 5.
For completeness, the Jacobian is shown in Equation (7). Of course, this two-group situation extends to
arbitrarily many groups.

∂g(θ)
∂θ

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∂f 1(θ)
∂θ

∂f 2(θ)
∂θ

∂c(θ)
∂θ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(7)

The mathematical and theoretical procedures for SEM identification which we reviewed above have
been known for quite some time. With modern computing, the identification of even large SEMs
of many variables and many parameters presents no computational difficulty. No doubt, the lack of
software tools for identification of these models has impeded progress in the social and behavioral
sciences. The OpenMx (Neale et al., 2016) software has included model identification procedures for
single and multiple-group SEMs in its mxCheckIdentification() function since version 2.2.2
in 2015, with support for constraints added in version 2.13.2 in 2019. We next consider a novel extension
of model identification newly added to OpenMx in version 2.21.12 in 2024.

5. Definition variables

The material presented so far is not novel. Although not widely known, the rank of the Jacobian criterion
for local model identification has been known in the mixture modeling and SEM contexts for decades
(Bekker et al., 1994; Bollen & Bauldry, 2010; Goodman, 1974). A novel contribution of the present
work is extending this criterion to the case of so-called definition variables, a special kind of exogenous
covariate that can influence the means and/or the covariances of an SEM in quite general ways.

A definition variable is a special kind of exogenous variable that is allowed to modify any part of
a model. The term “definition variable” comes from their original software implementation in classic
Mx (Neale, 1995) which used #define commands to define the dimensions of model matrices, and
a Definition_variables command to define some or all of the values within matrices in its
syntax. Thus, definition variables were variables that defined the model itself, rather than variables that
were modeled. In their simplest form, a definition variable replaces a free parameter as an element of
a matrix that leads via some algebraic combination to the model-implied means and covariances. For
example, instead of a free parameter in the factor loadings matrix of a factor model, an element of the
data could replace that factor loading and vary for every row of data in whatever way the data vary.
Precisely this substitution allows for individually-varying times of measurement in latent growth curve
models (Mehta & West, 2000). Thus, definition variables allow the data to modify the model, potentially
for every row of data.

The notion of a definition variable in SEMs dates back to the mid-1990s or earlier when they
appeared in the Mx statistical software (Neale, 1995). At the time, the primary application of definition
variables was facilitating certain kinds of models in behavior genetics that assess gene-by-environment
interaction (e.g., Martin et al., 1987) and sex-limitation (Neale & Cardon, 1992; Neale & Maes, 2004,
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pp. 211–229). Since that time, definition variables have been applied to examine multivariate gene-by-
environment interactions (Neale et al., 2006), higher-order gene-by-environment interactions (Purcell,
2002), person-specific times of measurement in latent growth curves (Mehta & West, 2000), and
moderating dynamics in multivariate, latent time series models called state space models (Adolf et al.,
2017; Hunter, 2018).

Limited versions of definition variables allow several SEM software programs to include individually-
varying times at which measurement occurred in latent growth curve models. These individually-
varying times allow SEMs to replicate design matrices for the fixed effects and random effects in linear
mixed effects models (Laird & Ware, 1982). Similarly, many software programs for SEM allow for
exogenous covariates to linearly influence the means while having no effect on the covariances (e.g.,
Muthén, 1983, Equations (6)–(13), pp. 45–46). For example, part of the LISCOMP model is often
stated as

η = Bη+Γx+ ζ (8)

where x is a vector of exogenous, fixed covariates, not modeled random variables. In Equation (8), x acts
as a limited version of a vector of definition variables. Another limited version of definition variables
is used in “moderated nonlinear factor analysis” (Bauer, 2017; Bauer & Hussong, 2009; Curran et al.,
2014), which allows factor loadings to vary as linear functions of definition variables.

The most general version of definition variables allows any matrix in an SEM to vary as any function
of both free parameters and definition variables. Replicating the classic Mx software (Neale, 1995), the
OpenMx software (Boker et al., 2011; Neale et al., 2016) allows this behavior and therefore identification
of these models is also a matter of concern. Previous research has not solved the problem of model
identification when there are definition variables, nor—to our knowledge—ever even attempted a
systematic approach to its solution.

6. Identification with definition variables

The way that SEMs with definition variables are identified relates to the conceptual origins of definition
variables themselves. Note that in the classic Mx software definition variables arose for two broad kinds
of purposes. First, definition variables allowed for a kind of “multilevel” model (Neale, 1995, p. 20;
Neale et al., 1999, p. 46). That is, they allowed the parameters of the model to differ for each row of data,
thereby creating row-specific effects akin to random effects in a multilevel model. Importantly, these
row-specific effects lacked the distributional assumptions and corresponding computational efficiency
of true multilevel models, yet they aimed at a similar purpose of accounting for heterogeneity and
dependence across units of analysis.6 Second, definition variables allowed for programmatically creating
models with a potentially vast number of groups: “effectively as many groups as there are cases in the
data file” (Neale et al., 1999, p. 46). That is, each combination of definition variable values could be
equivalently treated as a separate group in a multigroup SEM. Identification of SEMs with definition
variables proceeds from this multigroup perspective.

To identify an SEM with definition variables, start with the assumption that rows of data are
independent. Then definition variables give different summary statistics for each row of data. Rather,
definition variables give different summary statistics for each unique combination of definition variable
values. The appropriate Jacobian of the mapping between the free parameters and the summary statistics
is then extended for each unique combination of definition variable values. An SEM with definition
variables is locally identified when the extended Jacobian has full column rank. In essence, an SEM with

6This “multilevel” use of definition variables is analogous to dummy-coding an ID variable with k levels into k−1 variables
and adding them all as fixed effects. In contrast, true multilevel modeling uses the ID variable to create a random intercept. In
this sense, models with definition variables are certainly not multilevel models.

https://doi.org/10.1017/psy.2025.19 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.19


426 Hunter et al.

definition variables is identified by turning each combination of definition variable values into a group,
and then identifying the multiple group SEM. Although we present no formal proof of this identification
method, the logic is relatively straightforward. Appendix B explains this method further and provides a
detailed example that applies this method to the identification of ordinary least squares regression when
specified in the conventional way and when specified as an SEM with definition variables.

