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Abstract

We bound from below the complexity of the top Chern class λg of the Hodge bundle in
the Chow ring of the moduli space of curves: no formulas for λg in terms of classes of
degrees 1 and 2 can exist. As a consequence of the Torelli map, the 0-section over the
second Voronoi compactification of the moduli of principally polarized abelian varieties
also cannot be expressed in terms of classes of degree 1 and 2. Along the way, we estab-
lish new cases of Pixton’s conjecture for tautological relations. In the log Chow ring of
the moduli space of curves, however, we prove λg lies in the subalgebra generated by
logarithmic boundary divisors. The proof is effective and uses Pixton’s double ramifica-
tion cycle formula together with a foundational study of the tautological ring defined by
a normal crossings divisor. The results open the door to the search for simpler formulas
for λg on the moduli of curves after log blow-ups.
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1. Introduction

1.1 The Hodge bundle
Let Mg be the moduli space of Deligne–Mumford stable curves, and let

π : Cg →Mg

be the universal curve with relative dualizing sheaf ωπ. The rank g Hodge bundle Eg on Mg is
defined by

Eg = π∗ωπ.

The study of the Chern classes of the Hodge bundle goes back at least to Mumford’s
Grothendieck–Riemann–Roch calculation [Mum83] in the 1980s. Starting in the late 1990s, the
connection of the Hodge bundle to the deformation theory of the moduli space of stable maps
has led to an exploration of Hodge integrals in various contexts (see [AKMV05, ELSV01, FP00a,
GP99, LLLZ09, LLZ03, MOOP11, OP04, Pan99]).

The top Chern class1 of the Hodge bundle

λg = cg(Eg) ∈ CHg(Mg)

plays a special role for several reasons.

1 All Chow classes are taken here with Q-coefficients.
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(i) Two vanishing properties hold:

λ2
g = 0 ∈ CH2g(Mg) and λg|Δ0 = 0 ∈ CHg(Δ0),

where Δ0 ⊂Mg is the divisor of curves with a non-separating node. The first vanishing
follows from the highest graded part of Mumford’s relation

c(Eg) · c(E∗
g) = 1,

proven in [Mum83, equations (5.4), (5.5)]. The second follows from the existence of a trivial
quotient2

Eg � C

determined by the residue at (a branch of) the node (see [FP00b, § 0.4]).
(ii) The class (−1)gλg appears in the virtual fundamental class of the moduli of contracted maps

in the Gromov–Witten theory of target curves. Since the double ramification cycle in the
degree 0 case is defined via contracted maps, we have

DRg,(0,...,0) = (−1)gλg ∈ CHg(Mg,n),

where Mg,n is the moduli space of stable pointed curves. See [JPPZ17, §§ 0.5.3 and 3.1].
Another basic consequence is the λg-formula [FP03],∫

Mg,n

ψk1
1 · · ·ψkn

n λg =
(

2g + n− 3
k1, . . . , kn

)
·
∫
Mg,1

ψ2g−2
1 λg,

predicted by the Virasoro constraints for degree 0 maps to curves [GP98]. Here

ψi = c1(Li) ∈ CH1(Mg,n)

is the Chern class of the cotangent line at the ith point. The λg-formula plays a central role
in the study of the tautological ring R�(Mct

g,n) of the moduli space of curves of compact
type [Pan12].

(iii) Again as an excess class, (−1)gλg appears fundamentally in the local Gromov–Witten theory
of surfaces. For example, the Katz–Klemm–Vafa formula [KKV99] proven in [MPT10, PT16]
concerns integrals ∫

[Mg(S,β)]red
(−1)gλg

against the reduced virtual fundamental class of the moduli space of stable maps to K3
surfaces. For a recent study of the parallel problem for local log Calabi–Yau surfaces (with
integrand (−1)gλg); see [Bou20].

(iv) The class (−1)gλg arises via the pull-back of the universal 0-section of the moduli space
of principally polarized abelian varieties (PPAVs). Over the moduli space of compact type
curves, the connection to PPAVs shows a third vanishing property,

λg|Mct
g

= 0

(see [vdG99]). We will discuss PPAVs further in § 1.2 below.

Our main results here concern the complexity of the class λg in the Chow ring. ForMg, we
bound from below the complexity of formulas for

λg ∈ CH�(Mg).

As a consequence of the connection to the moduli of PPAVs, we also bound from below the
complexity of formulas for the universal 0-section.

2 The quotient is defined on the double cover of Δ0 obtained by ordering the branches of the node.
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The log Chow ring of (Mg, ∂Mg) is defined as a colimit over all iterated blow-ups of boundary
strata. The usual Chow ring is naturally a subalgebra

CH�(Mg) ⊂ logCH�(Mg, ∂Mg).

The main positive result of the paper is the simplicity of λg in the log Chow ring. We prove

λg ∈ divlogCH�(Mg, ∂Mg),

where
divlogCH�(Mg, ∂Mg) ⊂ logCH�(Mg, ∂Mg)

is the subalgebra generated by logarithmic boundary divisors. While λg in Chow is complicated,
λg in log Chow is as simple as possible! We present several related open questions.

1.2 The 0-section
Let Ag be the moduli space of PPAVs of dimension g, and let

π : Xg → Ag

be the universal abelian variety π equipped with a universal 0-section

s : Ag → Xg.

The image of the 0-section determines an algebraic cycle class

Zg ∈ CHg(Xg).

The second Voronoi compactification of Ag has been given a modular interpretation by Alekseev:

Ag ⊂ AAlekseev
g .

Olsson [Ols12] provided a modular interpretation for the normalization

AOlsson → AAlekseev
g .

Our approach here will be equally valid for both AOlsson and AAlekseev
g . We will simply denote

the compactification by
Ag ⊂ Ag,

where Ag stands for either the space of Alekseev or the space of Olsson.
The four important properties3 of the compactification Ag which we will require are as

follows.

• The points of Ag parameterize (before normalization) stable semiabelic pairs which are
quadruples (G,P,L, θ) where G is a semiabelian variety, P is a projective variety equipped
with a G-action, L is an ample line bundle on P , and θ ∈ H0(P,L). The data (G,P,L, θ)
satisfy several further conditions (see § 4.2.16 of [Ols12]).

• There is a universal semiabelian variety

π : X g → Ag

with a 0-section
s : Ag → X g

corresponding to the semiabelian variety which is the first piece of data of a stable semiabelic
pair (the rest of the pair data will not play a role in our study).

3 We follow the notation of [Ols12].
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• The usual Torelli map τ :Mg → Ag extends canonically,

τ :Mg → Ag

(see [Ale04]).
• The τ -pull-back toMg of X g is the universal family

Pic0
ε →Mg

parameterizing line bundles on the fibers of the universal curve

ε : Cg →Mg

which have degree 0 on every component of any fiber [Ale04].

The image of the 0-section s determines an operational Chow class

Zg ∈ CHg
op(X g)

since the image is an étale local complete intersection in X g. The class Zg is related to (−1)gλg

via a pull-back construction. Let

t :Mg → Pic0
ε

be the 0-section defined by the trivial line bundle. By the properties of

π : X g → Ag

discussed above,

τ∗s∗(Zg) = t∗(t∗[Mg]).

By the standard analysis of the vertical tangent bundle of Pic0
ε ,

t∗(t∗[Mg]) = (−1)gλg ∈ CHg(Mg).

Indeed, by the excess intersection formula the class t∗(t∗[Mg]) equals the top Chern class of the
normal bundle of the 0-section of Pic0

ε . Over [C] ∈Mg, the fiber of the normal bundle is the
first-order deformation space of the trivial line bundle on C. The deformation space is given by

H1(C,OC) = H0(C,ωC)∨,

the fiber of the dual of the Hodge bundle E∨
g with top Chern class (−1)gλg. We conclude that

τ∗s∗(Zg) = (−1)gλg ∈ CHg(Mg). (1)

1.3 Complexity of the 0-section
The study the 0-section over Ag is related to the double ramification cycle (especially over curves
of compact type) (see Hain [Hai13] and Grushevsky-Zakharov [GZ14a]). A central idea there is
to use the beautiful formula

Zg =
Θg

g!
∈ CHg(Xg), (2)

where Θ ∈ CH1(Xg) is the universal symmetric theta divisor trivialized along the 0-section.
The proof of (2) in Chow uses the Fourier–Mukai transformation and work of
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Deninger and Murre [DM91] (see [BL04, Voi14]). The article [GZ14a] provides a more detailed
discussion of the history of (2).

We are interested in the following question: to what extent is an equation of the form of (2)
possible over Ag? A result by Grushevsky and Zakharov along these lines appears in [GZ14b].
As before, let

Zg ∈ CHg
op(X g)

be the class of the 0-section s. Grushevsky and Zakharov calculate the restriction Zg|Ug of Zg

over a particular open set4

Ag ⊂ Ug ⊂ Ag

in terms of Θ, a boundary divisor D ∈ CH1(X g|Ug), and a class

Δ ∈ CH2(X g|Ug).

The result of Grushevsky and Zakharov shows that while the naive extension of (2) does not hold
over Ug, the class Zg|Ug lies in the subalgebra of CH�(X g|Ug) generated by classes of degrees 1
and 2. The formula of [GZ14b] is a useful extension of (2).

The divisor classes CH1
op(X g) generate a subalgebra

divCH�
op(X g) ⊂ CH�

op(X g).

The first bound from below of the complexity of the class of the 0-section is the following result.

Theorem 1. For all g ≥ 3, we have Zg /∈ divCH�
op(X g).

As a consequence, no divisor formula extending (2) is possible for Ag. Though not stated,
the analysis of [GZ14b] over Ug can be used to show that Zg|Ug is not in the subalgebra of
CH�(X g|Ug) generated by classes of degree 1. Theorem 1 can therefore also be obtained from
[GZ14b].5

In fact, we can go further. Let

CH�
≤k(X g) ⊂ CH∗

op(X g)

be the subalgebra generated by all elements of degree at most k, so that

divCH�
op(X g) = CH�

≤1(X g).

Theorem 2. For all g ≥ 7, we have Zg /∈ CH�
≤2(X g).

By Theorem 2, the Grushevsky–Zakharov formula for Zg|Ug will require corrections by higher-
degree classes when extended over Ag. We propose the following conjecture about the complexity
of the class Zg.

Conjecture A. No extension of (2) over Ag for all g can be written in terms of classes of
uniformly bounded degree.

The pull-back relation (1) relates the complexity of the class

λg ∈ CH�(Mg)

to the complexity of Zg ∈ CH�
op(X g). Theorems 1 and 2 will be the immediate consequence of

parallel6 complexity bounds for λg.

4 Ug is the locus determined by semiabelian varieties of torus rank at most 1.
5 We thank S. Grushevsky for correspondence about [GZ14b].
6 In fact, we will prove in § 2 stronger results in cohomology instead of Chow.
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1.4 Complexity of λg

The divisor classes CH1(Mg) generate a subalgebra

divCH�(Mg) ⊂ CH�(Mg).

The first bound from below of the complexity of λg is the following result.

Theorem 3. For all g ≥ 3, we have λg /∈ divCH�(Mg).

Via the pull-back relation (1), Theorem 3 immediately implies Theorem 1. The proof of
Theorem 3, presented in § 2, starts with explicit calculations in the tautological ring in genera
3 and 4 using the Sage package admcycles [DSvZ21]. A boundary restriction argument is then
used to inductively control all higher genera.

For the analogue of Theorem 2, let

CH�
≤k(Mg) ⊂ CH∗(Mg)

be the subalgebra generated by all elements of degree at most k. A similar strategy (with a
much more complicated initial calculation in genus 5) yields the following result which implies
Theorem 2.

Theorem 4. For all g ≥ 7, we have λg /∈ CH�
≤2(Mg).

The proofs of Theorems 3 and 4 require new cases of Pixton’s conjecture about the ideal of
relations in the tautological ring

R�(Mg,n) ⊂ CH�(Mg,n).

Proposition 5. Pixton’s relations generate all relations among tautological classes in R4(M4,1)
and R5(M5,1).

While the above arguments become harder to pursue in general for CH�
≤k(Mg), we expect

the following assertion to hold.

Conjecture B. For fixed k, λg ∈ CH�
≤k(Mg) holds only for finitely many g.

Of course, Conjecture B implies Conjecture A.

1.5 Log Chow
Theorems 1–4 about the classes Zg and λg are in a sense negative results since formula types
are excluded. Our main positive result about λg concerns the larger log Chow ring

CH�(Mg) ⊂ logCH�(Mg, ∂Mg).

The log Chow ring and the subalgebra

divlogCH�(Mg, ∂Mg)

generated by logarithmic boundary divisors are defined carefully in § 3. Our perspective, using
limits over log blow-ups, requires the least background in log geometry. A more intrinsic approach
to the definitions can be found in [Bar18].

