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Abstract

The problem of finding the probability distribution of the first hitting time of a double
integral process (DIP) such as the integrated Wiener process (IWP) has been an important
and difficult endeavor in stochastic calculus. It has applications in many fields of physics
(first exit time of a particle in a noisy force field) or in biology and neuroscience (spike
time distribution of an integrate-and-fire neuron with exponentially decaying synaptic
current). The only results available are an approximation of the stationary mean crossing
time and the distribution of the first hitting time of the IWP to a constant boundary. We
generalize these results and find an analytical formula for the first hitting time of the IWP
to a continuous piecewise-cubic boundary. We use this formula to approximate the law
of the first hitting time of a general DIP to a smooth curved boundary, and we provide
an estimation of the convergence of this method. The accuracy of the approximation is
computed in the general case for the IWP and the effective calculation of the crossing
probability can be carried out through a Monte Carlo method.
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process; double integral process; numerical computation
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1. Introduction

First passage time problems for one-dimensional diffusion processes through a time-
dependent boundary have received a lot of attention over the last three decades. Unfortunately,
the evaluation of the first passage time probability distribution function through a constant or
time-dependent boundary is in general an arduous task which has still not received a satisfactory
solution. Analytical results are scarce and fragmentary, even if closed-form solutions exist for
some very particular cases. Since no analytical method seems to solve the problem, one is led
either to the study of the asymptotic behavior of this function and of its moments (see, e.g.
[21] and [22]), or to the use of somewhat ad hoc numerical procedures yielding approximate
evaluations of the first passage time distributions. Such procedures can be classified as follows:
(i) those that are based on probabilistic approaches (see, e.g. [3], [5], [6], [19], [26]), and [27]
and (ii) purely numerical methods, such as the widely used Monte Carlo method, which applies
without any restriction, but whose results are generally too coarse (for numerical methods, see,
e.g. [1], [7], [9], and [13]).
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In two and higher dimensions, the problem is even more complex and results can hardly be
found. For the simplest double integral process (DIP), the integrated Wiener process (IWP)
defined in (5), below, McKean [18], Goldman [10], and Lachal [14], [15], [16] found the
probability distribution of the first hitting time to a constant boundary using stochastic calculus
methods. Lefebvre [17] used the Kolmogorov (Fokker–Planck) equation to find in some special
cases closed-form solutions. Generalizations of these formulae to other boundaries and other
kinds of processes are simply not available. In the present paper we propose a closed-form
solution for the first hitting time of the IWP to a piecewise-cubic function, and apply this formula
to find an approximation of the first hitting time of a DIP to any smooth curved boundary. We
also provide an estimation of the rate of convergence of this approximation.

In Section 2 we introduce a motivation of this study, define the DIP, and prove the main
properties which will be useful for us in the rest of the paper. In Section 3 we study the first
hitting times of the IWP and provide a closed-form formula for the first hitting time of this
process to a piecewise-cubic function. In Section 4 we introduce the approximation method of
the first hitting time of the IWP to any smooth curved boundary, and find the rate of convergence
of this method. Finally, in Section 5 we provide an approximation formula for the first hitting
time of a general DIP to a curved boundary. In Section 6 we briefly describe a numerical Monte
Carlo algorithm which can be used to compute the probability repartition function efficiently.

2. The DIP

In this section we introduce the DIP and prove some useful properties. But before the
mathematical study of the problem, we motivate this theoretical work by a specific problem
arising in neuroscience: the distribution of the spike times for an integrate-and-fire neuron with
exponentially decaying synaptic currents.

2.1. Motivation

The definition of the DIP and the study of its first hitting times to curved boundaries has been
motivated by numerous physical and biological problems. For instance, a problem arising in
neuroscience is to characterize the probability distribution of the spike (action potentials) times
in the presence of synaptic noise (see [8] for an introduction of the neuronal modelization of
spiking neurons and [30] for a review of the problem of spike time distribution).

A classical neuron model is the leaky integrate-and-fire model, where the membrane potential
V (t) of a neural cell integrates external inputs and the noise at the synapses, and emits a spike
when the membrane potential reaches a deterministic threshold function θ(t) (which is constant
in general). Hence, in this model the membrane potential is the solution of the following
equation:

τm dV (t) = (−(V (t) − Vrest) + Ie(t)) dt + dIs(t).

In this equation τm is the characteristic time of integration of the membrane potential, Vrest is
the rest potential of the neuron, Ie represents deterministic external inputs, and Is represents
the noisy synaptic inputs (see, e.g. [8] and [30]). The simplest model of synaptic noise is a
standard Brownian motion, if we neglect the integration time of the synapse. Nevertheless, real
post-synaptic currents have a very short rise time and a larger decay time.

If we take into account the decay time of the synapse τs then the synaptic current is the
solution of the following stochastic differential equation:

τs dIs(t) = −Is(t) dt + σ dWt,
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Figure 1: A sample path of the process Ut = (Xt , Wt ), where X is a standard IWP and W is a standard
Brownian motion, and a boundary curve a(t). The IWP Xt is reset to 0 when it crosses the boundary.

where σ > 0 is the noise standard deviation. We can integrate this system of stochastic
differential equations as follows. The equation governing the membrane potential yields

V (t) = Vrest

(
1−exp

(
− t

τm

))
+ 1

τm

∫ t

0
exp

(
s − t

τm

)
Ie(s) ds + 1

τm

∫ t

0
exp

(
s − t

τm

)
Is(s) ds,

and the synaptic current equation can be integrated as

Is(t) = Is(0) exp

(
− t

τs

)
+ σ

τs

∫ t

0
exp

(
s − t

τs

)
dWs,

where Is(0) is a given random variable. We define 1/α = 1/τm − 1/τs. Replacing Is(t) in the
first equation by its value in the second equation we obtain

V (t) = Vrest

(
1 − exp

(
− t

τm

))
+ 1

τm

∫ t

0
exp

(
s − t

τm

)
Ie(s) ds

+ Is(0)

1 − τm/τs

(
exp

(
− t

τs

)
− exp

(
− t

τm

))

+ σ

τmτs
exp

(
− t

τm

) ∫ t

0
es/α

(∫ s

0
exp

(
s′

τs

)
dWs′

)
ds.