As a simple initial case, consider a single-group SEM with one definition variable x that takes
on two distinct values: x1 and x2. For example, consider making a model where the means and
covariances were allowed to differ by binary sex. Such a model could be parameterized as a multiple
group model or equivalently as a model that incorporated sex as a definition variable that influenced
the means and covariances. Equation (9) shows the appropriate mapping from the free parameters
and definition variables to the summary statistics for a single definition variable with two distinct
values.

h(θ,x) = ( f (θ,x = x1)
f (θ,x = x2) ) =

⎛
⎜⎜⎜
⎝

μ(θ,x = x1)
vech(Σ(θ,x = x1))

μ(θ,x = x2)
vech(Σ(θ,x = x2))

⎞
⎟⎟⎟
⎠

(9)

Note the similarity between Equation (9) and its multiple-group and single-group analogs in Equations
(6) and (1), respectively. Now the means, variances, and covariances are functions of the free parameters
and of the definition variables. The way that free parameters map onto the model-implied summary
statistics is generally defined by the researcher-specified model and the modeling framework (e.g.,
LISCOMP, RAM, COSAN, etc.); whereas the way that definition variables alter the means, variances,
and covariances is entirely up to the researcher.

Regardless of the way a researcher decides to let definition variables alter the summary statistics, in
Equation (9) the two unique values of the definition variable effectively create two groups of summary
statistics. Because the definition variable has only two unique values, we only evaluate the mapping
from the free parameters to the summary statistics f (θ,x) at these two values. The function h(θ,x)
maps the free parameters and definition variables to as many versions of the summary statistics as the
definition variables require. In this case, f (θ,x = x1) contains the means, variances, and covariances for
the model at the free parameter value θ and the definition variable value x1; f (θ,x = x2) contains the
means, variances, and covariances for the model at the free parameter value θ and the definition variable
value x2.

Model identification for definition variables reduces exactly to model identification for multiple
groups where each unique combination of definition variable values forms a group. For an appropriately
defined model the function f (θ,x = x1) in Equation (9) is exactly equal to the corresponding function
f 1(θ) in Equation (6). The summary statistics evaluated at the first definition variable value are
equivalent to the summary statistics for a virtual group created for this definition variable value.
Definition variables turn single-group models into multiple group models which can then be identified
accordingly.

The model considered in Equation (9) allows for different free parameters across binary sex and
thus depends on the definition variable taking on distinct values for its identification. As will be seen
in the illustrative examples, some models depend on the definition variables taking different values for
identification, whereas other models only depend on a single set of definition variable values—even
though the definition variables may take on many more values. The models that depend on distinct
definition variable values for identification are not locally identified for any single value for the definition
variables; however, the same models are identified when accounting for distinct definition variable
values.

The case of SEMs with multiple groups, constraints, and a single definition variable with two unique
values extends similarly.
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h(θ,x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f 1(θ,x = x1)
f 2(θ,x = x1)
c(θ,x = x1)
f 1(θ,x = x2)
f 2(θ,x = x2)
c(θ,x = x2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(10)

In Equation (10), the function f 1(θ,x = x1) returns the summary statistics for group 1 when evaluating
the definition variable x at the specific value x1. Accordingly, f 2(θ,x = x1) returns the summary statistics
for group 2 with the definition variable value of x1. The other components of Equation (10) follow
similarly.

Finally, the most general case of an SEM with multiple groups, constraints, and a vector of multiple
definition variables x with as many unique combinations as there are rows of data, N, is shown in
Equation (11).

h(θ,x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f 1(θ,x = x1)
f 2(θ,x = x1)
c(θ,x = x1)
f 1(θ,x = x2)
f 2(θ,x = x2)
c(θ,x = x2)

⋮
f 1(θ,x = xN)
f 2(θ,x = xN)
c(θ,x = xN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(11)

The notation xi indicates the vector of all the definition variable values at row i.
Equation (11) gives the appropriate mapping from the free parameters and definition variables to the

summary statistics. The identification of the corresponding SEM is given by the rank of the Jacobian in
Equation (12).

∂h(θ,x)
∂θ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂f 1(θ,x = x1)
∂θ

∂f 2(θ,x = x1)
∂θ

∂c(θ,x = x1

∂θ
)

∂f 1(θ,x = x2)
∂θ

∂f 2(θ,x = x2)
∂θ

∂c(θ,x = x2)
∂θ
⋮

∂f 1(θ,x = xN)
∂θ

∂f 2(θ,x = xN)
∂θ

∂c(θ,x = xN)
∂θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(12)

Although the Jacobian in Equation (12) contains a potentially large number of rows, the algorithmic
complexity of the computation is quite small. The procedure merely replicates Equation (7) for each
unique combination of definition variable values. In practice, even when there are a large number of
definition variables with many unique combinations, many models are identified using only one or
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two unique combinations of definition variable values. One reasonable strategy for determining model
identification is to iteratively continue evaluating model identification for each new combination of
definition variable values, and to stop adding new combinations once the model is identified. Note that
once the Jacobian has rank equal to the number of columns and greater than or equal to the number
of summary statistics, the model is identified. Although some further information might be gained by
extending the Jacobian to all unique sets of definition variable values, the rank of the Jacobian will never
decrease based on this extension. So, no further information about model identification is gained after
the model is minimally identified.

An alternative—and more heuristic—approach for computing model identification with definition
variables would be to evaluate the Jacobian with two unique definition variable values, and then let
the researcher determine if further evaluations are worthwhile. Of course, the maximalist approach of
evaluating the Jacobian at every unique combination of definition variable values remains a viable—if
cumbersome—option as well.