Theorem 6. For all g ≥ 2, we have λg ∈ divlogCH�(Mg, ∂Mg).

Our proof of Theorem 6 is constructive: we start with Pixton’s formula for the double ram-
ification cycle for constant maps [JPPZ17] and show that each term lies in divlogCH�(Mg). In
principle, it is possible to obtain bounds for the necessary log blow-ups from the proof, but these
will certainly not be optimal. Finding a minimal (or efficient) sequence of log-blows of (Mg, ∂Mg)
after which λg lies in the subalgebra of logarithmic boundary divisors is an interesting question.

312

https://doi.org/10.1112/S0010437X22007874 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007874


Hodge bundle, universal 0-section, and log Chow

A crucial part of the proof of Theorem 6 is the study in § 5 of the logarithmic tautological
ring,

R�(X,D) ⊂ CH�(X),
defined by a normal crossings divisor D ⊂ X in a non-singular variety X. Tautological classes
are defined here using the Chern roots of the normal bundle of logarithmic strata S ⊂ X. The
precise definitions are given in § 5.1.

We prove three main structural results about logarithmic tautological classes.

(i) R�(X,D) ⊂ divlogCH�(X,D).
(ii) pull-backs of tautological classes under log blow-ups are tautological.
(iii) push-forwards of tautological classes under log blow-ups are tautological.

Our first proof of (i) is presented in § 5.2 via an explicit analysis of explosions: sequences of
blow-ups associated to logarithmic strata of X. A second approach to (i)–(iii), via the geom-
etry of the Artin fan of (X,D), is given in § 5.5. The Artin fan perspective, advocated by
D. Ranganathan,7 is theoretically more flexible.

After Pixton’s formula for the double ramification cycle for constant maps is shown to lie in
R�(Mg, ∂Mg), property (i) implies Theorem 6. Since Pixton’s formula and the proof of (i) are
both effective, it is possible in principle to compute divisor expressions for λg. The result reveals
the essential simplicity of λg and opens the door to the search for a simpler formula in divisors.

The proof of Theorem 6 yields a refined result: only logarithmic boundary divisors over

Δ0 ⊂Mg

are needed to generate λg. The parallel result is also true for pointed curves:

λg ∈ divlogCH�(Mg,n,Δ0)

for 2g − 2 + n > 0.
We have seen that (−1)gλg is a special case of the double ramification cycle. The general

double ramification cycle
DRg,A ∈ CHg(Mg,n)

is defined with respect to a vector of integers A = (a1, . . . , an) satisfying
n∑

i=1

ai = 0.

In [HPS19, Appendix A], the double ramification cycle was lifted to log Chow,8

D̃Rg,A ∈ logCHg(Mg,n). (3)

Motivated by Theorem 6, we conjecture9 a uniform divisorial property of the lifted double
ramification cycle (3).

Conjecture C. For all g and A, we have D̃Rg,A ∈ divlogCH�(Mg,n) where

divlogCH�(Mg,n) ⊂ logCH�(Mg,n)

is the subalgebra generated by logarithmic boundary divisors together with the cotangent line
classes ψ1, . . . , ψn.

7 See Ranganathan’s April 2020 lecture ‘Gromov–Witten theory and logarithmic intersections’ at the Algebraic
Geometry and Moduli Zoominar at ETH Zürich. A foundational development will appear in [MR21].
8 The paper [HPS19] is primarily formulated in the language of the related bChow ring, which we discuss below
and treat in detail in § 7.
9 In developments after the paper was completed, Conjecture C was proven; see § 6.6 for a discussion.
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Finally, we return to the Θ-formula (2) for Zg. Is an extension of the Θ-formula possible over
Mg in logCH�(Mg)? More specifically, can we find

T ∈ logCH1(Mg)

which satisfies the following two properties?

(i) The restriction of T over the moduli of curvesMct
g of compact type is 0.

(ii) (−1)gλg = Tg

g! ∈ logCHg(Mg).

Property (i) is imposed since
Θ|Zg = 0 ∈ CH1(Zg)

by the trivialization condition for Θ. Unfortunately, the answer is no even for genus 2.

Proposition 7. There does not exist a class T ∈ logCH1(M2) satisfying the restriction property
(i) and

(−1)2λ2 =
T2

2!
∈ logCH2(M2).

The Θ-formula for (−1)gλg can not be extended in a straightforward way in CHg(Mg) or
logCHg(Mg). However,

λg ∈ logCHg(Mg)

is a degree g polynomial in the logarithmic boundary divisors over Δ0 ⊂Mg.

Question D. Find a polynomial formula in logarithmic boundary divisors for λg in log Chow
(without using Pixton’s formula).

The larger bChow ring ofMg is defined as a limit over all blow-ups:

CH�(Mg) ⊂ logCH�(Mg, ∂Mg) ⊂ bCH�(Mg).

The bChow ring is by far the largest of the three Chow constructions. In § 7, we show that the
main questions of the paper become trivial in bChow. In fact, for every non-singular variety X,
we have

divbCH�(X) = bCH�(X).

The logarithmic geometry ofMg is therefore the natural place to study Question D for λg.

2. λg in the Chow ring

2.1 Proof of Theorem 3
Recall that the tautological rings (R�(Mg,n))g,n are defined as the smallest system of
Q-subalgebras with unit of the Chow rings (CH�(Mg,n))g,n closed under push-forwards by gluing
and forgetful maps (see [FP00b, Pan18] for more details). The tautological subring RH�(Mg,n)
is defined as the image of the cycle map

R�(Mg,n) � RH�(Mg,n) ⊂ H2�(Mg,n).

We will use the complex degree grading for RH� and the real degree grading (as usual) for H�.
Let

divRH�(Mg,n) ⊂ RH�(Mg,n) and divH�(Mg,n) ⊂ H2�(Mg,n)

be the subrings generated respectively by RH1(Mg,n) and H2(Mg,n). Since

RH1(Mg,n) = H2(Mg,n),
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by [AC98, Theorem 2.2] we have

divRH�(Mg,n) = divH2�(Mg,n). (4)

We will use the complex degree grading for both divRH� and divH�. Since

CH1(Mg,n) ∼= H2(Mg,n)

via the cycle class map, we obtain a surjection

divCH�(Mg,n) � divH�(Mg,n) ⊂ H2�(Mg,n).

The following stronger result implies Theorem 3.

Theorem 3/Cohomology. For all g ≥ 3, we have λg /∈ divH�(Mg).

Proof. For g = 3, we have complete control of the tautological rings in Chow and cohomol-
ogy since the intersection pairing to R0(Mg)

∼= Q is non-degenerate for tautological classes
(see [Fab90]). In particular,

R�(M3)
∼= RH�(M3).

In degree 3,

divRH3(M3) ⊂ RH3(M3)

is a nine-dimensional subspace of a 10-dimensional space. Explicit calculations with the Sage
program admcycles [DSvZ21] show that λ3 /∈ divRH3(M3). We conclude that λ3 /∈ divH�(M3)
by (4).

Adding one marked point, we can consider the case of M3,1. Again it is known that all
(even) cohomology classes onM3,1 are tautological (see [SvZ20, § 5.1]). Thus, again by Poincaré
duality, the intersection pairing on RH∗(M3,1) is perfect and hence we can completely identify
these groups in terms of generators and relations. One finds that

divRH3(M3,1) ⊂ RH3(M3,1)

is a 28-dimensional subspace of a 29-dimensional space. But remarkably, a calculation by
admcycles shows

λ3 ∈ divRH3(M3,1).

The containment appears miraculous. Is there a geometric explanation?
The tautological ring RH∗(M4,1) is also completely under control in codimension 4:

divRH4(M4,1) ⊂ RH4(M4,1)

is a 103-dimensional subspace of a 191-dimensional space. An admcycles calculation shows that

λ4 /∈ divRH4(M4,1). (5)

Result (5) implies λ4 /∈ divRH4(M4) by a pull-back argument and

λ4 /∈ divH�(M4)

since divisor classes are tautological.
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For g ≥ 5, a boundary restriction argument is pursued. Suppose, for contradiction, that

λg ∈ divHg(Mg). (6)

Then, by pull-back, we have

λg ∈ divHg(Mg,1). (7)

Consider the standard boundary inclusion

δ :Mg−1,1 ×M1,2 →Mg,1.

As usual, we have

δ∗(λg) = λg−1 ⊗ λ1. (8)

Then (7) implies

λg−1 ⊗ λ1 ∈ divHg(Mg−1,1 ×M1,2). (9)

Since H1(Mg−1,1) and H1(M1,2) both vanish,

divH�(Mg−1,1 ×M1,2) = divH�(Mg−1,1)⊗ divH∗(M1,2).

We can therefore write divHg(Mg−1,1 ×M1,2) as

divHg(Mg−1,1)⊗ divH0(M1,2)

⊕ divHg−1(Mg−1,1)⊗ divH1(M1,2)

⊕ divHg−2(Mg−1,1)⊗ divH2(M1,2). (10)

Since by (8) the degree of δ∗(λg) splits as (g − 1) + 1 on the two factors, we conclude that

λg−1 ⊗ λ1 ∈ divHg−1(Mg−1,1)⊗ divH1(M1,2)

=⇒ λg−1 ∈ divHg−1(Mg−1,1),

using that λ1 
= 0 ∈ divH1(M1,2). By descending induction, we contradict (5). Therefore (7) and
hence also (6) must be false. �

2.2 With marked points
The proof of Theorem 3 in cohomology shows that

λg /∈ divHg(Mg,1) (11)

for g ≥ 4. By using (11) as a starting point, we can study

λg ∈ divHg(Mg,n)

for g ≥ 4 and n ≥ 2 using the boundary restrictions

δ̂ :Mg,n−1 ×M0,3 →Mg,n.

The argument used in the proof then easily yields the following statement with markings.

Theorem 3/Markings. For all g ≥ 4 and n ≥ 0, we have

λg /∈ divH�(Mg,n).

316

https://doi.org/10.1112/S0010437X22007874 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007874


Hodge bundle, universal 0-section, and log Chow

2.3 Proof of Theorem 4
Define the subalgebra of tautological classes

RH�
≤k(Mg,n) ⊂ RH�(Mg,n)

generated by classes of complex degrees less than or equal to k. Since all divisors are tautological,

divRH�(Mg,n) = RH�
≤1(Mg,n).

The arguments in §§ 2.1 and 2.2 naturally generalize to address the following question:
when does

λg−r ∈ RHg−r
≤k (Mg,n)

hold?
A crucial case of the question (from the point of view of boundary restriction arguments) is

for n = 1. Let Qg(r, k) be the statement

λg−r /∈ RHg−r
≤k (Mg,1),

which may be true or false.
For example, Qg(r, g − r) is false essentially by definition. In fact,

Qg(s, g − r) is false for all s ≥ r
for the same reason. In fact, depending on the parity of g − r, it is also false for s slightly below r:

Qg(r − 1, g − r) is false whenever g − r is odd.

To see this, note that the even Chern character chg−(r−1)(Eg) vanishes by [Mum83,
Corollary (5.3)]. Expressing it in terms of Chern classes λi = ci(Eg) using Newton’s identities,
we have

0 = chg−(r−1)(Eg) =
(−1)g−r+1

(g − r + 1)!
λg−r+1 +

(
polynomial in λ1, . . . , λg−r

)
.

This proves that λg−r+1 can be written in terms of tautological classes of degrees 1, . . . , g − r,
showing Qg(r − 1, g − r) to be false.

The boundary arguments used in §§ 2.1 and 2.2 yield the following two results.

Proposition 8. If Qg(r, k) is true, then Qg+1(r, k) and Qg+1(r + 1, k) are true.

Proposition 9. If Qg(r, k) is true, then

λg−r /∈ RHg−r
≤k (Mg,n)

for all n ≥ 0.

Since the k = 1 case has already been analyzed, we now consider k = 2. The first relevant
admcycles calculation is

λ3 /∈ RH3
≤2(M4,1),

so Q4(1, 2) is true. The corresponding subspace here is of dimension 91 inside a 93-dimensional
space. As a consequence of Propositions 8 and 9, we obtain the following result.

Proposition 10. For all g ≥ 4 and n ≥ 0, we have

λg−1 /∈ RHg−1
≤2 (Mg,n).
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A much more complicated admcycles calculation shows that

λ5 /∈ RH5
≤2(M5,1),

so Q5(0, 2) is true. The corresponding subspace here is of dimension 1314 inside a 1371-
dimensional space. As a consequence of Propositions 8 and 9, we find that

λg /∈ RHg
≤2(Mg,n) (12)

for all g ≥ 5 and n ≥ 0. For g ≥ 7, the equality

RH2(Mg) = H4(Mg)

is shown by combining results of Edidin [Edi92] and Boldsen [Bol12]. We provide a summary of
the argument in Appendix A. For g ≥ 7, the cycle map

CH�
≤2(Mg)→ H2�(Mg)

therefore factors through RH�
≤2(Mg). Then the non-containment (12) completes the proof of

Theorem 4.