The time of the spike emission is the first hitting time of V (t) to the threshold θ(t); hence,
it is the first hitting time of the stochastic process (which is a particular case of what we will
call in the sequel the double integral process (DIP))

Xt =
∫ t

0
es/α

(∫ s

0
exp

(
s′

τs

)
dWs′

)
ds (1)

to the deterministic curved boundary

a(t) = θ(t) −
(

Vrest

(
1 − exp

(
− t

τm

))
+ 1

τm

∫ t

0
exp

(
s − t

τm

)
Ie(s) ds

+ Is(0)

1 − τm/τs

(
exp

(
− t

τs

)
− exp

(
− t

τm

)))

(see Figure 1).
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2.2. Definition and main properties of DIPs

In this subsection we define a class of stochastic processes including process (1), and prove
some useful properties of these processes.

Definition 1. (DIP.) Let f ∈ L
2(R) and g ∈ L

1(R). Let Mt be the martingale defined by
Mt := ∫ t

0 f (s) dWs . The DIP associated to the functions f and g is defined, for all t , by

Xt =
∫ t

0
g(s)Ms ds =

∫ t

0
g(s)

(∫ s

0
f (u) dWu

)
ds. (2)

Proposition 1. The two-dimensional process (Xt , Mt) is a Gaussian Markov process.

Proof. First of all, note that if F X
t and F M

t define the canonical filtration associated to the
processes X and M , respectively, then it is clear that, for all t ≥ 0, F X

t ⊂ F M
t . Hence, the

filtration associated to the pair (Xt , Mt)t≥0 is simply (F M
t )t≥0, which we denote by (Ft )t≥0

in the sequel.
It is also clear that M is a martingale, and satisfies the Markov property. Let s ≤ t . We have

Xt =
∫ t

0
g(u)Mu du =

∫ s

0
g(u)Mu du +

∫ t

s

g(u)Mu du,

Xt = Xs +
∫ t

s

g(u)(Mu − Ms) du + Ms

∫ t

s

g(u) du. (3)

Conditionally to Ms , the process
∫ t

s
g(u)(Mu − Ms) du is independent of F M

s , so the law
of Xt , knowing (Xs, Ms), is independent of the σ -algebra (Ft ), and so is M , so eventually the
pair (X, M) is Markov.

The pair is clearly a Gaussian process since its two components are. Indeed, M is Gaussian
because of the properties of the stochastic integral seen as the limit of the Riemann sums of
Brownian increments, and X, as the limit of Riemann sums of the Gaussian process M weighted
by g, is also Gaussian.

Remark 1. In the proof of Proposition 1 we also proved that, conditionally to Ms , the incre-
ments (Xt − Xs, Mt − Ms) are independent of the σ -field Fs .

Proposition 2. For each value of t ≥ 0, the random variable Yt := (Xt , Mt) is a two-
dimensional Gaussian variable of parameters

E[Yt ] = (0, 0),

E[Y�
t Yt ] =

(
ρX(0, t) C(X,M)(0, t)

C(X,M)(0, t) ρM(0, t)

)
,

where the functions ρX(s, t), C(X,M)(s, t), and ρM(s, t) are defined by

ρM(s, t) =
∫ t

s

f (u)2 du,

ρX(s, t) = 2
∫ t

s

g(u)

(∫ u

s

g(v)ρM(s, v) dv

)
du,

C(X,M)(s, t) =
∫ t

s

g(u)ρM(s, u) du.
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The transition measure of the Markov process (Yt )t has a Gaussian density with respect to
Lebesgue’s measure:

N

((
xs + ms

∫ t

s
g(u) du

ms

)
, C̃(s, t)

)
,

where the correlation matrix C̃(s, t) reads

C̃(s, t) =
(

ρX(s, t) C(X,M)(s, t)

C(X,M)(s, t) ρM(s, t) du

)
.

Proof. The calculations are essentially straightforward. To compute the transition density
function, we use (3) and write(

Xt

Mt

)
=

(
Xs + Ms

∫ t

s
g(u) du

Ms

)
+

(∫ t

s
g(u)(Mu − Ms) du

Mt − Ms

)
. (4)

The first term in the sum on the right-hand side of (4) is Fs measurable. Given Xs = xs and
Ms = ms , it is equal to (

xs + ms

∫ t

s
g(u) du

ms

)
.

The second term is independent of Fs and is Gaussian.
Eventually, the process Yt , knowing Ys = (xs, ms), has the same law as the Gaussian process:

N

((
xs + ms

∫ t

s
g(u) du

ms

)
, C̃(s, t)

)
.

Definition 2. (IWP.) The IWP is a special case of the DIP where the functions f and g are
identically equal to 1:

Xt =
∫ t

0
Ws ds, Ms = Ws. (5)

From Proposition 2 we know that its transition measure reads

P[Xt+s ∈ du, Wt+s ∈ dv | Xs = x, Ws = y]
:= pt (u, v; x, y) du dv

=
√

3

πt2 exp

(
− 6

t3 (u − x − ty)2 + 6

t2 (u − x − ty)(v − y) − 2

t
(v − y)2

)
du dv. (6)

Lemma 1. Let (Xt )t≥0 be a DIP defined by (2). Assume that f (s) 	= 0 for all s ≥ 0. The
study of the hitting times of the DIP X is equivalent to the study of the simpler process

X̃t =
∫ t

0
g̃(s)Ws ds,

where g̃ is defined in the proof.

Proof. Let (Mt)t be the martingale defined by

Mt =
∫ t

0
f (s) dWs.
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The Dubins–Schwarz theorem ensures us (even though 〈M〉∞ 	= ∞, because of our hypothesis
on f (see [12])) that there exists a Brownian motion (Wt )t such that, almost surely,

Mt = W〈M〉t ,

where 〈Z〉t denotes the quadratic variation of the local martingale Z.
We note that

�(t) = 〈M〉t =
∫ t

0
f 2(s) ds.

The function � is continuous and since we assumed that f (s) 	= 0 for all s ≥ 0, strictly
increasing, so it is a bijection. Its derivative �′(t) exists and is nonzero for all t ≥ 0. We use
the change of variable u = �(s). We have

Xt =
∫ t

0
g(s)Ms ds

L=
∫ t

0
g(s)W�(s) ds

=
∫ �−1(t)

0

g(�−1(u))

�′(�−1(u))
Wu du,

where ‘
L=’ denotes the equality in law for processes. Hence, the hitting time of a general DIP

can be deduced from the hitting time of the process X̃t = X�(t), which is of type
∫ t

0 g̃(s)Ws ds,
where g̃(t) = g(�−1(t))/�′(�−1(t)).