All the definition variable identification methods rely on the actually observed values of the definition
variables, making them dependent on the definition variable data but not the modeled variable data.
This form of data-dependence can lead to issues of empirical identification. For example, a model with
definition variables might be identified for a particular combination of definition variable values but
not for those that are actually observed. These issues of empirical identification are considered next.

7. Empirical identification

Up to this point, we have primarily been concerned with model identification as a property of the model
itself. The addition of definition variables only slightly modifies the perspective that a model is or is
not identified independent of the data used to fit the model. However, with empirical identification we
are primarily concerned with data-dependent identification. For example, the identification of a model
might depend on the covariance between two particular variables. The model itself might be identified,
but if that covariance never occurs in the data (e.g., if only one member of that pair of variables is ever
observed), then that model is empirically unidentified for those data even though the model is locally
identified in principle.

Unlike local and global identification, “empirical identification” has a relatively ambiguous meaning.
Many articles and books do not even mention empirical identification (e.g., Bekker, 1986; Bekker & ten
Berge, 1997; Bekker & Wansbeek, 2001; Bekker et al., 1994; Goodman, 1974; Little, 2024; Magnus &
Neudecker, 1988; McDonald & Krane, 1977, 1979; McDonald, 1982; Wald, 1950; Wansbeek & Meijer,
2000). Other works use empirical identification to mean local identification at the parameter estimates
(e.g., Skrondal & Rabe-Hesketh, 2004), or local identification in general (e.g., Loehlin, 2004, p. 74). Still
others refer to local identification as an empirical test or empirical check of identification, which can
sometimes be termed empirical identification (Bentler & Weeks, 1980; Bollen, 1989; Bollen & Bauldry,
2010). Finally, some authors use empirical identification to mean a variety of data-dependent issues that
may arise in model estimation (Rindskopf, 1984).

For the present work, we define empirical identification as identification over the observed data,
rather than over all theoretically possible data. A formal definition is provided in Appendix A. This
definition includes local identification at the parameter estimates as a special case, namely the special
case of being locally identified for the particular data that yields a particular vector of parameter
estimates. This definition also includes a variety of other data-dependent situations that can cause
difficulties with model estimation (e.g., multicolinearity), but we focus on the special case of missing
data.

We propose a novel method of investigating empirical identification that naturally augments the
theoretically strong foundation of local model identification previously discussed. In local model iden-
tification we obtain a Jacobian that shows how each free parameter influences the model-implied means
and covariances. So, we can immediately see from inspecting this Jacobian that some free parameters
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have no influence whatsoever on some of the summary statistics. This inspection of the Jacobian for zero
entries yields some intuition on which summary statistics are necessary for identification. Automatically
constructing a list of such dependencies is an easy task for modern computers.

Beyond intuition, we can use changes in the rank of the Jacobian dependent on removing summary
statistics to quantitatively assess the dependence of each free parameter on each summary statistic. By
dropping a row of the Jacobian and re-evaluating its rank, we can show how critically the rank depends
on each summary statistic. If the rank of the Jacobian changes when a summary statistic is dropped, then
that summary statistic was critical for identifying at least one free parameter. In fact, the change in the
rank of the Jacobian corresponds to the number of newly unidentified parameters. Moreover, the null
space of the Jacobian shows which free parameters are no longer identified. Thus, by examining which
free parameters become unidentified in response to dropping a summary statistic, we can determine
which summary statistics are essential for identification of each free parameter.

With a correspondence between the summary statistics and the free parameters, we can then
compare each of the model-implied summary statistics to the observed frequency of non-missing values
in the data. A extremely simple case of empirical non-identification would be a model that includes a
mean for a variable that is actually all missing. The model might be locally identified, but the mean of
that all-missing variable is not empirically identified. This empirical non-identification would be easily
detected using this approach. A slightly more complicated case of empirical non-identification would be
a model that depends on a particular covariance between two variables, but those two variables are never
actually observed together. Again, this empirical non-identification is readily captured by the approach
we propose.

Empirical identification is a complicated phenomena. We do not suggest that all possible cases of
empirical identification are solved by this approach. However, the approach capitalizes on the strong
mathematical foundation of local identification, and certainly captures several common situations
where empirical identification causes problems.

8. Illustrations of local identification

Although the theoretical and mathematical formalism behind model identification can be daunting, we
provide software tools that ease researcher burden when considering whether any particular model is
identified. Concrete illustrations of these tools help show both their strengths and shortcomings. We use
small, synthetic examples to demonstrate model identification for (1) factor models, (2) latent growth
curve models, and (3) variance component models that are commonly used in behavior genetics. Code
for all of these example is available online at https://osf.io/zgj82/.

8.1. Factor models
Consider a one-factor model with three indicators. There are two common strategies employed for
identifying this model. One strategy identifies the latent variable by fixing one factor loading to unity
and the factor mean to zero. Another strategy identifies the latent variable by fixing the factor variance to
unity and the factor mean to zero. Both methods make the model identified; however, the first strategy
makes a factor model that is globally identified, whereas the second strategy makes a model that is only
locally identified.