2.4 Cases of Pixton’s conjecture (Proposition 5)
For the proofs of Theorem 3 and 4, dimensions and bases of the following graded parts of
tautological rings are required:

RH4(M4,1), dimQ = 191,

RH5(M5,1), dimQ = 1314.

These cases can be analyzed (via admcycles) since the dual pairings are found to have kernels
exactly spanned by Pixton’s relations. A discussion of the admcycles calculation is presented in
Appendix B.

Pixton has conjectured that his relations always provide all tautological relations. Dual pair-
ings are known to be insufficient to prove Pixton’s conjecture in all cases; see [Pan18, PPZ15]
for a more complete discussion.

3. The log Chow ring

3.1 Definitions
Let (X,D) be a non-singular variety10 X with a normal crossings divisor

D = D1 ∪ · · · ∪D� ⊂ X
with � irreducible components. The divisor D ⊂ X is called the logarithmic boundary. An open
stratum

S ⊂ X
is an irreducible quasi-projective subvariety satisfying two properties.

(i) S is étale locally the transverse intersections of the branches of the Di which meet S.
(ii) S is maximal with respect to (i).

The set U = X\D is an open stratum. Every open stratum is non-singular. A closed stratum
is the closure of an open stratum.

10 For a non-singular Deligne–Mumford stack X and a normal crossings divisor D ⊂ X, the definitions are the
same.
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If all Di are non-singular and all intersections

Di1 ∩ · · · ∩Dik

are irreducible and non-empty, then there are exactly 2� open strata.
Our main interest will be in the case (Mg,n, ∂Mg,n) where the normal crossings divisors have

self-intersections. The open strata defined above for (Mg,n, ∂Mg,n) are the same as the usual
open strata of the moduli space of stable curves.

An open stratum S ⊂ X is simple if the closure

S ⊂ X
is non-singular. A simple blow-up of (X,D) is a blow-up of X along the closure S ⊂ X of a
simple stratum. Let

X̃ → X (13)

be a simple blow-up along S. Let

D̃ = D̃1 ∪ · · · D̃� ∪ E ⊂ X̃
be the union of the strict transforms D̃i of Di along with the exceptional divisor E of the blow-
up (13). Then (X̃, D̃) is also a non-singular variety with a normal crossings divisor. An iterated
blow-up

(X̂, D̂)→ (X,D)

is a finite sequence of simple blow-ups of varieties with normal crossings divisors.11

The log Chow group of (X,D) is defined as a colimit over all iterated blow-ups,

logCH∗(X,D) = lim−→
Y ∈logB(X,D)

CH∗(Y ).

Here, logB(X,D) is the category of iterated blow-ups of (X,D): objects in logB(X,D) are iterated
blow-ups of (X,D) and morphisms in logB(X,D) are iterated blow-ups.

Since (X,D) is the trivial iterated blow-up of itself, there is canonical algebra homomorphism

CH�(X)→ logCH�(X,D)

which is injective (since an inverse map of Q-vectors spaces is obtained by proper push-forward).
We therefore view CH�(X) as a subalgebra of logCH�(X,D). Every Chow class on X canonically
determines a log Chow class for (X,D).

3.2 Calculation in genus 2
We will prove Proposition 7: there does not exist a class T ∈ logCH1(M2) satisfying

T|Mct
2

= 0 and λ2 =
T2

2!
∈ logCH2(M2).

Proof. Denote by π∗ : logCH�(M2)→ CH�(M2) the push-forward from log Chow to ordi-
nary Chow. We will prove a stronger claim: there does not exist a class T ∈ logCH1(M2)
satisfying

T|Mct
2

= 0 and π∗
(
λ2 − T2

2!

)
= 0 ∈ CH2(M2). (14)

11 An iterated blow-up is a special type of log blow-up. Since we are taking a limit, we do not have to consider all
log blow-ups.

319

https://doi.org/10.1112/S0010437X22007874 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007874


S. Molcho, R. Pandharipande and J. Schmitt

Figure 1. The stable graphs associated to the codimension 2 boundary strata B and C
contained in U2.

Denote by U2 ⊆M2 the open subset obtained by removing all closed strata of codimension
at least 3. By the excision exact sequence of Chow groups, we have

CH2(U2) ∼= CH2(M2)

and thus we can verify the stronger claim by working over U2.
The open set U2 has open strata of codimension 1 and 2. Since blow-ups along codimension

1 strata do not change U2, the only simple blow-ups

U ′
2 → U2

are along codimension 2 open strata (all of which are special in U2). Since the codimension 2
open strata of U2 do not intersect (or self-intersect), we obtain a P1-bundle as an exceptional
divisor which contains 0- and ∞-sections12 which are codimension 2 strata of U ′

2. The iterated
blow-ups

Û2 → U2

are then simply towers of blow-ups of these codimension 2 toric strata in successive exceptional
divisors.

Assume T ∈ logCH1(U2) satisfies the conditions (14). Since T restricts to zero over the
compact type locus, T can be represented as

T ∈ CH1(Û2)

on an iterated blow-up
Û2 → U2

with all blow-up centers living over strata in the complement of the compact type locus.
There are a single codimension 1 stratum Δ0 ⊂ U2 and two codimension 2 strata B,C ⊂ U2

contained in the complement of the compact type locus (see Figure 1).
Denote by E1

B, . . . , E
�
B and E1

C , . . . , E
m
C the exceptional divisors of blow-ups with centers

lying over B and C. Then T has a representation13

T = a · [Δ0] +
�∑

i=1

bi[Ei
B] +

m∑
j=1

cj [E
j
C ].

After taking the square and pushing forward, we claim that

π∗(T2) = x · [Δ0]2 + y · [B] + z · [C], (15)

12 Depending upon monodromy, there are either two distinct sections or one double section, that is, a closed subset
whose map to the base is finite of degree 2.
13 Here, [Δ0] is defined via pull-back (not strict transformation).
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with x, y, z ∈ Q satisfying

x = a2 ≥ 0 and z ≤ 0.

The claim follows from the following observations.

• In T2, all mixed terms [Δ0] · [Ei
B] and [Δ0] · [Ej

C ] vanish after push-forward to U2, since

π∗([Δ0] · [Ei
B]) = [Δ0] · π∗[Ei

B] = [Δ0] · 0 = 0.

• Similarly, since B ∩ C = ∅ in U2 (as we have removed the codimension 3 stratum ofM2), we
have [Ei

B] · [Ej
C ] = 0.

• Denote by M ∈ MatQ,m×m the matrix defined by

π∗([E
j1
C ] · [Ej2

C ]) = Mj1,j2 [C].

A basic fact is that M is negative definite (see [Mum61, § 1]). Therefore, for b = (bi)�
i=1, we

have

π∗
( m∑

j=1

bj [E
j
C ]

)2

= (b�Mb)︸ ︷︷ ︸
=z≤0

[C].

• The push-forward

π∗
( �∑

i=1

bi[Ei
B]

)2

is supported on B and thus is a multiple y · [B] of the fundamental class of B.

After substituting (15) in the second condition of (14), we conclude the existence of x, y, z ∈ Q

with x ≥ 0 and z ≤ 0 satisfying

x · [Δ0]2 + y · [B] + z · [C] = 2λ2 ∈ CH2(U2). (16)

Using admcycles (see Appendix B.3), we can explicitly identify all classes in (16) in

CH2(U2) ∼= Q2.

The corresponding affine linear equation has the solution space

x = z − 1
120 , y = − 5

24 · z + 11
2880 .

But for z ≤ 0, we have

z − 1
120 < 0,

which contradicts the assumption that x ≥ 0. Therefore, there cannot exist a class

T ∈ logCH1(U2)

satisfying conditions (14). �

4. Relationship with logarithmic geometry

4.1 Overview
The definitions of § 3 are natural from the perspective of logarithmic geometry. The choice of the
divisor D on X can be seen as the choice of a log structure on X. We briefly recall the relevant
definitions and constructions of logarithmic geometry.
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4.2 Definitions
A log structure on a scheme X is a sheaf of monoids MX on the étale site of X together with a
homomorphism14

exp : MX → OX

which induces an isomorphism exp−1(O∗
X) ∼= O∗

X on units.

• Morphisms of log schemes (X,MX)→ (Y,MY ) are morphisms of schemes

f : X → Y

together with homomorphisms of sheaves of monoids f−1MY →MX which are compatible
with the structure map f−1OY → OX in the obvious sense.

• Log structures can be pulled back. Given a morphism of schemes

f : X → Y

and a log structure MY on Y , there is an induced log structure f∗MY on X, generated by
f−1MY and the units O∗

X .

The basics of log schemes can be found in Kato’s original article on the subject [Kat89].
The category of log schemes is, in practice, too large for geometric study. It is therefore com-

mon to work in smaller categories by requiring additional properties to hold. For our purposes,
we will work only with in the category of fine and saturated log schemes, usually termed f.s. log
schemes. The prototype of such a log scheme is

AP = Spec(k[P ]),

the spectrum of the algebra generated by a fine and saturated monoid P : a finitely generated
monoid P which injects into its Grothendieck group P gp and which is saturated there,

nx ∈ P for n ∈ N, x ∈ P gp =⇒ x ∈ P.
The sheaf MAP

here is the subsheaf of OAP
generated by P and the units of OAP

.
All of the log schemes which arise for us will be comparable to AP on the level of log

structures. More precisely, we require our log schemes X to admit the following local charts: for
each x ∈ X, there must be an étale neighborhood

i : U → X,

an f.s. monoid P , and a map g : U → AP such that

i∗MX = g∗MAP
.

Since we are always working with f.s. log schemes, the chart P at x can in fact always be chosen
to be isomorphic to the characteristic monoid15

MX,x = MX,x/O∗
X,x

at x.

4.3 Normal crossings pairs
Let us now return to the situation of interest for this paper: a pair (X,D) of a non-singular
scheme (or Deligne–Mumford stack) with a normal crossings divisor D ⊂ X. The pair (X,D)

14 OX here is sheaf of monoids under multiplication. In particular, the map exp transfers the addition in MX to
the usual multiplication of functions in OX , motivating its name.
15 Since we are working with étale sheaves, the stalk is computed in the étale topology; x denotes the étale stalk.
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determines a sheaf MX on the étale site of X by setting

MX(p : U → X) = {f ∈ OU : f is a unit on p−1(X −D)}
for each étale map p : U → X. The sheaf of units O∗

X is a subsheaf of MX . We write

MX = MX/O∗
X

for the characteristic monoid of X. Normal crossings pairs (X,D), with the log structure
described above, are precisely the log schemes which are log smooth over the base field Spec k
with trivial log structure.

When the irreducible components of D do not have self-intersections, the log structure MX

of (X,D) can be defined on the Zariski topology of X. The result is a technically simpler theory.
The pair (X,D) is then called a toroidal embedding (without self-intersection) in [KKMS73].
However, for a general pair (X,D), MX can only be defined on the étale site of X. The general
étale case differs from the Zariski case in two key aspects: the irreducible components of D
can self-intersect, and the characteristic monoid MX , while locally constant on a stratum, can
globally acquire monodromy.

The characteristic monoid MX is a constructible sheaf on X. The connected components
of the loci on which MX is locally constant define a stratification of X, which is precisely the
stratification of § 3.1. Indeed, for a geometric point x ∈ X,

MX,x = Nr

where r is the number of branches (in the étale topology) of D that contain x.
A combinatorial space can be built from the information contained in MX . There are two

basic approaches. The first, which is more geometric and more evidently combinatorial, is to
build the cone complex C(X,D) of (X,D). We briefly outline the construction (details can be
found in [CCUW20, ACMUW16]).

We begin with the case where MX is defined Zariski locally on X (when the irreducible
components of D do not have self-intersections). Then C(X,D) is a rational polyhedral cone
complex (see [KKMS73]).

• For each point x ∈ X, the characteristic monoid MX,x determines a rational polyhedral cone

σX,x = HomMonoids(MX,x,R≥0)

together with an integral structure

NX,x = Hom(Mgp
X,x,Z).

• When x belongs to a stratum S ⊂ X and y belongs to the closure S ⊂ X, there are canonical
inclusions

σX,x ⊂ σX,y, NX,x ⊂ NX,y.

• We glue the cones σX,x together with their integral structures to form the complex

C(X,D) = lim−→
x∈X

(σX,x, σX,x ∩NX,x).