3. First hitting time of the IWP

We consider the special case (Wt )t≥0, a standard Brownian motion. We are interested in the
first hitting time to a curved boundary a(t) of the stochastic process

Xt =
∫ t

0
Ws ds.

This problem has been widely studied and has received no satisfactory solution so far. One
of the main difficulties comes from the fact that the process is non Markov, so we have to
refer to the underlying Wiener process. Classical approaches based on Volterra equations or
Durbin’s method work for the Brownian motion, but fail in providing a solution to this problem
(see, e.g. [30] for a review). To achieve the program of characterizing those hitting times, we
first recall existing results on the first hitting times to constant boundaries, and generalize them
to cubic and piecewise-cubic boundaries, to end with the approximation formula for general
boundaries.

3.1. First hitting time to a constant boundary

Lachal [14] studied this problem in the case where the boundary is a constant. More precisely,
in this subsection we study the process Ut = (Xt + x + ty, Wt + y), where Xt is the standard
IWP. We denote by

τa = inf{t > 0; Xt + x + ty = a}
the first passage time at a of the first component of the bidimensional Markov process Ut . The
work of Lachal [14] followed the work of McKean [18], where the joint law of the process
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(τa, Wτa ) was computed for the case in which x = a. The result was

P[τa ∈ dt; |Wτa | ∈ dz | U0 = (a, y)]
:= P(a,y)[τa ∈ dt; |Wτa | ∈ dz]

= 3z

π
√

2t2
e−2/t (y2 − |y|z + z2)

(∫ 4|y|z/t

0
e−3θ/2 dθ√

πθ

)
1[0,+∞)(z) dz dt. (7)

We denote this density by ma(t, y, z).
Later, Goldman [10] computed the distribution of the random variable τa in the case where

x < a and y ≤ 0, and obtained the formula

P[τa ∈ dt | U0 = (x, y)]

= dt

(√
3

8πt3

(
3(a − x)

t
− y

)
exp

(
−3(a − x − ty)2

2t3

)

+
∫ +∞

0
z dz

∫ t

0

∫ ∞

0
P[τ0 ∈ ds; |Wτ0 | ∈ dµ | U0 = (0, z)]qt−s(x, y; a, z)

)
,

where qt (x, y; u, v) = pt (x, y; u, v) − pt (x, y; u, −v).
Lastly, Lachal [14] extended all these results and gave the joint distribution of the pair

(τa, Wτa ) in all cases. The quite complex formula reads

P(x,y)[τa ∈ dt; Wτa ∈ dz]
= |z|

(
pt (x, y; a, z) −

∫ t

0

∫ +∞

0
m0(s, −|z|, µ)pt−s(x, y; a, −εµ) dµ ds

)
1A(z) dz dt,

(8)

where A = [0, ∞) if x < a, A = (−∞, 0] if x > a, ε = sgn(a − x), and m0(s, −|z|, µ) is
given by McKean’s formula, (7). We denote this density by lax,y(t, z).

3.2. First hitting time to a cubic boundary

The problem we address now is the question of finding similar formulae for more general
boundaries. For the Brownian motion itself, few results are available. A formula has been found
for a linear boundary using Girsanov’s theorem and for a quadratic boundary using the Laplace
transform characterization (see [11]). Lastly, the method of images has been shown to provide
closed-form results in very particular cases (see [24] for a review). The difficulty of finding
closed-form characterizations of the first hitting time of the Brownian motion motivated people
to look for approximations. Monte Carlo simulation is often used. Even if it can be used with
no restriction, it is often considered too coarse and computationally inefficient. Furthermore, it
is purely numerical and global, and does not provide any analytical information on the hitting
time. For these reasons, other semi-analytical methods of approximation have been developed
to provide analytical approximations [4], [5], [6], [25], [31], sometimes together with error
estimations [2], [23].

The problem is even more complex for the first hitting time of the IWP.
In this subsection we apply Girsanov’s theorem to transform the problem of finding a closed-

form expression of the first hitting time of the IWP to a cubic function to the problem discussed
in the previous subsection that has been solved by McKean [18], Goldman [10], and Lachal [14].
More precisely, we prove that, under a certain probability, the process Wt +(β/2)t2 +αt +x for
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any α, β ∈ R is a Wiener process. Under this probability, the process Xt +(β/6)t3 +(α/2)t2 +
tx + y has the law of an IWP. Hence, the knowledge of the probability density function (PDF)
of the first hitting time of the IWP to a constant will give us, using Girsanov’s theorem, the
PDF of the hitting time of the IWP to the cubic

t 
→ β

6
t3 + α

2
t2 + bt + a.

For the sake of generality, we compute the new probability starting at a general time s at
the point (x, y). In the following the index {s, (x, y)} denotes the conditioning on the event
(Xs = x, Ws = y).

Theorem 1. The process Wt + α(t − s) + (β/2)(t − s)2 + y, 0 ≤ s ≤ t , is a Wiener process
starting at y at time s, under the probability

Pα,β

s,(x,y)

∣∣∣
Fs,t

= D
α,β

s,(x,y)(t) Ps,(x,y)

∣∣∣
Fs,t

,

where

D
α,β

s,(x,y)(t) = exp

(
−1

6
β2(t3 − s3) − 1

2
αβ(t2 − s2) − 1

2
α2(t − s)

− (α + tβ)Wt + (α + sβ)y + β(Xt − x)

)
. (9)

Proof. We consider the full process U
α,β
t = (X

α,β
t , W

α,β
t ) = (Xt + x + yt + (α/2)(t −

s)2 + (β/6)(t − s)3, Wt + y + α(t − s) + (β/2)(t − s)2) = (X
α,β
t , W

α,β
t ). This is a diffusion

process satisfying the two-dimensional stochastic differential equation

dX
α,β
t = W

α,β
t dt,

dW
α,β
t = (α + (t − s)β) dt + dWt,

to be solved for t ≥ s ≥ 0 with initial conditions U
α,β
s = (x, y).

We want W
α,β
t to be a Brownian motion under a new probability. This is a straightforward

application of Girsanov’s theorem (or the particular case of Cameron–Martin’s formula). We
define

L
α,β
t := −

∫ t

s

(α + βh) dWh, 0 ≤ s ≤ t.