One way to understand this apparent contradiction is to realize that setting the mean and variance
of the factor does not fully specify the scale of the latent variable; it leaves the sign of the latent variable
ambiguous. The factor can be multiplied by negative one and maintain all the same properties. If the
zero mean and unit variance identification strategy is used for any factor model with any number of
factors, each factor could be reversed in direction by multiplying all the factor loadings by minus one.
If identifying a factor by fixing a loading to one, it is no longer possible to reverse the direction of all the
loadings and thus the factor with it. A demonstration script that computes the full Jacobian and shows
the identified and non-identified models is available online at https://osf.io/6ezq5.
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The full Jacobian of this factor model at a chosen set of parameter values is shown below

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ1 λ2 λ3 σ2
ε1 σ2

ε2 σ2
ε3 ν1 ν2 ν3 ψ

Σ11 2 0 0 1 0 0 0 0 0 1
Σ21 0.90 1 0 0 0 0 0 0 0 0.90
Σ31 0.80 0 1 0 0 0 0 0 0 0.80
Σ22 0 1.80 0 0 1 0 0 0 0 0.81
Σ32 0 0.80 0.90 0 0 0 0 0 0 0.72
Σ33 0 0 1.60 0 0 1 0 0 0 0.64
μ1 0 0 0 0 0 0 1 0 0 0
μ2 0 0 0 0 0 0 0 1 0 0
μ3 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(13)

where the factor loadings are λs, the residual variances are σ2
ε s, the item intercepts are νs, and the factor

variance is ψ. The Jacobian is shown at the free parameter values of 1, .9, and .8 for the loadings, 1 for
all the residual variances, 0 for the intercepts, and 1 for the factor variance. The nonzero elements of the
Jacobian are in bold. Critically, some of the numbers in the Jacobian change depending on the chosen
free parameter values, but others do not. The equation for the variance of the first observed variable
is Σ11 = λ2

1ψ + σ2
ε1 . The analytic nonzero partial derivatives of this equation are ∂Σ11

∂λ1
= 2λ1ψ, ∂Σ11

∂σ2
ε1
= 1,

and ∂Σ11
∂ψ = λ2

1. Evaluating these partial derivatives at the chosen parameter values yields the first row
of Equation (13). A similar process applied to all the rows in Equation (13) yields the numbers shown.
Note that the columns of Equation (13) associated with the residual variances and the intercepts never
depend on the free parameter values chosen.

Shifting from analytic expressions to particular numeric values is a key step in the local identification
of SEMs. Because the Jacobian is evaluated at a particular set of parameter values, its rank can vary
for differing free parameter values. Consequently, an SEM can be locally identified at some parameter
values, but not for others. Divergent local identification across parameter values makes the careful choice
of those parameter values critical. For a broad class of models and model parameters, evaluating local
identification at zero and unity is frequently misleading for this reason.

The rank of this Jacobian in Equation (13) is nine, but there are 10 columns: one column corre-
sponding to each free parameter. So, this model is not locally identified. Simple parameter counting
rules would yield the same conclusion that this model is not identified. However, examination of the
null space of this Jacobian reveals which parameters are not identified and how an identified solution
could be obtained. The null space shows that λ1, λ2, λ3, and ψ are not simultaneously identified. By
inspection, one can see that a linear combination of the λ1, λ2, and λ3 columns can be made to equal
the ψ column: suggesting that either fixing one factor loading to a constant value or fixing the factor
variance to a constant value would identify the model. The identification that fixes the factor variance
drops the last column. The identification that fixes the first factor loading drops the first column. Both
of these strategies leave the rank of the Jacobian unchanged at nine, but a rank nine Jacobian with nine
observed statistics means the model is now identified.

Finally, when evaluated at factor loadings of zero, the first three columns become all zeros and
the factor variance column also becomes all zeros: zero factor loadings mean that changing the factor
variance has no effect on the model-implied variances or covariances. Thus, at factor loadings of zero,
the rank of the Jacobian reduces from nine to six; only the residual variances and intercepts remain
identified. Crucially, the structure of the model was not altered by examining the Jacobian at different
values, but the rank of the Jacobian changed from nine to six merely by evaluation at a different point
in parameter space. The possibility of creating divergent identification results depending on the values
of the free parameters is a persistent limitation of local model identification. One strategy to resolve the
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problem of locally unidentified models that are identified at other parameter values is to evaluate local
identification at several possible parameter values, perhaps randomly generated parameter values. Such
a strategy moves parameters off locations in parameter space that are unidentified under the assumption
that a model is identified for large proportions of parameter space, but perhaps not for a small number
of specific values or combinations of values.

8.2. Growth models
Consider a latent growth curve model with three time points. When all people are observed at the
same time points, this model is equivalent to a factor model with fixed loadings. It is well-established
that the linear latent growth curve model is identified for three time points, but that a quadratic
latent growth curve model is not identified. Again, a full demonstration script is available online at
https://osf.io/6ezq5.

The full Jacobian for the quadratic latent growth curve models is shown below

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ2
ε α0 α1 α2 ψ00 ψ10 ψ11 ψ20 ψ21 ψ22

Σ11 1 0 0 0 1 −2 1 2 −2 1
Σ21 0 0 0 0 1 −1 0 1 0 0
Σ31 0 0 0 0 1 0 −1 2 0 1
Σ22 1 0 0 0 1 0 0 0 0 0
Σ32 0 0 0 0 1 1 0 1 0 0
Σ33 1 0 0 0 1 2 1 2 2 1
μ1 0 1 −1 1 0 0 0 0 0 0
μ2 0 1 0 0 0 0 0 0 0 0
μ3 0 1 1 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(14)

where σ2
ε is the residual variance, αi is the mean for the growth factor of polynomial order i, and ψij is

the covariance between growth factors i and j. Because the linear growth curve model is a special case of
the quadratic growth curve model, the Jacobian for the linear case can be obtained from the quadratic
case. The linear growth curve Jacobian is obtained by dropping the columns associated with means,
variances, and covariances of the quadratic growth factor: α2, ψ22, ψ20, and ψ21.

Note that simple parameter counting suggests that the quadratic growth curve model is not identified
with nine summary statistics and ten free parameters. The Jacobian method finds that this model is not
identified, being rank nine, but usefully finds that the following parameters span the null space causing
the non-identification: σ2

ε , ψ00, ψ11, ψ22, and ψ20. Inspection of these columns in the Jacobian suggests
that one constraint can make them all linearly independent. Constraining the covariance between the
intercept factor and the quadratic factor to zero identifies the model by removing one of the ten columns
but leaving the rank unchanged at nine. An alternative identification strategy for the quadratic growth
curve model with three time points uses definition variables. When this model uses definition variables
and the times at which observations occur differ across people, the three-time-point quadratic growth
curve model is identified without the need of further constraints.