• More effectively, instead of working with all points x ∈ X, we can take the finite set {xS} of
the generic points of the strata of (X,D). Then

C(X,D) = lim−→
xS

(σX,xS
, σX,xS

∩NX,xS
).

In other words, C(X,D) is the dual intersection complex of (X,D).
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When MX is defined only on the étale site, we build the cone complex C(X,D) by descent.

• We find an étale (but not necessarily proper), strict (f∗MX = MY ) cover f : Y → X which is
as fine as possible (called atomic or small in the literature): the log structure on Y is defined
on the Zariski site of Y , and each connected component of Y has a unique closed stratum.
Taking a further such cover V of the fiber product Y ×X Y if necessary, we find a groupoid
presentation

V ⇒ Y → X.

• We define

C(X,D) = lim−→[C(V ) ⇒ C(Y )]

in the category of stacks (with respect to the topology generated by face inclusions) over cone
complexes. The construction is carried out in detail in [CCUW20], where it is also shown that
it is independent of the choice of groupoid presentation.

Moreover, C(X,D) is a complex of cones, but no longer a rational polyhedral cone complex.
For each point x ∈ X, there is a canonical map

σX,x → C(X,D),

but the map may no longer be injective. As the étale local branches of the divisor D may be
connected globally on X, the faces of the cones σX,x may be glued to each other in C(X,D), and
they may naturally acquire automorphisms coming from the monodromy of the branches of D.

4.4 Artin fans
An equivalent combinatorial space is the Artin fan AX of (X,D). The Artin fan is defined by
gluing, instead of the dual cones σX,x of MX,x, the quotient stacks

AMX,x
= [Spec(k[MX,x])/Spec(k[Mgp

X,x])].

The gluing is exactly the same as for C(X,D) as explained above. When MX is defined on the
Zariski site of X,

AX = lim−→
x∈X

AMX,x
= lim−→

xS

AMX,xS
,

and when MX is defined only on the étale site of X,

AX = lim−→[AV ⇒ AY ],

for an atomic presentation lim−→[V ⇒ Y ] = X as before.
The Artin fan AX captures exactly the same combinatorial information as the cone complex

C(X,D), but is geometrically less intuitive. Nevertheless, the Artin fan has the advantage of
coming with a smooth morphism of stacks

α : X → AX .

4.5 Logarithmic modifications
The cone complex C(X,D) encodes an important operation: logarithmic modification of X.
Logarithmic modifications correspond to subdivisions of C(X,D). A subdivision of C(X,D) is,
by definition, a compatible subdivision of all the cones σX,x compatible with the gluing relations.
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Each cone in the subdivision σ′X,x → σX,x determines dually a map MX,x →M
′
X,x, and so a map

[Spec(k[M ′
X,x])/Spec(k[Mgp

X,x])]→ [Spec(k[MX,x])/Spec(k[Mgp
X,x])].

The compatibility of the subdivisions with respect to the gluing relations in C(X,D) implies
that these maps glue to a proper and birational representable map

A′
X → AX .

Then we define
X ′ = X ×AX

A′
X → X

which is proper, birational, and representable over X. Moreover, X ′ has an induced log structure,
and there is a map

A′
X → AX′

which is proper, Deligne–Mumford type, étale, and bijective.
The map A′

X → AX′ – called the relative Artin fan of X ′ over X in the literature – is not
necessarily representable, as the various monodromy groups of the strata of AX may act non-
faithfully on the strata of A′

X , whereas the monodromy groups of the strata of X ′ act faithfully
on AX′ by definition. In this way the strata of A′

X become trivial gerbes over the strata of AX′ .
In a sense, AX′ can be considered as a relative coarse moduli space for A′

X .16

Geometrically, subdivisions come in three levels of generality as follows.

• General subdivisions simply produce proper birational mapsX ′ → X, which are isomorphisms
over X −D. Such maps are called logarithmic modifications

• Log blow-ups are a special kind of subdivision. They are the subdivisions of C(X,D) into
the domains of linearity of a piecewise linear function on C(X,D), and they correspond to a
sheaf of monomial ideals,

I ⊂MX .

The map X ′ → X is then projective and is the normalization of the blow-up of X along the
sheaf of ideals exp(I) ⊂ OX .

• Star subdivisions along simple strata S correspond to the most basic logarithmic modifi-
cations. The strata of X are, by construction, in bijection with the cones of C(X,D). We
obtain a subdivision by subdividing σX,xS

along its barycenter (see [CLS11, Definition 3.3.13]).
A simple blow-up along S corresponds precisely to the star subdivision of the cone σX,xS

.
Further applications of the star subdivision operation are discussed in § 5.3.

Although star subdivisions are the simplest and most basic subdivisions, we need not consider
more general subdivisions for our purposes. We are only concerned with statements that are valid
over some arbitrarily fine subdivision, and the star subdivisions along simple strata are cofinal
in this setting: for each subdivision

C(X,D)′ → C(X,D),

there is a further subdivision C(X,D)′′ → C(X,D)′ such that the composition C(X,D)′′ →
C(X,D) is the composition of star subdivisions along simple strata (see [Oda88,
Chapter 1.7]). So the reader can restrict attention to simple blow-ups without any loss of
generality.

16 In fact, this can be made precise: AX′ is the relative coarse moduli space of A′
X with respect to the map

A′
X → Log to the stack parameterizing log structures.
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We define a category logM(X,D) whose objects are log modifications

X ′ → X

obtained via subdivisions of C(X,D). There is a unique morphism X ′′ → X ′ if and only if X ′′

is a log modification of X ′. Following [Bar18], we then define

logCH�(X,D) = lim−→
X′∈logM(X)

CH�(X ′).

As simple blow-ups are cofinal among log modifications, we have, equivalently,

logCH�(X,D) = lim−→
X′∈logB(X,D)

CH�(X ′)

as defined in § 3.1.

5. The divisor subalgebra of log Chow

5.1 Definitions
Let (X,D) be a non-singular variety X with a normal crossings divisor

D = D1 ∪ · · · ∪D� ⊂ X
with � irreducible components. Let

divlogCH�(X,D) ⊂ logCH�(X,D)

be the subalgebra generated by the classes of all the components of the associated normal
crossings divisors of all iterated blow-ups of X.

Let S ⊂ X be an open stratum of codimension s, let S ⊂ X be the closure, and let

ε : S̃ → X

be the normalization of S equipped with a canonical map ε to X. The normalization S̃ is non-
singular and separates the branches of the self-intersections of S. The map ε is an immersion
locally on the source and therefore has a well-defined normal bundle

Nε = ε∗TX/TS̃

of rank s.
An open stratum S ⊂ X of codimension s is étale locally cut out by s branches of the full

divisor D. These s branches are partitioned by monodromy orbits over S. Each monodromy
orbit determines a summand of Nε. We obtain a canonical splitting of Nε corresponding to
monodromy orbits

Nε = ⊕γ∈Orb(S)N
γ
ε , rank(Nγ

ε ) = |γ|,

where Orb(S) is the set of monodromy orbits of the branches of D cutting out S, and |γ| is the
number of branches in the orbit γ. For polynomials Pγ in the Chern classes of Nγ

ε , we define

[S, {Pγ}γ∈Orb(S)] = ε∗
( ∏

γ∈Orb(S)

Pγ(Nγ
ε )

)
∈ CH�(X). (17)
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We define normally decorated classes by the following more general construction. Let G be
the monodromy group of the s branches of D which cut out S. Over S̃, there is a principal
G-bundle

μ : P̃ → S̃

over which the s branches determine s line bundles

N1, . . . , Ns. (18)

The G-action on P̃ permutes the line bundles (18) via the original monodromy representation.
Let PG be any G-invariant polynomial in the Chern classes c1(Ni). Since PG(c1(N1), . . . , c1(Ns))
is G-invariant,

PG(c1(N1), . . . , c1(Ns)) ∈ CH�(S̃).

We define a normally decorated strata class by

[S, PG] = ε∗(PG(c1(N1), . . . , c1(Ns))) ∈ CH�(X).

Construction (17) is a special case of a normally decorated strata class.
A fundamental result about the log Chow ring of (X,D) is the following inclusion.

Theorem 11. Let (X,D) be a non-singular variety with a normal crossings divisor.
Let S ⊂ X be an open stratum. Every normally decorated class associated to S lies in
divlogCH�(X,D).

We give two proofs of Theorem 11. In § 5.2 we give a very concrete iterated blow-up of X
and an explicit computation expressing the normally decorated class as a sum of products of
divisors. On the other hand, in Corollary 16 we give a more conceptual explanation based on
the study of the Chow group of the Artin fan of the pair (X,D).

5.2 Proof of Theorem 11
Theorem 11 is almost trivial if every irreducible component Di of D is non-singular. The
complexity of the argument occurs only if there are irreducible components with self-intersections.

Proof. Let S ⊂ X be an open stratum of codimension s. The first case to consider is when S is
simple. Then the closure

S ⊂ X

in non-singular and no normalization is needed,

ε : S → X.

Let G be the monodromy of the s branches of D which cut out S. We must prove

[S, PG] = ε∗(PG(c1(N1), . . . , c1(Ns))) ∈ divlogCH�(X)

for every G-invariant polynomial PG.
We argue by induction on the degree of PG. The base case is when PG is of degree 0. We can

take PG = 1, and we must prove

[S, 1] = ε∗[S] ∈ divlogCH�(X,D). (19)

Our argument requires a blow-up construction which we term an explosion.
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The explosion of (X,D) along a simple stratum S,

e : ES(X,D)→ X, (20)

is defined by a sequence of blow-ups of X. To describe the blow-ups locally17 near a point p ∈ S,
let

B1, . . . , Bs

be the branches of D cutting out S near p.

• At the zeroth stage, we blow up S, the intersection of all s branches B1, . . . , Bs.

Consider next the strict transform of the intersection of s− 1 branches. For each choice of
s− 1 branches, the strict transform of the intersection is non-singular of codimension s− 1 over
an open set of p ∈ X. Moreover, the strict transforms of the intersections of different sets of s− 1
branches are disjoint over an open set of p ∈ X.

• At the first stage, we blow up all s of these strict transforms of intersections of s− 1 branches.

Then the strict transforms of the intersections of s− 2 branches among B1, . . . , Bs are non-
singular of codimension s− 2 and disjoint over an open set of p ∈ X.

• At the second stage, we blow up all
(
s
2

)
of these strict transforms of intersections of s− 2

branches.

We proceed in the above pattern until we have completed s− 1 stages.

• At the jth stage, we blow up all
(
s
j

)
strict transforms of intersections of s− j branches.

The explosion (20) is the result after stage j = s− 1.18 Since the above blow-ups are defined
symmetrically with respect to the branches Bi, the definition is well defined globally on X.

Near S, all the prescribed blow-ups are of simple loci, but non-simplicity may occur away
from S. In order for the explosion to be a sequence of simple blow-ups, some extra blow-ups may
be required far from S. Since we will only be interested in the geometry near S, the blow-ups
related to non-simplicity away from S are not important for our argument (and are not included
in our notation).

A local study shows the following properties of the explosion

e : ES(X,D)→ X,

near S.

(i) The inverse image e−1(S) ⊂ ES(X,D) is a non-singular irreducible subvariety which we
denote by ES(S) and call the exceptional divisor of the explosion. We denote the inclusion
by

ι : ES(S)→ ES(X,D).
(ii) Let NS be the rank s normal bundle of S in X. The fibers of the projective normal bundle

P(NS)→ S (21)

have a canonical (unordered) set of s coordinate hyperplanes determined by the s local
branches of D cutting out S. In the fibers of (21), these relative hyperplanes determine s
coordinate points,

(
s
2

)
coordinate lines,

(
s
3

)
coordinate planes, and so on.

17 Throughout the proof of Theorem 11, the terms ‘local’, ‘near’, and ‘open’ refer to the Euclidean topology since
we must separate branches.
18 At stage j = s− 1, we are blowing up divisors, so no change occurs in the space. Still, to uniformize later
notation, we include this j = s− 1 stage and declare the divisorial center of this trivial blow-up to be its exceptional
divisor.
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(iii) The restriction of the explosion morphism to the exceptional divisor

eS : ES(S)→ S

is obtained from P(NS)→ S by first blowing up the coordinate points, and then blowing
up the strict transforms of the coordinate lines, and so on. For

1 ≤ j ≤ s− 1,

the jth stage of the construction of the explosion restricts to the blow-up of the strict
transform of the (j − 1)-dimensional coordinate linear spaces of the fibers of (21).

(iv) On ES(S), we have a distinguished set of divisors

E0, E1, . . . , Es−1 ∈ CH1(ES(S)).

Here, E0 is the pull-back to ES(S) of

OP(NS)(−1)→ P(NS)

determined by the zeroth stage of the construction of the explosion. Then Ej ∈ CH1(ES(S))
is the pull-back to ES(S) of the exceptional divisor obtained from the blow-up of the strict
transform of the (j − 1)-dimensional coordinate linear spaces in the fibers of (21).