This is a martingale for Fs,t satisfying

〈Lα,β, Lα,β〉t =
∫ t

s

(α + βh)2 dh;

therefore, E[exp( 1
2 〈Lα,β, Lα,β〉t )] < ∞, 0 ≤ s ≤ t < ∞. We conclude from Novikov’s

criterion that Wt − 〈W, Lα,β〉t = W
α,β
t is a Brownian motion under a new probability, noted

Pα,β

s,(x,y).
The Radon–Nikodym derivative D

α,β

s,(x,y)(t) of this new probability with respect to the initial
probability Ps,(x,y) is given by Girsanov’s theorem and is equal to

exp
(
L

α,β
t − 1

2 〈Lα,β, Lα,β〉t
)
.
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This can be written as

D
α,β

s,(x,y)(t) = dPα,β

dP

∣∣∣∣
Fs,t

= exp

(
−1

2

∫ t

s

(α + hβ)2 dh +
∫ t

s

(α + hβ) dWh

)

= exp

(
−1

2

(
α2(t − s) + αβ(t2 − s2) + 1

3
β2(t3 − s3)

)

− α(Wt − y) − β(tWt − sy) + β(Xt − x)

)
,

using Itô’s formula for the process tWt . Hence, we obtain a formula equivalent to (9).

Remark 2. In the proof of Theorem 1 we have seen that the IWP comes from the stochastic
integration of the function α + βt with respect to the Brownian density. If we had chosen a
polynomial of degree greater than 1, the integration by parts would have produced higher-order
integrals of the Brownian motion that we do not want to deal with since we have no knowledge
of their first hitting time. This is the reason why in the sequel we study the first hitting time of
the IWP to cubic boundaries and why we cannot go further. This method does not generalize to
polynomial boundaries of degree larger than three. However, we show that this is sufficient to
approximate the probability distribution of the first hitting time of the IWP and of other DIPs to
general curved boundaries, precisely by approximating these boundaries with piecewise-cubic
polynomials.

We note that

dα,β(s, x, y; t, u, v) = exp
(− 1

6β2(t3 − s3) − 1
2αβ(t2 − s2) − 1

2α2(t − s)

− (α + tβ)v + (α + sβ)y + β(u − x)
)
,

the PDF of the new probability with respect to the initial one.

Theorem 2. Let τC be the first hitting time of the standard IWP to the cubic curve C whose
equation is

C(t − s) = a + b(t − s) + α

2
(t − s)2 + β

6
(t − s)3, t ≥ s.

Under the reference probability P, the law of the random variable (τC, WτC
) satisfies the

equation

Ps,(x,y)[τC ∈ dt, WτC
∈ dz]

= d−α,−β

(
s, x, y − b; t, a, z − b − α(t − s) − β

2
(t − s)2

)

× Ps,(x,y−b)

[
τa ∈ dt, Wτa + b + α(τa − s) + β

2
(τa − s)2 ∈ dz

]
. (10)

The second term on the right-hand side is given by Lachal’s formula, (8), if a 	= x, or by
McKean’s formula, (7), if a = x.
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Proof. Let 
 ⊂ R be a measurable set, and let t ≥ s ≥ 0. We have, by the change of
probability formula,

Pα,β

s,(x,y)[τa ≤ t, Wτa ∈ 
] = Es,(x,y)[1s≤τa≤t,Wτa ∈
 D
α,β

s,(x,y)(t)]
= Es,(x,y)[1s≤τa≤t, Wτa ∈
 Es,(x,y)[Dα,β

s,(x,y)(t) | Fs∨τa,t∧τa ]]
= Es,(x,y)[1s≤τa≤t, Wτa ∈
 D

α,β

s,(x,y)(t ∧ τa)]
= Es,(x,y)[1s≤τa≤t, Wτa ∈
 D

α,β

s,(x,y)(τa)]

=
∫




∫ t

s

D
α,β

s,(x,y)(t
′) Ps,(x,y)[τa ∈ dt ′; Wτa ∈ dz].

In going from the second to the third equation we used the fact that, according to Girsanov’s
theorem, D

α,β

s,(x,y)(t) is a martingale.
If x 	= a, the last probability is given by Lachal’s formula, (8), and gives the density of the

hitting time of (τa, Wτa ) under the new probability Pα,β

s,(x,y):

D
α,β

s,(x,y)(t)|z|
(

pt (x, y; a, z)

−
∫ t

0

∫ +∞

0
P(0,−|z|)[τ0 ∈ ds′; Wτ0 ∈ dµ]pt−s′(x, y; a, −εµ)

)
1A(z),

where A = [0, ∞) if x < a and A = (−∞, 0] if x > a, ε = sgn(a − x), and P(0,−|z|) is given
by McKean’s formula, (7).

We are interested in the probability density under P of the first hitting time of the curve
C(t − s). This hitting time reads

τC = inf{t > s, Xt = C(t − s) | Xs = x, Ws = y}
= inf

{
t > s, Xt − β

6
(t − s)3 − α

2
(t − s)2 = a

∣∣∣∣ Xs = x, Ws = y − b

}

= inf{t > s, X
−α,−β
t = a | X−α,−β

s = x, W−α,−β
s = y − b}.

Hence, τC under Ps,x,y has the same law as τa under P−α,−β
s,x,y−b. The corresponding location of

W
−α,−β
τa is Wτa + b + α(t − s) + (β/2)(t − s)2.
So, eventually the law of τC, WτC

under P reads

Ps,(x,y)[τC ∈ dt, WτC
∈ dz]

= d−α,−β

(
s, x, y − b; t, a, z − b − α(τa − s) − β

2
(τa − s)2

)

× Ps,(x,y−b)

[
τa ∈ dt, Wτa + b + α(τa − s) + β

2
(τa − s)2 ∈ dz

]
,

which is exactly (10). If x 	= a, this formula reads

Ps,(x,y)[τC ∈ dt, WτC
∈ dz] = d−α,−β

(
s, x, y − b; t, a, z − b − α(t − s) − β

2
(t − s)2

)

× lax,y−b

(
t − s, z − b − α(t − s) − β

2
(t − s)2

)
dt dz, (11)
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where lαx,y is Lachal’s density, (8). If x = a, the same calculus using McKean’s formula, (7),
gives us the following formula of the hitting time probability density using the same method:

Ps,(x,y)[τC ∈ dt, WτC
∈ dz] = d−α,−β

(
s, x, y − b; t, a, z − b − α(t − s) − β

2
(t − s)2

)

× m

(
t − s, y − b, z − b − α(t − s) − β

2
(t − s)2

)
dt dz.