8.3. Variance component models in behavior genetics
A common model in behavior genetics examines a single phenotype (i.e., outcome variable) mea-
sured on numerous twin pairs. The twins are either monozygotic (i.e., “identical”) or dizygotic (i.e.,
“fraternal”). In the most common design, both members of a twin pair were raised together in the
same household. This design allows—under certain assumptions (see, e.g., Neale & Maes, 2004)—the
decomposition of the means, variances, and covariances into factors that are driven by additive genetic
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similarity (A), common environmental similarity (C), and unique environmental similarity (E). Hence
the ACE acronym is often used to describe this model. The simplest version of this model implies
bivariate (one variable for each member of the twin pair) means and covariances as functions of the
free parameter vector θ as shown in Equation (15)

μ(θ) = ( θ1
θ1
) ; Σ(θ) = θ2( 1 x

x 1 )+θ3( 1 1
1 1 )+θ4( 1 0

0 1 ) (15)

where x is a definition variable that is .5 for all dizygotic twin pairs and 1.0 for all monozygotic twin
pairs. The θ1 parameter constrains the phenotypic mean to be equal across members of a twin pair; θ2 is
the variance associated with additive genetics; θ3 is the variance associated with common environments;
and θ4 is the variance associated with unique environments. Using analytic methods derived by Hunter
et al. (2021), one can show that this model is not locally identified for any single value of the definition
variable x, but the model is identified when transformed into a two-group model without definition
variables. The methods developed in the present work similarly show that the one-group model with
definition variables is identified.

The instance of Equation (7) for this model shows that it is not identified for any single value of the
definition variable, x at row one notated by x1 regardless of the free parameter values chosen (see Hunter
et al., 2021 for the derivation of this expression and how it is invariant to the chosen free parameter
values).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

θ1 θ2 θ3 θ4

Σ1
11 1 1 1

Σ1
21 x1 1 0

Σ1
22 1 1 1

μ1
1 1

μ1
2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(16)

The blanks in Equation (16) are zeros that merely show the sparse blockwise structure and are intended
to increase readability. Again, parameter counting suggests this model might be identified, having four
parameters and five summary statistics. However, the Jacobian has rank three, not four. The structure
of the above Jacobian lets the mean parameter θ1 be identified, but not all of the variance parameters:
the columns for θ3 and θ4 can combine to equal the column for θ2. Further extending the Jacobian as in
Equation (12) identifies the model as shown in the Jacobian below.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

θ1 θ2 θ3 θ4

Σ1
11 1 1 1

Σ1
21 x1 1 0

Σ1
22 1 1 1

μ1
1 1

μ1
2 1

Σ2
11 1 1 1

Σ2
21 x2 1 0

Σ2
22 1 1 1

μ2
1 1

μ2
2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(17)

The superscript indicates the newly created group corresponding to distinct values of the definition
variable at rows one and two. With this extension, the model is identified because any linear combination
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that equals the θ2 column for the first group does not equal the θ2 column for the second group. So,
the rank is now four with four free parameters, making the model identified. Because the Jacobian in
Equation (17) does not depend on the actual free parameter values and only requires that x1 ≠ x2, this
model is also globally identified.

9. Empirical identification in the NLSY

To demonstrate the proposed method for assessing empirical identification, we apply the method to data
from the NLSY. The NLSY is a United States national household probability sample with data initially
collected in 1979. We analyze cognitive longitudinal data collected on the children of the females from
the original sample (N = 9,599). The NLSY is rich in numerous assessments, but for the purposes of
illustration we examine four variables: reading comprehension, reading recognition, digit span, and
mathematical ability. These measures were collected at several time points between ages 3 and 17, but
we focus on ages 10, 11, 12, and 13.

9.1. Factor model
For simplicity, consider a factor model with one factor at each age. The age 10 factor has four indicators:
the scores of the four cognitive tests all at age 10. The remaining three factors are constructed similarly.
As has been well-established and can be verified, this model is locally identified by either (1) fixing
one factor loading for each factor along with the factor mean or (2) fixing the factor variance along
with the factor mean. All the remaining factor loadings, residual variances, item intercepts, and factor
covariances can be freely estimated. These free parameters total 54 in number and the rank of the
corresponding Jacobian is 54 when evaluated at almost any specific free parameter values, indicating
the model is locally identified. However, there is a pattern in the data collection design that means this
model is actually not empirically identified.

Figure 1 shows the frequency of bivariate non-missing data for each pair of observed variables.
As shown, there are a large number of zero frequencies. No individual in the data was observed at
age 10 and age 11. Observed data only occur for even pairs of ages (10, 12) or odd pairs of ages (11,
13). This pattern of missingness is due to the biennial data collection schedule of the NLSY for these
individuals.

We know from first principles that a covariance cannot be estimated when there are no observations.
Consequently, we know that we cannot estimate the covariance between any variable at age 10 and
any variable at age 11. The situation is parallel for age 10 and 13, age 11 and 12, and age 12 and 13.
So, the covariance between the factors defined at these ages also must not be empirically identified.
Using the method outlined previously that filters out rows of the Jacobian which have zero frequency,
we can create a new Jacobian. This Jacobian still has 54 columns, but after filtering the zero frequency
summary statistics has only 88 rows instead of 152 rows. If we relied purely on the count of the observed
statistics and the free parameters, we would still say this model is identified. However, computing
the rank of the filtered Jacobian yields 50 instead of 54. So, the model is in fact not locally identified
due to empirical missing data patterns. Furthermore, the method simultaneously determines which of
the free parameters are not identified and states that only the appropriate factor covariances are not
identified. Because the factor variances are identified, but not their covariances, one could say that the
factor correlations are not identified; however, the model parameters that are not identified are factor
covariance parameters. Although we do not present the full 152 by 54 Jacobian here, we do provide
demonstration code online at https://osf.io/zmtwu that runs the full analysis.