(v) Every class of the form

[ES(S)] · F(E0, . . . , Es−1) ∈ CH∗(ES(X,D)),

where F is a polynomial, lies in the divisor ring of log Chow,

[ES(S)] · F(E0, . . . , Es−1) ∈ divlogCH∗(X,D).

The claim follows from the geometric construction of the explosion. To start, ES(S) is a
component of the associated normal crossings divisor of ES(X,D). For each 0 ≤ j ≤ s− 1,
Ej comes from the pull-back of a divisor stratum of the blow-up at the jth stage.

To the explosion geometry, we can apply Fulton’s excess intersection formula. We start with
the zeroth stage:

e0 : X0 → X

is the blow-up along S, and

e∗0[S] = [P(NS)] · cs−1

(
NS

OP(NS)(−1)

)
.

When we pull back e∗0[S] all the way to ES(X,D), we obtain19

e∗[S] = [ES(S)] · cs−1

(
NS

OP(NS)(−1)

)
.

By definition, we have
c(OP(NS)(−1)) = 1 + E0.

By property (v) above for the explosion geometry, to prove

ε∗[S] ∈ divlogCH�(X,D), (22)

we need only show that

ck(NS) = Fk(E0, . . . , Es−1) ∈ CHk(ES(S)) (23)

for polynomials Fk, 1 ≤ k ≤ s− 1.

19 We have omitted the pull-backs in the notation inside the argument of cs−1.
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Claim (23) is established directly by the following basic formula of the explosion geometry.
For 0 ≤ j ≤ s− 1, let

Lj =
j∑

i=0

Ei.

Let σk be the kth elementary symmetric polynomial. Then we claim that

ck(NS) = σk(L0, . . . , Ls−1) ∈ CHk(ES(S)). (24)

Once we prove (24), this immediately shows (23) and thus, as explained above, estab-
lishes (22). We remind ourselves that (22) represents the base case PG = 1 of our inductive
proof that [S, PG] ∈ divlogCH∗(X).

Let T = (C∗)s and let ti : T → C∗ be the projection to the ith factor, which we interpret as
the weight of the standard representation of this ith factor. To show formula (24), we consider
the universal T-equivariant model where S ⊂ X is

0 ∈ Cs

and the logarithmic boundary H ⊂ Cs is the union of the s coordinate hyperplanes. Then the
T-action on

e0 : E0(Cs, H)→ 0

has s! isolated T-fixed points naturally indexed by elements of the symmetric group Σs. The
weights of the divisors

L0, . . . , Ls−1

with their canonical T-equivariant lifts at the T-fixed point γ ∈ Σs are

tγ(1), tγ(2), tγ(3), . . . , tγ(s)

respectively. Formula (24) then follows immediately for the T-equivariant model. The general
case of (24) is a formal consequence.

We now will establish the induction step. Let S ⊂ X be a simple stratum of codimension s
with monodromy group20 G of the branches of D cutting out S. We must prove

[S, PG] = ε∗(PG(c1(N1), . . . , c1(Ns))) ∈ divlogCH�(X,D)

for every G-invariant polynomial PG. By induction, we assume the truth of the statement for
polynomials of lower degree.

Let PG be a G-equivariant polynomial in c1(N1), . . . , c1(Ns) of degree d > 0. We will prove
a stronger property for the induction argument:

ε∗(PG(c1(N1), . . . , c1(Ns))) ∈ divlogCH�(X,D)

can be expressed as a linear combination of terms of the form

D̂1D̂2 · · · D̂d

where the D̂i are components of the logarithmic boundary of an iterated blow-up of the explosion
ES(X,D) and D̂1 lies over

ES(S) ⊂ ES(X,D).

Our proof of the base of the induction establishes the stronger property.

20 The geometry involved in the proof of the base case of the induction was fully symmetric with respect to the
branches, so the group G did not play a role.
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We can assume PG is the summation21 MG of the G-orbit of a degree d monomial M ,

MG =
1

|Stab(M)|
∑
g∈G

g(M).

We will study the geometry of the exceptional divisor of the explosion

eS : ES(S)→ S

locally over an analytic open set Up ⊂ S of p ∈ S.
Over small enough Up, we can separate all the branches B1, . . . , Bs of D which cut out S,

and we can write
M = c1(N1)m1 · · · c1(Ns)ms = Bm1

1 · · ·Bms
s . (25)

Over Up, we can separate all the exceptional divisors of all the blow-ups in the construction of

ES(S)→ P(NS)

explained in (iii) above. There are 2s − 2 such exceptional divisors in bijective correspondence
to all the proper non-zero coordinate linear subspaces of the fiber NS |p of NS at p. We denote
these 2s − 2 exceptional divisors by EΛ, where

Λ ⊂ NS |p
is a proper coordinate linear space. As before, we denote the pull-back of OP(NS)(−1) to ES(S)
by E0.

Via the pull-back formula for Bi, we have

e∗(Ni) = E0 +
∑

Λ⊂Hi

EΛ ∈ CH1(e−1(Up)), (26)

where Hi ⊂ NS |p is the hyperplane associated to Bi. We now substitute formula (26) into (25)
to find that

M ∈ Q[E0, {EΛ}Λ].

Of course, M has degree d in the divisors E0 and {EΛ}Λ.
Let ME be a monomial of degree d in the divisors

E0 and {EΛ}Λ. (27)

The monodromy group G acts22 canonically on the set (27) leaving E0 fixed. Let

ME
G =

1
|Stab(ME)|

∑
g∈G

g(ME)

be the summation over the G-orbit of ME . Since ME
G is G-invariant, ME

G is a well-defined class

ME
G ∈ CHd(ES(S)).

To prove the stronger induction step, we need only prove23 that

ι∗
(
ME

G · cs−1

(
NS

OP(NS)(−1)

))
∈ divlogCH∗(X,D) (28)

21 The stabilizer factor occurs to correct for overcounting.
22 The G-action on {EΛ}Λ preserves the dimension of Λ. Moreover, for a group element g ∈ G, if g(EΛ) �= EΛ,
then

g(EΛ) ∩ EΛ = ∅.

23 Recall that ι is the inclusion ι : ES(S) → ES(X,D).
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can be expressed as a linear combination of terms of the form

D̂1D̂2 · · · D̂d,

where the D̂i are components of the logarithmic boundary of an iterated blow-up of the explosion
ES(X,D) and D̂1 lies over ES(S). To see why the claim for (28) is enough, we write

e∗[S,MG] =
∑
ME

G

e∗[S] ·ME
G

=
∑
ME

G

[ES(S)] · cs−1

(
NS

OP(NS)(−1)

)
·ME

G

=
∑
ME

G

ι∗
(
ME

G · cs−1

(
NS

OP(NS)(−1)

))
.

The first equality is written with the understanding that e∗[S] is supported on ES(S).
To study ME

G , we take a geometric approach. If ME is just Ed
0 , then (28) is already of the

claimed form by our analysis in the base case. Otherwise, ME has at least one factor EΛ. Since
{EΛ}Λ is a set of simple normal crossings divisors on ES(S), we claim that we can write ME (if
non-zero) as

ME = EΛ1 · · ·EΛt · M̃E ,

where EΛ1 , . . . , EΛt are distinct divisors with a non-empty transverse intersection

IUp = EΛ1 ∩ · · · ∩EΛt over Up.

Moreover, we can assume every divisor of the monomial M̃E contains IUp . Indeed, we construct
inductively for i = 1, 2, . . . a representation

ME = EΛ1 · · ·EΛi · M̃E
i

such that the EΛj are distinct and have non-zero transverse intersection. For i = 1 this is just our
assumption that ME has some factor EΛ =: EΛ1 . On the other hand, given the representation
above for some i, if all factors EΛ′ of M̃E

i contain EΛ1 ∩ · · · ∩EΛi , we are done, setting t = i.
If there is an EΛ′ not satisfying this, we set EΛi+1 = EΛ′ . If the intersection EΛ1 ∩ · · · ∩EΛi+1

was empty, then ME = 0, giving a contradiction. Thus, the intersection is non-empty, and trans-
verse by the fact that the EΛ are a normal crossings divisor. We continue inductively, and this
construction concludes after at most d steps.

When the monodromy invariant ME
G is considered, we obtain a non-singular subvariety of

ES(S) of codimension t,
V ⊂ ES(S),

which is a simple stratum of ES(X,D),

εV : V → ES(X,D).

Over Up, the subvariety V restricts to the union24 of the distinct G-translates of IUp . The crucial
geometric observation is

ι∗(ME
G ) = εV∗ (P̃ ) ∈ CH�(ES(X,D),

where P̃ is defined by M̃E and is of degree at most d− 1.

24 The distinct G-translates of IUp are disjoint (see footnote 22).
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We can apply the strong induction property: the class

εV∗ (P̃ ) ∈ divlogCH�(X,D)

can be expressed as a linear combination of terms of the form

D̂1D̂2 · · · D̂d

where the D̂i are components of the logarithmic boundary of an iterated blow-up of the explosion
of V in ES(X,D) and D̂1 lies over

EV (V ) ⊂ ES(X,D).

Then the claim

ι∗
(
ME

G · cs−1

(
NS

OP(NS)(−1)

))
∈ divlogCH∗(X,D) (29)

holds by the analysis of

cs−1

(
NS

OP(NS)(−1)

)
on ES(S) in the base case of the induction. Since each monomial

D̂1D̂2 · · · D̂d

of εV∗ (P̃ ) lies over EV (V ), which in turn lies over ES(S), the analysis of the base case yields the
desired result (29).

The induction argument is complete, so we have proven Theorem 11 in the case where S is
a simple stratum of (X,D). The general case follows by repeated application of the result for a
simple stratum.

Let S ⊂ X be a stratum with a singular closure

S ⊂ X.
The first step is to blow up simple strata in S,

X̂ → X,

until the strict transform of S,

Ŝ ⊂ X̂,

is non-singular. Since S is simple stratum of the blow-up X̂, we can apply Theorem 11 to S ⊂ X̂.
Via the blow-down map, we have

Ŝ → S.

There are two discrepancies to handle before deducing Theorem 11 for normally decorated classes
associated to S ⊂ X from the result for normally decorated classes associated to S ⊂ X̂.

(i) The fundamental class [Ŝ] ∈ CH�(X̂) is not the pull-back of [S] ∈ CH�(X).
(ii) The normal directions of Ŝ ⊂ X̂ differ from the pull-backs of the normal directions of S ⊂ X.

However, both discrepancies are corrected by applying the simple stratum result to the lower-
dimensional strata occurring in Ŝ \S. �
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5.3 Explosion geometry and barycentric subdivision
The explosion operation E(X,D) along a simple stratum S ⊂ X, which appeared in the proof
§ 5.2, is an essentially combinatorial operation that has a natural interpretation in terms of the
geometry of the cone complex C(X,D).

Consider first a cone σ of dimension n in a lattice N , and let Aσ be the associated toric
variety. Let Aσ be the associated Artin fan, which is simply the stack quotient of Aσ by the
corresponding dense torus Tσ. The logarithmic stratification of Aσ is precisely the stratification
defined by the orbits of Tσ, and there is a bijective dimension-reversing correspondence between
faces of σ and strata. We write σ(k) for the k-dimensional faces of σ and thus the codimension
k strata of Aσ.

For each face τ of σ, the barycenter bτ of τ is the sum

bτ =
∑

vi∈τ∩σ(1)

vi

of the primitive vectors along the extremal rays of τ . For any flag

τ0 ⊂ τ1 ⊂ · · · ⊂ τk
of faces of σ, the barycenters bτ0 , . . . , bτk

span a cone. The set of all such cones, for all flags in
σ, forms a subdivision of σ, which we call the barycentric subdivision σ̃ of σ.

Alternatively, we can build the barycentric subdivision inductively: at step 1, we start with
the star subdivision over the barycenter of faces in σ(n) (where σ has dimension n), then take the
star subdivision over faces in σ(n− 1), and so on, terminating after n− 1 steps with σ(2), after
which the operation no longer has any effect. We thus produce a sequence of n− 1 subdivisions

σ̃ = σn−1 → σn−1 · · · → σ1 → σ0 = σ

When σ = Rn
≥0, which is our main case of interest, the barycentric subdivision has n! maximal

cones.
The barycentric subdivision of σ produces a log modification

Ãσ → Aσ,

which is in fact a log blow-up. More precisely, we have constructed the subdivision Ãσ → Aσ as
a sequence

Ãσ = An−1 → An−2 → · · ·A1 → A0 = Aσ

and the map Ak → Ak−1 is determined by the subdivision σk → σk−1, which is the subdivision
corresponding to the domains of linearity of a piecewise linear function (see [KKMS73] for the
construction). In the case of interest,

σ = Rn
≥0,

the map A1 → A0 is the blow-up of An at the origin, A2 → A1 is the blow-up along the strict
transforms of the coordinate lines, and in general Ak → Ak−1 is the blow-up along the strict
transforms of the dimension k − 1 hyperplanes of An in Ak−1. Thus, the barycentric subdivision
of An is precisely the explosion of An along the origin.