(12)

4. Approximation of the first hitting time of the IWP to a general boundary

In this section we provide the formula of the first hitting time of the IWP to a piecewise-cubic
function and use it to compute an approximation formula of the law of the first hitting time of
the IWP to a general smooth curved boundary. We also provide the convergence rate of this
approximation. This approach inspired the works [2], [23], [25], and [32] on the first hitting time
of the Brownian motion to a general boundary. In [25] and [32] the authors used the formula of
the first hitting time of the Brownian motion to an affine boundary to derive an approximation
of the first hitting time of the Brownian motion to a curved boundary, approximated by a
piecewise-affine boundary. The rate of approximation is computed in [2]. This approach is
here applied to our problem for the IWP. Here the boundary is approximated by a cubic spline,
for which we compute an explicit formula for the PDF of the first hitting time of the IWP. We
then compute the convergence speed to the first hitting time of the IWP to a general boundary
of the first hitting time of a cubic spline approximation.

4.1. First hitting time to a continuous piecewise-cubic function

In this subsection we consider the first hitting time of an IWP to a continuous piecewise-cubic
function C(t) defined on the interval [0, T ] by

C(t) =
n−1∑
i=0

(ai + bi(t − ti ) + αi

2
(t − ti )

2 + βi

6
(t − ti )

3) 1[ti ,ti+1)(t). (13)

The coefficients {(ai, bi, αi, βi), i = 1, . . . , n} are constant on each interval [ti , ti+1), i =
1, . . . , n − 1. The continuity assumption requires that

ai+1 = ai + bi(ti+1 − ti ) + αi

2
(ti+1 − ti )

2 + βi

6
(ti+1 − ti )

3 for all i ∈ {1, . . . , n − 1}.

Remark. This continuity assumption is not essential. Nevertheless we limit ourselves to a
continuous boundary because it is sufficient to find good approximations of the first hitting
time PDF with continuous functions, since we prove in Theorem 4, below, that, for Lipschitz
continuous boundaries, there exists a density for the first hitting time. If the boundary was not
continuous then the density function of the first hitting times would have atoms at the points of
discontinuity of the boundary. This could be handled at the cost of an unnecessary increase in
technical difficulty.

We denote by (Ut )t≥0 the two-dimensional process (Xt , Wt )t≥0 and assume that the starting
point U0 is fixed:

X0 = x, W0 = y.
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Figure 2: Principle of the proof of Theorem 3: the probability that the first hitting time is greater than
t ∈ [tp, tp+1).

We recall that the process (Ut )t is strongly Markovian with transition measure (6). We denote
by τ s

C the first hitting time of the process (Xt )t≥s to the curve C before the time T , i.e.

τ s
C := inf{t > s; Xt = C(t)}.

Let us fix t ∈ [0, T ), and denote by p the index of the bin containing t (i.e. t ∈ [tp, tp+1)).
The principle of the proof is to use the strong Markov property of (Ut )t to express P[τ 0

C ≥ t | U0]
recursively as an integral of a product of p +1 terms. Of these terms p are related to the results
of Subsection 3.2 and their analytical expression is obtained from Theorem 2; see Figure 2.

We know that τ s
C is a stopping time under the filtration associated to U , which is strongly

Markovian. The event {Ut1 = u1, τ 0
C ≥ t1, U0} is in F Ut1 ; therefore, P[τ 0

C ≥ t | Ut1 =
u1, τ 0

C ≥ t1, U0] = P[τ t1
C ≥ t | Ut1 = u1]. It follows that

P[τ 0
C ≥ t | U0] =

∫ (2)

P[τ 0
C ≥ t | Ut1 = u1, τ 0

C ≥ t1, U0] P[Ut1 ∈ du1, τ 0
C ≥ t1 | U0]

=
∫ (2)

P[τ t1
C ≥ t | Ut1 = u1] P[Ut1 ∈ du1, τ 0

C ≥ t1 | U0],
where ‘

∫ (N)’ denotes an integral on R
N . The first term in this integral is similar to the left-hand

side of the equation. By an immediate recursion we obtain

P[τ 0
C ≥ t | U0] =

∫ (4)

P[τ t2
C ≥ t | Ut2 = u2] P[Ut2 ∈ du2, τ

t1
C ≥ t2 | Ut1 = u1]

× P[Ut1 ∈ du1, τ 0
C ≥ t1 | U0]

= · · ·

=
∫ (2p)

P[τ tp
C ≥ t | Utp = up] P[Utp ∈ dup, τ

tp−1
C ≥ tp | Utp−1 = up−1]

× P[Utp−1 ∈ dup−1, τ
tp−2
C ≥ tp−1 | Utp−2 = up−2] × · · ·

× P[Ut1 ∈ du1, τ 0
C ≥ t1 | U0], (14)

Note that the integration variables (ui){i=1,...,p} are two-dimensional.
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The terms in the product of (14) are of the same kind. Their expression is given by Theorem 3.
Indeed, since

{Utk ∈ duk, τ
tk−1
C ≥ tk} = {Utk ∈ duk} \ {Utk ∈ duk, τ

tk−1
C < tk},

where ‘\’ is the set difference, we have

P[Utk ∈ duk, τ
tk−1
C ≥ tk | Utk−1 = uk−1]

= P[Utk ∈ duk | Utk−1 = uk−1] − P[Utk ∈ duk, τ
tk−1
C ≤ tk | Utk−1 = uk−1]

= P[Utk ∈ duk | Utk−1 = uk−1] −
∫ tk

tk−1

P[Utk ∈ duk, τ
tk−1
C ∈ ds | Utk−1 = uk−1]

= P[Utk ∈ duk | Utk−1 = uk−1]
−

∫ tk

tk−1

∫
R

P[Utk ∈ duk | τ
tk−1
C = s, Ws = y, Utk−1 = uk−1]

× P[τ tk−1
C ∈ ds, Ws ∈ dy | Utk−1 = uk−1]

=
(

ptk−tk−1(uk; uk−1)

−
∫ tk

tk−1

∫
R

ptk−s(uk; C(s), y) P[τ tk−1
C ∈ ds, Ws ∈ dy | Utk−1 = uk−1]

)
duk,

where pt (x, y; u, v) is the transition density function (6) of the process U . The curve C on
the interval [tk−1, tk) is a fixed cubic function. The hitting time of the IWP starting at uk−1 to
C has a known density computed in Subsection 3.2 and the term we are interested in can be
deduced from the expression we derived previously.