9.2. Growth model
Consider a quadratic latent growth curve model of digit span in the NLSY Children data. Although digit
span is measured at four time points (ages 10, 11, 12, and 13), the pattern of biennial data collection
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Figure 1. Frequency of non-missing observations in the National Longitudinal Survey of Youth 1979 children sample for several

cognitive measures at ages 10, 11, 12, and 13.

Note: COMP = reading comprehension, DIGIT = digit span, MATH = mathematical ability, RECOG = reading recognition. The suffix for

each variable is the age at which assessment occurred. Frequency of non-missing observations is shown both numerically and using

shading.

throughout the NLSY holds: no child is measured at ages 10 and 11, 10 and 13, 11 and 12, and so on.
Moreover, the sample size at age 13 is between 11% and 23% of that at the other ages. A quadratic latent
growth curve model is locally identified for a large portion of the parameter space when there are four
time points. However, we want to know in what way this identification relies on the structure of the
collected data.

We can apply the same filtering technique to the Jacobian that was used in the previous example, and
drop the rows associated with the missing covariances. Although the initial rank of the Jacobian was
ten for the ten free parameters (one residual variance, three factor means, three factor variances, and
three factor covariances), the rank of this filtered Jacobian is only eight. The null space of this filtered
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Jacobian finds that the residual variance, the factor variances, and the factor covariance between the
intercept and quadratic term are not simultaneously identified.

This situation almost exactly mirrors that of the local identification growth model with three time
points considered earlier. The strategy employed there was to drop the covariance between intercept and
quadratic factors. Dropping this covariance here leaves the rank unchanged at eight, but there are still
nine free parameters so the model is still unidentified. In addition to this covariance, one could drop
the residual variance, the intercept variance, or the linear slope variance and the resulting model would
be identified (rank eight on eight free parameters). But dropping the quadratic variance further reduces
the rank to seven on eight free parameters. So, dropping the quadratic term variance is not a suitable
identification strategy.

The empirical identification finding for growth models is far less intuitive than that for a simple factor
model. Even though there are four time points of data on a single observed variable and the quadratic
growth curve model is identified in principle, it is not empirically identified. The quadratic growth curve
model critically depends on covariances in the data that are missing by design.

In addition to the simple filtering technique based on zero frequencies of non-missing values,
a researcher might want to adjust this threshold to some other value based on a desired minimal
sample size for suitable estimation precision. Inspection of Figure 1 shows that there are relatively few
observations for digit span at age 13, and even fewer for the covariance between digit span at ages 11
and 13. Dropping the rows of the Jacobian corresponding to the digit span variance at age 13 and
its covariance with age 11 further reduces the rank of the filtered Jacobian from eight to seven. The
unidentified parameters from the null space are the same as those initially found with the addition of
the intercept and slope covariance along with the slope and quadratic covariance.

10. Discussion

In this article, we made several contributions to model identification, some of which were novel and
some of which were not. We reviewed previously known results on model identification of parametric
models of the multivariate Gaussian distribution, applying these results to SEMs with continuous
variables, ordered categorical variables, constraints, and multiple groups. With modern computers, the
method of local model identification is relatively simple. The method examines the mapping between
the free parameters of the model and the model-implied summary statistics. If the first derivative of
this mapping—called a Jacobian—has rank equal to the number of free parameters, then the model is
locally identified. Because these results are not yet well-known in the SEM literature, communicating
these results to the present audience might be the largest contribution of this work despite its lack of
novelty. However, we paired this exposition with some extensions of the model identification method to
two new situations. First, we extended local model identification to the case of very general exogenous
covariates called definition variables which can modify any part of an SEM in extremely flexible ways.
Second, we proposed an extension of standard local model identification to empirical identification by
incorporating information on the patterns of missing data. To make these mathematical and theoretical
contributions more concrete, we illustrated their application to several synthetic modeling tasks and
to a real data analysis from the NLSY. Finally, we provide a software tool in the open-source OpenMx
package in R that implements these solutions and makes them freely available to researchers in the
mxCheckIdentification() function.

As with any method, the previously known and presently proposed methods for model identification
have their shortcomings. The largest limitation is that all of the model identification checks discussed
here—including those for definition variable and empirical identification—are strictly for local model
identification, not global identification. A model can be locally identified for a particular set of
parameter values, and yet have a non-unique set of optimal free parameters. Choosing appropriate
latent variable scaling methods and setting plausible bounds on free parameters can limit the impact of
multiple minima at the costs of requiring researcher foreknowledge of solutions and limiting potentially
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valid alternative solutions. Moreover, a model can be locally unidentified for one set of free parameters,
and yet be locally identified for the vast majority of possible parameter values. Testing local identification
under a variety of perhaps pseudo-randomly selected parameter values can overcome small regions of
parameter space where local identification fails.

A further limitation of the present model identification approach may be its implementation in
the OpenMx software. The flexibility of model specification in the OpenMx software mandates either
extremely sophisticated algorithms for symbolic matrix calculus or reliance on numerical solutions
for computing the Jacobian and its rank. In rare cases, the numerically determined rank of a matrix
can differ from the analytic rank. Consequently, the computed identification of such a model could
be inaccurate. In our experience, this is exceedingly rare and is often solved through recalculating
identification after psuedo-random variation of the free parameters. Furthermore, for some researchers
model specification in OpenMx can be challenging compared to other software. Fortunately, other
packages exist which can ease this model specification. The EasyMx package (Hunter, 2022) offers
wrapper functions for common modeling tasks, and the mxsem package (Orzek, 2023) offers a model-
specification syntax based on that of the lavaan package (Rosseel, 2012).