The barycentric subdivision construction is clearly equivariant and therefore descends to the
Artin fan Aσ of Aσ. Furthermore, the subdivision is the same on isomorphic faces of σ and
invariant with respect to automorphisms of σ. Consequently, given any cone complex C, the
barycentric subdivisions of individual cones glue to a global subdivision of C, and that is true
even if faces of C are identified or if there is monodromy in C. Thus, for a normal crossings pair
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(X,D), we can define the barycentric subdivision C̃(X,D) of the cone complex C(X,D), and
equivalently, a log blow-up

ÃX → AX

of the Artin fan. We also obtain globally a log blow-up

(X̃, D̃) = X ×AX
ÃX → (X,D)

with Artin fan A
X̃

= ÃX .
The explosion of § 5.2 can only be defined locally around a simple stratum S. A quasi-

projective stratum S (not necessarily simple) of a normal crossings pair (X,D) corresponds to a
cone σ of C(X,D). More precisely, the quasi-projective stratum S corresponds to the interior of
σ, and the whole of σ corresponds to a canonical open set U in X that contains S as its minimal
stratum: the open set U consists of all quasi-projective strata whose closure contains S. The
explosion ES(U,D|U )) is well defined.

The cone σ has a cover by Rn
≥0, and, more precisely, by a quotient of Rn

≥0 obtained by
potentially identifying faces and taking a quotient by a group G. The group G is precisely the
monodromy group of the divisors D that cut out S considered in § 5, and the interior σ◦ of σ is
in fact the stack quotient [Rn

>0/G]. Similarly, the Artin fan U of U has an analogous étale cover
by the groupoid quotient of [An/Gn

m �G], with S corresponding to the minimal stratum

B(Gn
m �G) ⊂ U .

The cover is not representable, but is representable over S. From the discussion of the barycen-
tric subdivision of An, we see that ES(U,DU ) is precisely the barycentric subdivision X̃ → X
restricted to U . We may thus view the barycentric subdivision as globalizing the explosion
geometry.

If the stratum S is simple, the explosion of § 5.2 is defined over a neighborhood of S. However,
the extension no longer coincides with the barycentric subdivision. The barycentric subdivision
performs additional blow-ups, first blowing up all minimal strata in the closure of S (and also
strata around S whose closure does not necessarily meet S).

We illustrate the concepts discussed above through an example. Let (X,D) be a log scheme
whose cone complex is the cone over an equilateral triangle, with all edges identified and with
monodromy Z/3Z. For example, we can construct (X,D) by taking

X → B

to be a family with fiber A3 over a non-singular baseB satisfying π1(B) = Z, so that the generator
of π1(B) cyclically permutes the coordinate hyperplanes of A3. The divisor D ⊂ X is then the
union of these coordinate hyperplanes over B.

Z/3Z � e1

e2

e3
A cross-section of the cone complex C(X,D)

The log scheme (X,D) has four strata: the open set X −D, corresponding to the empty
face of the triangle (or, equivalently, the vertex of the cone over the triangle); the interior of the
divisor D corresponding to the vertex

e1 = e2 = e3;
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the locus which is étale locally the intersection of exactly two irreducible components of D
corresponding to edge

e1e2 = e1e3 = e2e3;

and the triple point singularity of D corresponding to the whole triangle. We name the strata
Q,R, S, T , respectively. While T is simple, S is not, since

S = S ∪ T
is not normal. The strata are taken bijectively to points of the Artin fan via the map

α : X → AX

We depict the Artin fan as four points, each isomorphic to BGk
m �G as indicated, with points

drawn increasingly bigger to describe the topology (the closure contains all smaller points).

BG3
m � Z/3Z = α(T )

BG2
m = α(S)

BGm = α(R)

SpecC = α(Q)
Artin fan AX

Consider the explosion of the quasi-projective stratum S depicted by the open line segment
e1e2. The open set U over which the explosion is defined is Q ∪R ∪ S. The explosion of S is the
barycentric subdivision of e1e2:

However, the above explosion does not extend away from U . The blow-up of S, over an étale
cover of X is depicted as

e1

e2

e3

But the blow-up does not descend to X as it does not respect the face identifications/
automorphisms of C(X,D). The barycentric subdivision is depicted as

Z/3Z � e1

e2

e3

The corresponding log blow-up restricts to the explosion over U . Over X, the log blow-up is not
the blow-up of S, but the explosion of T .

5.4 Tautological classes
Let (X,D) be a non-singular variety with a normal crossings divisor. We define the logarithmic
tautological ring

R�(X,D) ⊂ CH�(X)
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to be the Q-linear subspace spanned by all normally decorated strata classes (which is easily
seen to be closed under the intersection product). Theorem 11 can then be written as

R�(X,D) ⊂ divlogCH�(X,D).

The logarithmic tautological ring of (X,D) depends strongly on the divisor D. For example,
if X is irreducible and D = ∅, then there is only one stratum and

R�(X, ∅) = Q.

For the moduli space of curves, the inclusion

R�(Mg,Δ0) ⊂ R�(Mg, ∂Mg)

is proper for g ≥ 2. Furthermore, the inclusion

R�(Mg, ∂Mg) ⊂ R�(Mg)

in the standard tautological ring25 is proper for g ≥ 3 since R�(Mg) contains κ and ψ classes
which do not appear in the logarithmic constructions.

Let (X,D) be a non-singular variety with a normal crossings divisor. Let

π : X̃ → X

be a simple blow-up of (X,D). Let D̃ ⊂ X̃ be the associated normal crossings divisor. We will
prove the following two basic properties of logarithmic tautological rings.

Theorem 12. The pull-back

π∗ : R�(X,D)→ CH�(X̃)

has image in R�(X̃, D̃).

Theorem 13. The push-forward

π∗ : R�(X̃, D̃)→ CH�(X)

has image in R�(X,D).

By Theorems 12 and 13, we can simply write

π∗ : R�(X,D)→ R�(X̃, D̃), π∗ : R�(X̃, D̃)→ R�(X,D).

Theorems 12 and 13 will proven in § 5.6 via the geometry of the Artin fan. As a consequence,
we will present a more conceptual (but less constructive) proof of Theorem 11.

5.5 The Chow ring of the Artin fan
Let (X,D) be a non-singular variety with a normal crossings divisor. We relate here the normally
decorated strata classes of (X,D) to Chow classes on the Artin fan AX of (X,D). Here, since
AX is a smooth, finite type algebraic stack stratified by quotient stacks, it has well-defined
Chow groups CH�(AX) with an intersection product as defined in [Kre99]. Note that for our
proof below it will not be necessary to recall the precise definition from [Kre99], since we only
use some properties and examples of these Chow groups (such as the existence of an excision
sequence) that we recall when needed. Also, we stress again that all Chow groups below are with
Q-coefficients.

As we explain in § 4.4, there is a smooth morphism to the Artin fan,

α : X → AX .

25 R�(Mg) is definitely not equal to R�(Mg, ∅)!
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Theorem 14. There is a canonical isomorphism

CH�(AX) ∼= PP�(C(X,D))

between the Chow ring of AX and the algebra of piecewise polynomial functions on the cone
complex C(X,D).

Proof. By construction, the Artin fan AX has a presentation as a colimit

AX = lim−→
x∈S
Ax,

where S is a finite diagram, each map Ax is a stack of the form [An/Gn
m], and all

maps in the diagram are étale. First, we note that for the individual stacks Ax = [An/Gn
m]

we have
CH�([An/Gn

m]) ∼= CH�([Spec(C)/Gn
m]) ∼= Q[x1, . . . , xn]. (30)

The first equality is because
[An/Gn

m]→ [Spec(C)/Gn
m]

is a vector bundle and induces an isomorphism of Chow groups by [Kre99, Theorem 2.1.12 (vi)].
The second equality is because the equivariant Chow ring of a product of tori is a polynomial
algebra [EG98, § 3.2], which can be identified with polynomials on the cone σX,x associated to
Ax (appearing in the colimit presentation of C(X,D)).

For the entire Artin fan AX , we claim

CH�AX = lim←−
x∈S

CH�Ax. (31)

If we can show equality (31), then Theorem 14 will follow since the result holds for each term
on the right-hand side by (30). Piecewise polynomial functions on C(X,D) are defined by the
corresponding limit presentation.

All the stacks appearing in (31) are very special: they are non-singular and have a
stratification with strata isomorphic to

B(Gn
m �G)

where G is a finite group. For the argument below, it will be more convenient to index Chow
groups by the dimension of the cycles (instead of the codimension) and prove26

CH�(AX) = lim←−
x∈S

CH�(Ax). (32)

Let C denote the full 2-subcategory of the 2-category of algebraic stacks with Ob(C) given by
algebraic stacks A with a stratification by stacks of the form B(Gn

m �G), with G a finite group.
Similarly, let C◦ be the full 2-subcategory of C with objects given by stacks of the form BGn

m.
We start with a stack27 AX ∈ C with a colimit presentation

AX = lim−→
x∈S
Ax = AX ,

where Ax ∈ C◦ and all maps in the diagram are étale. We will prove (32) by induction on the
number of strata of AX .

26 A similar formula and computation for the Chow groups of the stack of expanded pairs appears in [Oes19].
27 The case of interest is the Artin fan AX of X, but in the argument we allow AX to be arbitrary in C in order
to run the induction.
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Assume first that there is a unique stratum,

AX = B(Gn
m �G),

and all maps in the diagram S are isomorphisms. Then the groupoid

lim−→
x∈S
Ax

is equivalent to the quotient BGn
m/G, and the statement is equivalent to

CH∗(B(Gn
m �G)) = CH∗(BGn

m)G,

which is true (see [BS21, Lemma 2.20]). In general, we pick an open stratum U ∈ AX with
preimage Ux ∈ Ax. Then, by [Kre99, Proposition 4.2.1], we have an exact sequence

with Z = AX − U . Since U is of the form U = B(Gn
m �G), we can use [BS21, Proposition 2.14,

Remark 2.21] to see that

CH(U, 1) = CH(U)⊗Q CH(Spec(C), 1).

Then, by [BS21, Remark 2.18], the connecting homomorphism CH(U, 1)→ CH(Z) vanishes. So
we obtain an exact sequence

and the same sequence holds with AX replaced by Ax, U by Ux, and Z by Zx = Ax − Ux. As
projective limits are left exact, we obtain the following diagram.

By induction, the left and right vertical arrows are isomorphisms. But the bottom row is exact
as well: the composed map

CH(AX)→ CH(U) ∼= lim←−
x∈S

CH(Ux)

is surjective and factors through lim←−x∈S CH(Ax). Thus, the map

CH(AX)→ lim←−
x∈S

CH(Ax)

is an isomorphism as well. �

Theorem 14 has clear precursors in the toric context by Payne [Pay06] and Brion [Bri94]. In
the logarithmic context, we were directly motivated by ideas of Ranganathan. A development of
the theory for general log schemes can be found in [MR21].

Theorem 15. The logarithmic tautological ring

R�(X,D) ⊂ CH�(X)

coincides with the image α∗CH�(AX) ⊂ CH�(X).
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Proof. Fix a stratum S ⊂ X with closure S ⊂ X, and normalization

ε : S̃ → S ⊂ X.
Consider the cone complex C(X,D) and the Artin fan AX of (X,D) with

α : X → AX .

Let P̃ be the total space of the principal G-bundle over the normalization S̃ defined by the
branches of D in § 5.1,

μ : P̃ → S̃, μX = ε ◦ μ : P̃ → X.

We observe that all the relevant geometry is pulled back from the Artin fan AX : the stratum S
corresponds to the stratum

α(S) = S ⊂ AX

with closure S = α(S). Let S̃ be the normalization of S, and let

μ : P̃ → S̃, μA = P̃ → AX

be the total space of the principal G-bundle over S̃. Then

S = S ×AX
X, S = S ×AX

X, S̃ = S̃ ×AX
X, P̃ = P̃ ×AX

X.

Furthermore, since the map α is smooth, we find that N
S̃/X

is the pull-back of NS̃/AX
, and the

splitting of N
S̃/X

on P̃ into line bundles is pulled back from the splitting of NS̃/AX
on P̃. In

other words, we have the following Cartesian diagram.