Hence, we have proved the following theorem.

Theorem 3. The law of the first hitting time of the IWP to a continuous piecewise-cubic
boundary is given by the formula

P[τ 0
C ≥ t | U0] =

∫ (2p)

P[τ tp
C ≥ t | Utp = up]

×
p∏

k=1

(
ptk−tk−1(uk; uk−1)

−
∫ tk

tk−1

∫
R

ptk−s(uk; C(s), y)

× P[τ tk−1
C ∈ ds, Ws ∈ dy | Utk−1 ]

)
duk.

4.2. Approximation of the first hitting time to a general boundary

In this subsection we derive an approximation of the first hitting time before a given time T

of the IWP to a general smooth boundary using the results of the previous section.
Let f : R 
→ R be a continuously differentiable function. Also, let T > 0 and

0 = t0 < t1 < · · · < tn = T
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Figure 3: Principle of the approximation method: approximating the boundary by a regular piecewise-
cubic function.

be a partition, noted π , of the interval [0, T ]. We denote by δ(π) the mesh step defined as

δ(π) = max{ti+1 − ti , i = 0, . . . , n − 1}.
The principle of the method is to approximate the first hitting time of the IWP to the boundary

f by the first hitting time of the IWP to a smooth piecewise-cubic function Cπ (see Figure 3).
The constraints we impose on Cπ are that it can pass through the control points {(ti , f (ti)), i =
1, . . . , n} and to be at least continuously differentiable. There are several ways for defining
it; see, e.g. [29]. We assume for simplicity, but it is not essential here, that f is either C2 or
C4. One of the most popular interpolation schemes in the second case is provided by the cubic
spline that yields a C2 interpolation of f which is an approximation of order four, i.e.

sup
t∈[0,T ]

|f (t) − Cπ(t)| ≤ K(f )δ(π)4, (15)

where K(f ) is a function of f only. Therefore, Cπ(t) is given by (13), where the coefficients
ai , bi , αi , and βi are functions of f and provided by the particular interpolation scheme one
uses; see, e.g. [29].

We first prove the following theorem.

Theorem 4. The first hitting time of the IWP to a Lipschitz continuous boundary has a density
with respect to Lebesgue’s measure.

Proof. We assume that f is Lipschitz continuous. Let L denote the Lipschitz continuity
constant of f . We have

f (s + h) − f (s) ≥ −Lh for all 0 < s < s + h < t.

For a fixed t ∈ [0, T ], we introduce the boundary ft (s) := f (t) + L(t − s). Now let

τt := inf{s > 0; Xs > ft (s) | X0 = x0, W0 = y0}
= inf{s > 0; Xs + Ls > f (t) + Lt | X0 = x0, W0 = y0}
= inf{s > 0; Xs > f (t) + Lt | X0 = x0, W0 = y0 + L}.
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Obviously, we have

P[τf ∈ (t, t + h)] ≤ P[τt ∈ (t, t + h)],
and, hence, the stopping time τf has a density p(t) with respect to Lebesgue’s measure.
Moreover, from Lachal’s formula we have

p(t) ≤
∫

R

l
f (t)+Lt
x0,y0+L(t, z) dz.

We now relate the first hitting time of the cubic approximation Cπ to that of the general
boundary f .

Theorem 5. The first hitting time of the IWP to the curve Cπ before T , converges in law to
the first hitting time of the IWP to the curve f before T . Furthermore, if f is C2 then this
convergence is the same order as the approximation of f by the cubic function Cπ . More
precisely, for a real function g, if P(T , g) denotes the probability P[Xt ≥ g(t) for some t ∈
[0, T ]], there exists a constant K̃(f, T ) that depends on the function f and the time T such
that

|P(T , Cπ) − P(T , f )| ≤ K̃(f, T )‖f − Cπ‖∞,T , (16)

where ‖g‖∞,T = sups∈[0,T ] |g(s)| is the uniform norm on [0, T ].
To prove this theorem, we use the following lemma, which gives the density of the random

variable sups∈[0,t] Xs .

Lemma 2. Let t > 0 be a fixed real, and let St be the random variable defined by

St = sup
s∈[0,t]

Xs.

Then the law of this random variable is characterized by

P0,x,y[St ∈ da]
= − da

∫ ∞

−∞

∫ t

0
|z|

(
∂ps(x, y; a, z)

∂a
−

∫ s

0

∫ +∞

0
P(0,−|z|)[τ0 ∈ du; Wτ0 ∈ dµ]

× ∂ps−u(x, y; a, −εµ)

∂a

)
1A(z) dz dt.

(17)

Proof. We have

P0,x,y[St ≥ a] = P0,x,y[τa ≤ t] =
∫ t

0

∫ ∞

−∞
lax,y(t, z) dt dz,

where lax,y(t, z) is Lachal’s density. From the expression of this density and its dependency in
a, we can see that the random variable St has a density with respect to Lebesgue’s measure, and
this measure has the form (17) (this formula is obtained using Lebesgue’s theorem of derivation
under the sum sign).
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Proof of Theorem 5. This result comes directly from the existence of a smooth density of
the random variable St , the uniform convergence of the curve Cπ to f , and the smoothness of
the function f . Let U0 be the initial conditions, X0 = x and W0 = y, such that x < f (0).

We have

P(T , f + ε) ≤ P(T , f ) ≤ P(T , f − ε).

Assume that fε is a uniform approximation of f such that

‖fε − f ‖∞,T ≤ ε.

We have

|P(T , fε) − P(T , f )|
≤ P(T , f − ε) − P(T , f + ε)

= P(T , f − ε) − P(T , f ) + P(T , f ) − P(T , f + ε)

= P
[
−ε ≤ sup

s∈[0,t]
(Xs − f (s)) ≤ 0

]
+ P

[
0 ≤ sup

s∈[0,t]
(Xs − f (s)) ≤ ε

]
:= 
−ε(f ) + 
ε(f ). (18)

We have


ε(f ) = P
[
0 ≤ sup

s∈[0,t]
(Xs − f (s)) ≤ ε

∣∣∣ U0

]

=
∫ t

0

∫
R

P[τf ∈ ds, Wτf
∈ dz | U0]

× P
[

sup
v∈[s,t]

(Xv − f (v)) ≤ ε

∣∣∣ Xs = f (s), Ws = z
]

=
∫ t

0

∫ ∞

f ′(s)
P[τf ∈ ds, Wτf

∈ dz | U0]

× P
[

sup
v∈[s,t]

(Xv − f (v)) ≤ ε

∣∣∣ Xs = f (s), Ws = z
]
.