In principle, the same method for identifying parametric models of the Gaussian distribution
applies to mixed effects models as well. In this case, identification relies more heavily on the fixed
effects design matrix and the random effects design matrix. There is also some degree of added
complication about correctly choosing the summary statistics for mixed effects models. These must
be defined at the cluster level. Moreover, generalized mixed effects models add some non-Gaussian
difficulties to the identification approach undertaken here. Overall, the same mathematical theo-
rems should apply to the case of mixed effects models, but it seems far from trivial to make this
application.

We should also note that all the model identification techniques discussed here are for frequen-
tist modeling only. Bayesian model identification requires an entirely different mathematical frame-
work from that used here, one that obviates many issues in frequentist identification. In his classic
monograph on Bayesian statistics, Lindley (1972, p. 46) offhandedly remarked that identification is
rarely a problem for Bayesian models. Although rare, identification of Bayesian models remains a
matter of concern. Palomo et al. (2007) presented an accessible introduction to Bayesian models
and identification, and Florens & Simoni (2021) recently elucidated many more details specific to
identification.

Limitations notwithstanding, local model identification can help researchers solve a variety of
theoretical and empirical problems. From planning appropriate research designs to resolving non-
convergent model estimation, model identification is a key preliminary step to almost all data analysis
questions. Combining previously known results and extending them to new cases, we present a software
implementation that checks for model identification in the OpenMx software. The software not only
determines whether or not a given model is identified at user-provided or estimated parameter values,
but also outputs which parameters are not identified, if any. The same tool can uncover issues related
to empirical identification. With the availability of such a tool, model identification for SEMs need not
remain shrouded in mystery.

Data availability statement. Code to run all analyses is publicly available as well as simulated data. Real data are maintained
and secured by the National Longitudinal Survey of Youth.
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1. Appendix

A. Technical and formal details of model identification

LetM(Y,θ) be a parametric model of the multivariate random variable Y with free parameter vector θ. Furthermore, suppose
that Y follows a known probability function P(⋅) which varies based on θ, and that y represents some observed value from
the random variable Y . Finally, suppose all possible free parameters are elements of a set Θ, which is an open subset of RJ

when there are J free parameters. The definitions below closely follow those of Bekker & Wansbeek (2001) and Magnus and
Neudecker (1988, p. 333).

Two parameter points θ1 and θ2 are called observationally equivalent if P(y,θ1) = P(y,θ2) for all possible y. The kth element
of the free parameter vector θp ∈Θ is notated θpk. The element θpk is called locally identified if there exists an open neighborhood
of Θ such that no point θ ∈ Θ is observationally equivalent to θp with θk ≠ θpk. Stated less formally, an element of the free
parameter vector is locally identified at some particular value when you can find a region of parameter space in which there
are no observationally equivalent points for that element other than that element itself. The vector of free parameters is locally
identified when all of the elements are locally identified. An element of the free parameter vector is called globally identified
when the open neighborhood of its local identification is the entire parameter space Θ, and similarly for the free parameter
vector being globally identified (Bekker & Wansbeek, 2001, p. 147, Definition 4). An immediate consequence of a locally
identified model is that there is only one vector of optimal parameter values in the neighborhood of θp. Similarly, an immediate
consequence of global identification is that there is only one globally optimal vector of parameters throughout parameter space.

In the case of a continuous, multivariate Gaussian random variable Y , the probability function P(⋅) is the multivariate
Gaussian probability density function. A multivariate Gaussian distribution is completely specified by its mean vector μ(θ)
and covariance matrix Σ(θ), both of which we assume are functions of the free parameter vector θ. The modelM(Y,θ) of a
Gaussian random variable can then be thought of as a mapping from the free parameter vector to the mean vector μ(θ) and
covariance matrix Σ(θ). Mathematically, this mapping is shown in Equation (1). Every modelM(Y,θ) of a Gaussian random
variable has its own corresponding mapping f (θ).

Two parameter points θ1 and θ2 of a Gaussian model will be observationally equivalent whenever they imply the same mean
vector and covariance matrix. Stated mathematically, two parameter points of a Gaussian model are observationally equivalent
if f (θ1) = f (θ2). A Gaussian model is locally identified at some parameter value θp if there are no observationally equivalent
points in the neighborhood of θp. Global identification of a Gaussian model is then defined by extending the neighborhood
of local identification across the entire parameter space Θ.

Starting with the definition for observational equivalence, all the definitions provided above depend on all possible values
of y. However, in practice with real data we have never observed all possible values of y; rather, we observe some finite set of
values of y. Thus, observational equivalence, local identification, and global identification are all mathematical and theoretical
concepts that are independent of the actual data we observe. Empirical identification particularizes these theoretical concepts
to an actual observed set of data. Therefore, two parameter points θ1 and θ2 are called empirically observationally equivalent
if P(y,θ1) = P(y,θ2) for all observed values of y. This definition is almost identical to that for observational equivalence;
the exception is that instead of equality over all possible values of y, we are restricted to a subset of these possible values
that were actually observed. Parallel definitions for empirical local identification and empirical global identification follow
straightforwardly from empirical observational equivalence.

The utility of these definitions is often in their negative cases. We need to find points that are not observationally equivalent.
For example, suppose two points are not observationally equivalent for all possible y, but they are obervationally equivalent
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over the particular observed values of y. This situation would lead to a model that is locally identified, but not empirically
identified.

In common shorthand, we refer to locally identified models as identified models, and append the modifier “global” when
necessary. Similarly, we speak of empirically identified models, but more formally mean locally empirically identified models.

B. Identification of ordinary least squares (OLS) regression and definition variables

Consider identification for OLS regression. The OLS regression model can be written as in Equation (B.1)

y = Xb+ e; y ∼N (Xb, σ2I) (B.1)

where y is an N × 1 vector of univariate outcomes, X is an N × p design matrix with one predictor variable in each column
which may include a column of 1s for an intercept term, e is the vector of residuals with mean zero and variance σ2, and I is
an N×N identity matrix. Note thatN (⋅, ⋅) denotes a multivariate normal distribution with mean in the first slot and variance
in the second. So, OLS regression can be considered a multivariate model of a Gaussian distribution.