Normally decorated strata classes on S have the form μX∗α∗
P (γ) for γ ∈ CH�(P̃). As α, αP are

smooth, μX∗α∗
P = α∗μA∗. Therefore,

R(X,D) ⊂ α∗CH�(AX).

In fact, the argument shows more precisely that

R(X,D) = α∗R(AX ,D)

for D = α(D) the corresponding divisor in AX . In other words, the logarithmic tautological
ring of (X,D), which is generated by the Chern roots of the normal bundles on the various
monodromy torsors of the strata of (X,D), is the pull-back of the logarithmic tautological ring
of AX , generated by the analogous constructions over the strata of AX . Thus, it suffices to show
that the normally decorated strata classes of AX generate the Chow ring of AX . We may thus
reduce to proving the theorem for AX .

So let γ be a class in CH�(AX). We must show that

γ ∈ R(AX ,D).

We may assume that γ is supported on S for some stratum S ⊂ AX . Suppose, by induction, we
have shown that every such class supported on a stratum S ′ with

dimS ′ < dimS
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is in R(AX ,D). Suppose further that we can find a class δ ∈ R(AX ,D) such that γ equals δ
on S. Then

γ − δ ∈ CH�(AX)

is supported on lower-dimensional strata and therefore lies in R(AX ,D), so that we have γ ∈
R(AX ,D) as well. Thus, the induction hypothesis ensures that, for a given dimension dimS, we
can remove strata S ′ with dimS ′ < dimS, and thus it suffices to prove the statement with the
additional assumption that S is closed in AX . Note that this reduction also suffices to handle
the base of the induction: the minimal dimensional strata of AX are automatically closed.

Suppose then that γ is a class supported on S, and S is closed of codimension n in AX . Then
S ∼= B(Gn

m �G), AX is a quotient of [An/Gn
m] by an étale equivalence relation in a neighborhood

of S, and the monodromy torsor μ : P̃ → S is isomorphic to BGn
m.

We can use this to describe the normal bundle NS/AX
on S: the data of this vector bundle

on S are equivalent to specifying the bundle μ∗NS/AX
on P̃ together with a G-action. It is

given by

μ∗NS/AX
= ⊕n

i=1Ni := ⊕n
i=1O(Di)|P̃

where Di is the ith hyperplane divisor in [An/Gn
m]. The monodromy group G acts by permuting

the hyperplanes Di cutting out S, and this action lifts to a corresponding action permuting
the direct summands Ni above. In particular, while the pull-back μ∗NS/AX

is a direct sum, the
individual direct summands are in general not invariant under the G-action, and thus NS/AX

is
not actually split on S.

Still, on P̃ we have that the classes xi := c1(Ni) form a generating set for the algebra

CH(P̃) ∼= Q[x1, . . . , xn].

On the other hand, the map μ gives an isomorphism

μ∗ : CH(S) ∼= CH(P̃)G

with inverse (1/|G|)μ∗, since we are working with rational Chow groups. Thus, γ is the image
of (1/|G|)μ∗γ under μ∗, which is a G-invariant polynomial in the xi. This shows that γ is a
normally decorated strata class, completing the proof. �

Theorem 15 immediately implies that R�(X,D) ⊂ CH�(X) is closed under the intersection
product (a claim which was left to the reader in § 5.4). On the other hand, it is not immediate
to see which piecewise polynomial corresponds to which normally decorated strata class. The
precise correspondence between piecewise polynomials and normally decorated strata classes has
now been established in [HMPPS22, § 6].

5.6 Proofs of Theorems 12 and 13
Fix a normal crossings pair (X,D) with Artin fan AX and map

α : X → AX .

Consider an arbitrary smooth log modification

f : X̃ → X,

necessarily of the form (X̃, D̃), with an associated map

α̃ : X̃ → A
X̃
.
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By definition, the log modification X̃ → X is pulled back toX from a log modification ÃX → AX

of Artin fans, and we have a diagram

with the square being Cartesian, the map c proper, Deligne-Mumford type, étale and bijective,
and α̃ = c ◦ β. By Theorem 15,

R�(X,D) = α∗CH�(AX) and R�(X̃, D̃) = α̃∗CH�(A
X̃

).

Since the map c is proper, Deligne–Mumford type, étale and bijective, it induces an
isomorphism

c∗ : CH�(A
X̃

)→ CH�(ÃX)

between rational Chow groups, and thus we also have

R�(X̃, D̃) = β∗CH�(ÃX)

As f∗β∗(δ̃) = α∗g∗(δ̃), we have
f∗R�(X̃, D̃) = R�(X,D),

where we conclude equality instead of inclusion since g∗ is surjective.28 Similarly, since f∗α∗(δ) =
β∗g∗(δ), we have f∗R�(X,D) ⊂ R�(X̃, D̃).

Combining Theorem 15 with the techniques used in the proof above also provides a sec-
ond proof of Theorem 11 based on the study of the Artin fan. The crucial observation is as
follows. Suppose (X,D) is a normal crossings pair with D ‘as simple as possible’: D is nor-
mal crossings in the Zariski topology, and the non-empty intersections of the branches of D
are connected. Equivalently, this means that C(X,D) is the cone over an abstract simplicial
complex, that is, can be piecewise linearly embedded into a vector space. Then the ring of
piecewise polynomials on C(X,D) has a global description in terms of the Stanley–Reisner
ring,

PP(C(X,D)) = Q[xr]/N,

where the variables xr range over the rays of C(X,D), and N is the ideal of non-faces, that
is, generated by monomials xi1 · · ·xik ranging over the collections i1, . . . , ik of rays which do
not form a cone in C(X,D). A fortiori, this presentation implies that CH(AX) is generated by
divisors.

While the piecewise polynomials of a general (X,D) do not admit this simple description,
the observation is relevant in our context because any sufficiently fine log blow-up of (X,D)
has this form. For example, the double barycentric subdivision (X̂, D̂) of (X,D) always has this
form. Applying barycentric subdivision once on an arbitrary C(X,D) produces a cone complex
with no self-intersection (and thus no monodromy), but where two cones possibly share the same
set of rays (i.e. the intersection of a set of branches of the divisor is disconnected). Applying
barycentric subdivision a second time separates such cones, ensuring that each cone is uniquely
characterized by its set of rays, and thus produces a cone complex C(X̂, D̂) which is the cone
over a simplicial complex.

28 For an interpretation of the push-forward g∗ in terms of piecewise polynomials, we refer the reader to [Bri94,
§ 2.3] where the toric setting is studied. These ideas are used in the calculations of [HMPPS22].
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Corollary 16. We have R�(X,D) ⊂ divlogCH�(X,D).

Proof. Let (X̂, D̂) be the log blow-up corresponding to the double barycentric subdivision,

As above, ÂX is the relative Artin fan of X̂ → X, and the Artin fan A
X̂

has the same rational
Chow ring as ÂX . Let γ ∈ R�(X,D). By Theorem 15, γ ∈ α∗CH�(AX) and therefore

f∗(γ) ∈ α̂∗CH�(A
X̂

).

Since CH�(A
X̂

) is generated by divisors, we have f∗(γ) ∈ divCH�(X̂). �
The proof of Theorem 15 immediately yields a finer statement: R�(X,D) lies in the subal-

gebra generated by logarithmic divisors of the log blow-up associated to the second barycentric
subdivision of the Artin fan of (X,D); in fact, the subalgebra generated by logarithmic divisors
of the log blow-up associated to any log blow-up (X̃, D̃) with C(X̃, D̃) the cone over a simplicial
complex. The double barycentric subdivision of any normal crossings pair (X,D) is always a
canonical such choice, but, for any given example, a much more efficient choice (X̃, D̃) may be
available.

6. Pixton’s formula for λg ∈ CH�(Mg)

6.1 Strata
Pixton’s formula for the double ramification cycle DRg,A ∈ CHg(Mg,n) is expressed as a sum
over strata of (Mg,n, ∂Mg,n) indexed by the set Gg,n of stable graphs. We present here Pixton’s
formula with an emphasis on the special case

DRg,∅ = (−1)gλg ∈ CHg(Mg).

We refer the reader to [JPPZ17, Pan99] for a more detailed discussion about double ramification
cycles, stable graphs, Pixton’s formula, and the relation to classical Abel–Jacobi theory.

6.2 Weightings
Let A = (a1, . . . , an) ∈ Zn satisfy

∑n
i=1 ai = 0. Let

Γ ∈ Gg,n

be a stable graph29 of genus g with n legs. A weighting of Γ is a function on the set of
half-edges,

w : H(Γ)→ Z,

which satisfies the following three properties:

(i) for all hi ∈ L(Γ), corresponding to the marking i ∈ {1, . . . , n},
w(hi) = ai;

(ii) for all e ∈ E(Γ), corresponding to two half-edges h, h′ ∈ H(Γ);

w(h) + w(h′) = 0,

29 Here and in Pixton’s formula in § 6.3, we follow the notation of [JPPZ17, §§ 0.3 and 0.4]. The factors of 2 are
treated equivalently but slightly differently in [BHPSS20, JPPZ20].
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(iii) for all v ∈ V(Γ), ∑
v(h)=v

w(h) = 0,

where the sum is taken over all n(v) half-edges incident to v.

In the case A = ∅, the set of half-edges H(Γ) has no legs (n = 0).
Let r be a positive integer. A weighting mod r of Γ is a function,

w : H(Γ)→ {0, . . . , r − 1},
which satisfies exactly properties (i)–(iii) above, but with the equalities replaced, in each case, by
the condition of congruence mod r. The set WΓ,r of such weightings w is finite, with cardinality
rh1(Γ).

6.3 Formula for double ramification cycles
Let A = (a1, . . . , an) ∈ Zn satisfy

∑n
i=1 ai = 0. Let r be a positive integer. We denote by

Pd,r
g (A) ∈ Rd(Mg,n)

the degree d component of the tautological class∑
Γ∈Gg,n

∑
w∈WΓ,r

1
|Aut(Γ)|

1
rh1(Γ)

ξΓ∗

[
n∏

i=1

exp(a2
iψhi)

·
∏

e=(h,h′)∈E(Γ)

1− exp(−w(h)w(h′)(ψh + ψh′))
ψh + ψh′

]
(33)

in R∗(Mg,n).
The following fundamental polynomiality property of Pd,r

g (A) has been proven by Pixton (see
[JPPZ17, Appendix]).

Proposition 17 (Pixton). For fixed g, A, and d, the class

Pd,r
g (A) ∈ Rd(Mg,n)

is polynomial in r (for all sufficiently large r).

We denote by Pd
g(A) the value at r = 0 of the polynomial associated to Pd,r

g (A) by
Proposition 17. In other words, Pd

g(A) is the constant term of the associated polynomial
in r. Pixton’s formula for double ramification cycles is

DRg,A = 2−gPg
g(A) ∈ CHg(Mg,n).

6.4 Examples in the A = ∅ case
For the reader’s convenience, we present in Figure 2 the first few examples30 of Pixton’s formula
for λg obtained by calculating (−1)gDRg,∅.

Each labeled graph Γ describes a moduli space MΓ (a product of moduli spaces associated
with the vertices of Γ), a tautological class α ∈ R∗(MΓ), and a natural map

ξΓ :MΓ →Mg.

Our convention in the formulas below is that the graph Γ represents the cycle class (ξΓ)∗α. For
instance, assume the graph carries no ψ-classes and the class α equals 1. Since the map ξΓ is of

30 The graphics are by F. Janda.
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Figure 2. Formulas for the classes λg for g = 1, . . . , 4.

degree |Aut(Γ)| onto its image, the cycle class represented by Γ is then |Aut(Γ)| times the class
of the image of ξΓ.

6.5 Proof of Theorem 6
We analyze Pixton’s formula in the A = ∅ case,

λg = (−1)gDRg,∅ ∈ CHg(Mg).

Since A = ∅, the sum (33) is over stable graphs Γ ∈ Gg corresponding to strata of (Mg, ∂Mg).

• By the definition of a weighting mod r, the weights

w(h), w(h′)
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on the two halves of every separating edge e of Γ must both be 0. The factor in Pixton’s
formula for e,

1− exp(−w(h)w(h′)(ψh + ψh′))
ψh + ψh′

,

then vanishes and kills the contribution of Γ to Pg
g(∅). Therefore, non-vanishing terms in the

sum (33) must correspond to graphs with no separating edges.
• Since A = ∅, the term

n∏
i=1

exp(a2
iψhi)

drops out of (33).
• The classes which do appear in (33) are the normal bundle terms ψh + ψh′ at each edge of Γ.

Since the formula (33) respects the automorphisms of the stable graph Γ, we obtain the
following result.

Proposition 18. The class λg ∈ CHg(Mg) is a sum of normally decorated classes associated to
strata of (Mg, ∂Mg) corresponding to stable graphs Γ ∈ Gg with no separating edges.