The last equality is a consequence of the fact that P[Wτf
> f ′(τf )] = 1, i.e. z ≥ f ′(s) almost

surely. We can conclude to the convergence of the approximation by virtue of Lebesgue’s
theorem. Indeed, let s ∈ [0, t] and z > f ′(s). Then the process (Xt − f (t))t≥s conditioned
by {Xs = f (s), Ws = z} is a differentiable process starting from 0 with a strictly positive
derivative at 0 implying that

P
[

sup
v∈[s,t]

(Xv − f (v)) ≤ ε

∣∣∣ Xs = f (s), Ws = z
]

→ 0 as ε → 0.

Furthermore, P[supv∈[s,t](Xv − f (v)) ≤ ε | Xs = f (s), Ws = z] ≤ 1, which is integrable
under the measure P[τf ∈ ds, Wτf

∈ dz | U0], so Lebesgue’s theorem applies and we have
the following expected result:


ε(f ) → 0 as ε → 0.
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The same argument applies for the term 
−ε(f ) in (18). Indeed, we can bound this
probability for ε ≤ (f (0) − x)/2 by


−ε(f ) = P
[
−ε ≤ sup

s∈[0,t]
Xs − f (s) ≤ 0

∣∣∣ X0 = x, W0 = y
]

= P
[
0 ≤ sup

s∈[0,t]
Xs − f (s) ≤ ε

∣∣∣ X0 = x + ε, W0 = y
]

≤ P

[
0 ≤ sup

s∈[0,t]
Xs − f (s) ≤ ε

∣∣∣∣ X0 = x + f (0)

2
, W0 = y

]

→ 0 as ε → 0. (19)

We obtain a stronger result if the boundary f is C2. Lemma 2 ensures that the random variable
sups∈[0,t] Xs has a smooth density with respect to Lebesgue’s measure. From Girsanov’s
theorem, under the probability Q, defined by

dQ

dP

∣∣∣∣
Ft

= exp

(∫ t

0
f ′′(s) dWs − 1

2

∫ t

0
f ′′(s)2 ds

)
=: Ls,

the process supv∈[s,t](Xv − f (v)) has the law of the sup over [s, t] of an IWP, which is given
by (17), let us note it pL(s). For z > f ′(s), the probability that appears at the right-hand side
of (19) is equal to∫ ε

0
pL(s) EQ[L−1

s ] ds =
∫ ε

0
pL(s) EQ[L̃s] exp

(∫ s

0
f ′′(u)2 du

)
ds

=
∫ ε

0
pL(s) exp

(∫ s

0
f ′′(u)2 du

)
ds,

since L̃s = exp(− ∫ t

0 f ′′(s) dWs − 1
2

∫ t

0 f ′′(s)2 ds) is a martingale. The last integral is O(ε).
So eventually, again using the same bound as (19), we have the expected result: there exists

a constant ˜̃
K(f, T ) such that

|P(T , fε) − P(T , f )| ≤ ˜̃
K(f, T )ε.

Finally, if f is C4 and Cπ is a cubic spline interpolation of f , we have the convergence
estimation (15) which yields

|P(T , Cπ) − P(T , f )| ≤ 2 ˜̃
K(f, T )‖Cπ − f ‖∞

≤ 2K̃(f, T )δ(π)4.

5. Approximation of the first hitting time of a general DIP to a general boundary

In this section we derive an approximation formula for the PDF of the first hitting time of
a general DIP to a general smooth boundary. Here again the idea is to use the formulae we
obtained in Section 3 to build approximations on a partition of a given time interval [0, T ] (see
Figure 4).

Thanks to Lemma 1, we can restrict ourselves to the first hitting time of a process Y defined
by

Yt =
∫ t

0
g(s)Ws ds,

where g(·) is a continuously differentiable function and W is a standard Brownian motion.

https://doi.org/10.1239/aap/1214950214 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950214


518 J. TOUBOUL AND O. FAUGERAS

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

15

DIP

Approximated DIP

Original 
boundary 

Control 
points 

Cubic spline boundary 
approximation

Figure 4: Approximation principle for the DIP. The boundary is approximated by asmooth piecewise-
cubic boundary while the process is approximated by a continuous piecewise IWP.

Let π be, as before, a partition of the interval [0, T ] with n intervals, i.e.

0 = t0 < t1 < t2 < · · · < tn = T .

We denote by gπ the piecewise-constant approximation of g defined by

gπ(t) =
n−1∑
i=0

g(ti) 1[ti ,ti+1)(t),

and we denote by Yπ the associated DIP defined by

Yπ
t =

∫ t

0
gπ(s)Ws ds. (20)

Proposition 3. The process Yπ
t converges almost surely to the process Yt . Furthermore, there

exists a real positive process Zt such that

sup
0≤s≤t

|Yπ
s − Ys | ≤ δ(π)Zt . (21)

Proof. We have

sup
0≤s≤t

|Yπ
s − Ys | = sup

0≤s≤t

∣∣∣∣
∫ s

0
(gπ (u) − g(u))Wu du

∣∣∣∣
≤ sup

0≤s≤t

∫ s

0
|gπ(u) − g(u)||Wu| du

≤
(

sup
0≤s≤t

|gπ(u) − g(u)|
)

sup
0≤s≤t

∫ s

0
|Wu| du.
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We assumed that g was continuously differentiable on R
+, so it is uniformly Lipschitz on

[0, T ]. We note that
‖g′‖∞,T = sup

0≤s≤T

|g′(s)|,

the uniform Lipschitz constant. We eventually have

sup
0≤s≤t

|Yπ
s − Ys | ≤ δ(π)‖g′‖∞,T sup

0≤s≤t

∫ s

0
|Wu| du.

The process Zt := sup0≤s≤t

∫ s

0 |Wu| du is almost surely finite; thus, the process Yπ con-
verges almost surely to Y when δ(π) → 0 and we have the upper bound in (21).

Now let f be a smooth function (at least two times continuously differentiable), and let Cπ

be the approximating function in (13).

Theorem 6. The first hitting time τπ of the process Yπ to the curve Cπ converges in law to the
first hitting time τf of the process Y to the curve f .