The OLS regression model is known to be identified if and only if the predictors are linearly independent (i.e., not perfectly
collinear predictors Greene, 2003, p. 13). Put another way, OLS regression is identified when the design matrix X is of full
column rank. In what follows, we will first show how this identification result derives from the rank Jacobian criterion we
discussed previously, and then we will show how the regression model can illustrate model identification for SEMs with
definition variables.

To derive the identification criterion for OLS regression, we consider Equation (B.1) as a parametric model for the
multivariate Gaussian distribution, and apply the same method of identification we have made previously. The vector of free
parameters for Equation (B.1) is

θ = ( b
σ2 ) (B.2)

The mapping from the free parameters to the observed distribution (i.e., summary statistics) is then

g(θ) = ( Xb
vech(σ2I) ) (B.3)

Observe that Equation (B.3) implies a potentially different mean for each of the N variates in the multivariate Gaussian
distribution and a structured covariance matrix across variates. These N variates are the rows of data in OLS regression, so
the model implies a potentially different mean for each row of data and independent covariances across rows. The Jacobian of
g(θ) is given by

∂g(θ)
∂θ

=
⎛
⎜⎜⎜
⎝

∂Xb
∂b

∂Xb
∂σ2

∂vech(σ2I)
∂b

∂vech(σ2I)
∂σ2

⎞
⎟⎟⎟
⎠
= ( X 0

0 vech(I) ) (B.4)

One can see that the Jacobian no longer depends on any free parameters. This lack of dependence on free parameters implies
that the local identification for OLS regression also yields global identification (Bekker & Wansbeek, 2001, p. 155, Theorem 7).
One can also see that the Jacobian is block-diagonal. Due to theorems on the rank of block-diagonal matrices, the rank of the
Jacobian in Equation (B.4) will be the sum of the ranks of the blocks (see Roman, 2005, p. 46, Theorem 1.14 on the dimension
of a direct sum of vector spaces and then invoke the isomorphism between direct sums of vector spaces and block-diagonal
matrices). Moreover, the single column in vech(I) always necessarily has rank one. Therefore, the residual variance σ2 is
always identified in the sense that σ2 will never be part of the null space that signifies non-identified parameters. The regression
parameters in b are identified if and only if the design matrix X has full column rank. Put another way, the OLS regression
model is identified if and only if the predictors are linearly independent (i.e., there are no perfect collinearities among the
predictors).

Next we represent OLS regression as an SEM with definition variables to illustrate identification of SEMs with definition
variables. As an SEM, OLS regression is a univariate Gaussian model of independent rows with the same variance for all rows,
but with the mean being a function of a set of definition variables as given by Equation (B.5)

yi ∼N (Xib, σ2) (B.5)

where yi is the univariate outcome for row i, Xi is the ith row of the design matrix, and the remaining parameters are the
same as described in Equation (B.1). Note that Xi can be alternatively conceived as a row vector of the definition variable
values at data row i. The free parameters in Equation (B.5) are the same as in Equation (B.1) and are given by Equation (B.2).
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The summary statistics for the SEM in Equation (B.5) are the mean and variance of yi which may be functions of definition
variables. The summary statistics are then repeated for each row of data. Thus, the analog of Equation (B.3) is

g(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1b
X2b
⋮

XN b
σ2

σ2

⋮
σ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ( Xb
1σ2 ) (B.6)

where 1 is a vector of N 1s. Thus, g(θ) maps the p+ 1 free parameters to 2N summary statistics: N means and N variances.
The Jacobian of Equation (B.6) is then

∂g(θ)
∂θ

=
⎛
⎜⎜
⎝

∂Xb
∂b

∂Xb
∂σ2

∂1σ2

∂b
∂1σ2

∂σ2

⎞
⎟⎟
⎠
= ( X 0

0 1 ) (B.7)

The structure of the Jacobian in Equation (B.4) is highly similar to that in Equation (B.7). The primary difference is in how
the variance is handled. In the multivariate model of Equation (B.1), we specified the full covariance matrix of y and therefore
used the half-vectorization in Equations (B.3) and (B.4). By contrast, in the univariate SEM of Equation (B.5), we assumed
rows were independent but were potentially functions of the definition variables. So, the univariate variance is repeated N
times in Equation (B.6). When differentiated, the repeated variance becomes a column of 1s in Equation (B.7) instead of the
half-vectorization of the identity matrix as in Equation (B.4).

The rank of the Jacobian in Equation (B.7) is determined quite similarly to that in Equation (B.4). The residual variance σ2

is always identified (i.e., it can never be part of the null space that indicates non-identified parameters), and the free parameters
b are identified if and only if the design matrix X is of full column rank (i.e., linearly independent predictors, also known as
not perfectly collinear predictors). Thus, we have shown that expressing OLS regression as an SEM with definition variables
yields the exact same identification criterion as typical identification of OLS regression.

Beyond the case of OLS regression, identification of general SEMs with definition variables merely expresses the
conventional Jacobian for each row of data. This process creates a multigroup model with one group for each row of data, and
identifies the multigroup model. More precisely, it creates one group for each unique combination of definition variable values.
In the most general case of N unique rows of data with p definition variables, v modeled variables, and k free parameters, the
Jacobian has N(v+v(v+1)/2) =Nv(v+3)/2 rows and k columns. That is, there are N rows in the Jacobian for each summary
statistic (mean, variance, and covariance) and one column for each free parameter.

Although the full Jacobian with Nv(v+3)/2 rows is technically required for identification, in practice only a small subset of
N is often sufficient. Many models with definition variables are identified with one or two unique combinations of definition
variable values. If two unique combinations of definition variable values is sufficient, then there are only two rows in the
Jacobian for each summary statistic (mean, variance, and covariance) and one column for each free parameter, thus keeping
the Jacobian relatively small and computationally tractable.
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