Theorem 6 is then an immediate consequence of Proposition 18 and Theorem 11.
Proposition 18 reflects a very special property of λg obtained from Pixton’s formula. Since every
edge of every stable graph Γ ∈ Gg which appears in Pixton’s formula for λg is non-separating,
we actually have

λg ∈ R�(Mg,Δ0).

Theorem 11 then implies a refinement of Theorem 6,

λg ∈ divlogCH�(Mg,Δ0).

By applying Pixton’s formula for the double ramification cycle

DRg,(0,...,0) = (−1)gλg ∈ CHg(Mg,n),

an identical argument yields
λg ∈ divlogCH�(Mg,n,Δ0)

for 2g − 2 + n > 0.

6.6 More general double ramification cycles
Let A = (a1, . . . , an) be a vector of integers satisfying

∑n
i=1 ai = 0. Pixton’s formula for the

double ramification cycle
DRg,A ∈ R�(Mg,n),

together with Theorem 11, yields the following result (the proof of which is exactly the same as
the proof of Theorem 6).

Theorem 19. We have DRg,A ∈ divlogCH�(Mg,n) where

divlogCH�(Mg,n) ⊂ logCH�(Mg,n)

is the subalgebra generated by logarithmic boundary divisors together with the cotangent line
classes ψ1, . . . , ψn.

Theorem 19 provides half of the proof of Conjecture C concerning the lifted double rami-
fication cycle D̃Rg,A. There are now three proofs of the other half of the conjecture via three
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different approaches. The first two are by Abel–Jacobi theory in [HS22] and by controlling the
difference between DRg,A and D̃Rg,A in an appropriate blow-up of Mg,n in [MR21]. The third,
presented in [HMPPS22], proves the conjecture directly by giving a formula for (a representative
of) D̃Rg,A in terms of ψ-classes and piecewise polynomials.

The special case A = (0, . . . , 0) related to the class λg is simpler since no cotangent line
classes appear at the markings in Pixton’s formula. Moreover, there is no change in the lift for
A = (0, . . . , 0):

DRg,(0,...,0) = D̃Rg,(0,...,0) ∈ divlogCH�(Mg,n).

The ωk-twisted double ramification cycle [Hol19] is also governed by Pixton’s for-
mula [BHPSS20],

DRk
g,A ∈ R�(Mg,n),

n∑
i=1

ai = k(2g − 2).

The analogue of Theorem 19 can be proven for the ωk-twisted double ramification cycle, but the
divisor subalgebra of logCH�(Mg,n) must include κ1 together with the cotangent line classes ψi

and the logarithmic boundary divisors. Conjecture C can then also be promoted to a statement
for the lifted ωk-twisted double ramification cycle (again including κ1 in the subalgebra).

6.7 Pixton’s generalized boundary strata classes
In [Pix18], Pixton defined a subalgebra of the tautological ring R∗(Mg,n) spanned by generalized
boundary strata classes: tautological classes [Γ] associated to prestable graphs Γ of genus g with
n legs.

If Γ is a semistable graph (every genus 0 vertex is incident to at least two legs or half-edges),
then Pixton’s definition takes a simple form. Let Γ′ be the stabilization of Γ. The class [Γ] is
defined as a push-forward under the gluing map ξΓ′ of products of classes ψ1, . . . , ψn and classes
ψh + ψh′ for half-edges (h, h′) forming an edge of Γ′. The analysis of § 6.5 then implies

[Γ] ∈ divlogCH�(Mg, ∂Mg)

in the semistable case.
Pixton’s boundary class for more general unstable graphs has κ classes and will likely not lie

in any version of divlogCH�(Mg, ∂Mg).

7. The bChow ring

Let X be a non-singular variety. Given the additional data of a normal crossings divisor D ⊂ X,
we defined the log Chow ring of the pair (X,D). This is a variant of a much larger ring, the
bChow ring of X. We define

bCH�(X) = lim−→
Y ∈B(X)

CH�(Y ),

where B(X) is the category of non-singular blow-ups of X: objects in B(X) are proper birational
maps

Y → X

with Y non-singular, and morphisms in B(X) are proper birational maps over X. For a longer
introduction to the bChow ring, see [HPS19]. Some of the ideas involved go back to papers of
Shokurov [Sho96, Sho03]. See also Aluffi [Alu05] for similar constructions.
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Let [Z → X] and [Y → X] be objects of B(X). If Z → X factors as

Z → Y → X,

then there is a unique morphism from [Z → X] to [Y → X] in B(X), and we call Z → X a
refinement of Y → X. The transition maps in the above colimit are given by pull-backs

f� : CH∗(Y )→ CH�(Z)

for refinements Z
f→ Y → X.

Unlike logCH�(X), the bChow ring does not depend upon the choice of a normal crossings
divisor D ⊂ X. However, given such a choice there is always a tower of natural inclusions

CH�(X) ⊂ logCH�(X) ⊂ bCH�(X).

Since the centers of the blow-up are so restricted in the definition of logCH�(X), we view CH�(X)
and logCH�(X) as relatively close in size. On the other hand, bCH�(X) is very much larger.

Let divbCH�(X) be the subalgebra of bCH�(X) generated by divisors. More precisely,

divbCH�(X) = lim−→
Y ∈B(X)

divCH�(Y ).

While the proof of the claim
λg ∈ divlogCH∗(Mg, ∂Mg)

depended upon special properties of λg, the parallel bChow statement

λg ∈ divbCH∗(Mg)

immediately follows from a general result.

Theorem 20. For every non-singular quasi-projective variety31 X, bChow is generated by
divisor classes,

divbCH∗(X) = bCH�(X).

Proof. Let α ∈ CH�(Y ) for an object [Y → X] in B(X). We will find a refinement Z → Y for
which

f∗a ∈ divCH(Z).

Since Y is non-singular and quasi-projective, the Chern classes of vector bundles generate
CH�(Y ). We can assume α = ci(E) for a vector bundle E on Y . By [Hir64, Corollary 2], there is
a blow-up

g : W → Y

where W is non-singular and g∗E contains a subline bundle L,

0→ L→ g∗E → g∗E/L→ 0.

Applying the same argument to the quotient bundle g∗E/L, we find inductively a non-singular
blow-up

f : Z → Y

for which f∗E has a filtration with line bundles as quotients. Therefore,

f∗ci(E) = ci(f∗E)

is in divCH�(Z). �

31 The statement holds verbatim for non-singular Deligne–Mumford stacks which admit finite resolutions of sheaves
by vector bundles.
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The quasi-projective hypothesis is used only for vector bundle resolutions. In fact, the
hypothesis is not necessary. Theorem 20 can be proven locally near any cycle

S ⊂ X
by successive blow-ups along non-singular centers to resolve S and appropriately modify the
Chern classes of the normal bundle of S. We leave the details for the interested reader.
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Appendix A. The fourth cohomology group of Mg

In the proof of Theorem 4, we require the equality32

H4(Mg) = RH2(Mg). (A.1)

for sufficiently large g, In other words, the fourth cohomology group of Mg is spanned by
tautological classes for sufficiently high g.

Equality (A.1) was first proven by Edidin [Edi92] for g ≥ 12. Edidin bounded the Betti
number h4(Mg) from above and then showed by intersection calculations that the span of
the tautological classes33 in codimension 2 achieves the required rank. Edidin used the interior
result

H4(Mg) = RH2(Mg) (A.2)

proven by Harer [Har85] for g ≥ 12. The interior statement (A.2) was later proven for g ≥ 9 by
Ivanov [Iva93] and strengthened further to g ≥ 7 by Boldsen [Bol12] which improved Edidin’s
bound.

Theorem A.1 [Edi92, Iva93, Bol12]. We have H4(Mg) = RH2(Mg) for g ≥ 7.

32 We use, as before, the complex grading on RH�.
33 Edidin does not use the language of tautological classes as we now do, but all of his generators are in fact
tautological: they are given by the classes κ2, κ

2
1, push-forwards of λ- and ψ-classes under boundary divisor gluing

maps, and fundamental classes of strata of codimension 2.
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Appendix B. Computations in admcycles

B.1 Verification of Pixton’s conjecture
In [Pix12], Pixton proposed a set of relations between tautological classes on the moduli spaces
Mg,n of stable curves. These were proven to hold in cohomology [PPZ15] and in Chow [Jan17].
Furthermore, Pixton conjectured that his relations span the complete set of relations among
tautological classes. The relations were implemented by Pixton in the mathematical software
SageMath [Sag20] and later incorporated in the SageMath package admcycles. Assuming Pix-
ton’s conjecture, the software computes a basis of the Q-vector spaces Rd(Mg,n) and express
tautological classes in the basis.

In Proposition 5, we state that Pixton’s conjecture holds for the spaces

R4(M4,1) and R5(M5,1).

Assuming the conjecture, admcycles computes the rank of these two spaces to be 191 and 1371,
respectively. If the conjecture were false, the rank of one (or both) of the groups would have to be
strictly smaller. However, using admcycles, we verify that the ranks of the intersection pairings

R4(M4,1)⊗ R6(M4,1)→ Q and R5(M5,1)⊗ R8(M5,1)→ Q

are bounded from below by 191 and 1371, respectively. The rank bounds are obtained by taking
generating sets of R4(M4,1) and R5(M5,1) and computing the matrix of pairings with generators
in R6(M4,1) and R8(M5,1), respectively. For the rank bounds of pairing, we do not assume
anything about the relations between the above generators, though we are allowed to use the
known relations [PPZ15] to reduce the size of the generating sets.

The computations were performed on a server of the Max Planck Institute for Mathematics
in Bonn,34 taking two days in the case of M4,1 and 31 days for M5,1. Without substantial
improvements to the algorithm, it is thus unlikely that Pixton’s conjecture can be verified in this
way for significantly larger g, n, and d. We warmly thank the Max Planck Institute for providing
the computer infrastructure for our computations.

B.2 Computations in proofs of Theorems 3 and 4
Once we have verified Pixton’s conjecture (as above)35 for RHd(Mg,n), we can explicitly check
whether

λd ∈ RHd
≤k(Mg,n).

Several such checks used in the proofs of Theorems 3 and 4 were made using admcycles.
We provide below an example of the computation showing that the class λ3 is not contained

in the space
divRH3(M3) ⊂ RH3(M3),

which is a nine-dimensional subspace of a 10-dimensional space. We first create the list divcl of
divisor classes onM3, compute the set of triple products of such classes, and then take the span
divR of the vectors representing them in a basis of RH3(M3). We verify that divR is 9-dimensional
inside the 10-dimensional ambient space RH3(M3). Finally, we compute the class λ3 and verify
that the associated vector Lv is not contained in divR.

34 The program ran on a single thread of the available CPU (Intel Xeon Prozessor E5-2667 v2), taking about
60 GB of RAM due to the large amounts of intermediate data to store (the list of Pixton’s relations, sets of
tautological generators, etc.).
35 Our verification method also then shows that Rd(Mg,n) = RHd(Mg,n).
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sage: from admcycles import *
sage: divcl = tautgens(3,0,1)
sage: divp = [a*b*c for a in divcl for b in divcl for c in divcl]
sage: divR = span(u.toTautbasis() for u in divp)
sage: (divR.rank(), divR.degree())
(9, 10)
sage: L = lambdaclass(3,3,0)
sage: Lv = L.toTautbasis()
sage: Lv in divR
False

B.3 Proof of Proposition 7
We record below the computation in admcycles used in the proof of Proposition 7. We create
the classes λ2, [Δ0], [B], and [C] and represent the class defined by

2λ2 − x · [Δ0]2 − y · [B]− z · [C]

in the vector diff with respect to a basis of CH2(M2) = R2(M2). We then solve the equation
diff=0 to find the formula for x and y in terms of the variable z used in the proof.

We remark that in the definition of the class Delta0 we need to divide by 2 since this is the
degree of the gluing morphism parameterizing the boundary divisor Δ0.

sage: from admcycles import *
sage: lambda2 = lambdaclass(2,2,0)
sage: Delta0 = 1/2 * irrbdiv(2,0)
sage: gammaB = StableGraph([0],[[1,2,3,4]],[(1,2),(3,4)])
sage: B = gammaB.boundary_pushforward()
sage: gammaC = StableGraph([0,1],[[1,2,3],[4]],[(1,2),(3,4)])
sage: C = gammaC.boundary_pushforward()
sage: x, y, z = var(’x, y, z’)
sage: diff = (2*lambda2 - x*Delta0^2 - y*B - z*C).toTautbasis()
sage: diff
(476*x + 1824*y - 96*z - 3, -144*x - 576*y + 24*z + 1)
sage: solve([diff[i]==0 for i in (0,1)], x,y,z)
[[x == r1 - 1/120, y == -5/24*r1 + 11/2880, z == r1]]
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