Proof. A sufficient condition for this convergence is the convergence in law of the process
sups∈[0,t](Y π

s − Cπ
s ) to the process sups∈[0,t](Ys − f (s)), and this convergence is a direct con-

sequence of the calculations above. Here we only assume that f is continuously differentiable
(the corresponding piecewise-cubic approximation would be, for example, the Hermite cubic
approximation; see [29]).

In this case Cπ
t converges to f linearly, i.e. there exists a constant K(f ) > 0 depending on

f such that
sup

t∈[0,T ]
|f (t) − Cπ(t)| ≤ K(f )δ(π).

We have

sup
s∈[0,t]

(Y π
s − Cπ

s ) ≤ sup
s∈[0,t]

(Y π
t − Yt ) + sup

s∈[0,t]
(f (t) − Cπ

t ) + sup
s∈[0,t]

(Yt − f (t))

≤ δ(π)Zt + K(f )δ(π) + sup
s∈[0,t]

(Yt − f (t)).

Writing the same estimation on sups∈[0,t](Ys − f (s)) yields∣∣∣ sup
s∈[0,t]

(Y π
s − Cπ

s ) − sup
s∈[0,t]

(Yt − f (t))

∣∣∣ ≤ δ(π)(Zt + K(f )).

Hence, we have the following expected result:

P[τπ ≤ t] = P
[

sup
s∈[0,t]

(Y π
s − Cπ

s ) > 0
]

→ P
[

sup
s∈[0,t]

(Ys − f (s)) > 0
]

as δ(π) → 0,

which is equal to P[τf ≤ t].
We now compute the formula of the PDF of the first crossing time of Yπ to the curve Cπ ,

as we did in Section 4.
We consider π to be a fixed partition of the interval [0, T ]. We denote by τ s

π the first hitting
time after time s of the process Yπ to the curve Cπ and we denote by Uπ the two-dimensional
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process (Y π
t , Wt ). The same proof as in Section 4 gives us the following analogous formula

to (14):

P[τ 0
π ≥ t | Uπ

0 ] =
∫ (2p)

P[τ tp
π ≥ t | Uπ

tp
= up]

× P[(Uπ
tp

∈ dup, τ
tp−1
π ≥ tp | Uπ

tp−1
= up−1]

× P[Uπ
tp−1

∈ dup−1, τ
tp−2
π ≥ tp−1 | Uπ

tp−2
= up−2] × · · ·

× P[Uπ
t1

∈ du1 | Uπ
0 ].

Here again the terms in the recursion formula are of the same kind, and the only quantities we
need to calculate are the conditional probabilities P[Uπ

tk
∈ duk, τ

tk−1
π ≥ tk | Uπ

tk−1
= uk−1] for

k = 1, . . . , p.
Note that in the interval [tk, tk+1) the process Yπ

t reads

Yπ
t = Yπ

ti
+ g(tk)(Xt − Xtk ), (22)

and that (Xt − Xtk )t≥tk is simply an IWP starting from 0. We then have

P[Uπ
tk

∈ duk, τ
tk−1
π ≥ tk | Uπ

tk−1
= uk−1]

= P[Uπ
tk

∈ duk | Uπ
tk−1

= uk−1] − P[Uπ
tk

∈ duk, τ
tk−1
π ≤ tp−1 | Uπ

tk−1
= uk−1]

= P[Uπ
tk

∈ duk | Uπ
tk−1

= uk−1]

−
∫ tk

tk−1

P[Uπ
tk

∈ duk, τ
tk−1
π ∈ ds | Uπ

tk−1
= uk−1] P[Uπ

tk
= duk | Uπ

tk−1
= uk−1]

−
∫ tk

tk−1

∫
R

P[Uπ
tk

∈ duk | τ
tk−1
π = s, Ws = y, Uπ

tk−1
= uk−1]

× P[τ tk−1
π ∈ ds, Ws ∈ dy | Uπ

tk−1
= uk−1]

= duk

(
p̃(tk, uk; tk−1, uk−1) −

∫ tk

tk−1

∫
R

p̃(tk, uk; s, (Cπ(s), y))

× P[τ tk−1
π ∈ ds, Ws ∈ dy | Uπ

tk−1
= uk−1]

)
, (23)

where p̃(t, x, y; s, u, v) is the transition function of the process Uπ (for t ≥ s). This function
can be deduced from (6) and (22) for s and t in the same bin [tk, tk+1) and reads

p̃(t, x, y; s, u, v) = P[Yπ
t = x, Wt = y | Yπ

s = u, Ws = v]
= P[Yπ

s + g(tk)(Xt − Xs) = x, Wt = y | Yπ
s = u, Ws = v]

= P

[
Xt − Xs = x − u

g(tk)
, Wt = y

∣∣∣∣ Yπ
s = u, Ws = v

]

= P

[
Xt − Xs = x − u

g(tk)
, Wt − Ws = y − v

∣∣∣∣ Yπ
s = u, Ws = v

]
.
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We have seen in a remark in Subsection 2.2 that, conditionally to Ws , the increments of the
two-dimensional process are independent of Fs , so we have

p̃(t, x, y; s, u, v) = P

[
Xt−s = x − u

g(tk)
, Wt−s = y − v

∣∣∣∣ X0 = 0, W0 = 0

]

= pt−s

(
x − u

g(tk)
, y − v; 0, 0

)
.

Hence, the general term (23) of the expansion reads

dxk dyk

(
ptk−tk−1

(
xk − xk−1

g(tk−1)
, yk − yk−1; 0, 0

)

−
∫ tk

tk−1

∫
R

ptk−s

(
xk − Cπ(s)

g(tk−1)
, yk − y; 0, 0

)

× P[τπ ∈ ds, Ws ∈ dy | Uπ
tk−1

= uk−1]
)

.

The last thing to compute is P[τπ ∈ ds, Ws ∈ dy | Uπ
tk−1

= uk−1], the law of the hitting
time τπ in a given bin [tk, tk−1), which appears in (23). This law can be deduced from that of
the first hitting time of the IWP using (22).

Indeed, to compute this probability, we use the fact that, conditionally on the event {Uπ
tk−1

=
uk−1, t ≥ tk−1}, we have

τπ = inf{s > tk−1, Y
π
s = Cπ(s) | Uπ

tk−1
= uk−1}

= inf{s > tk−1, Y
π
tk−1

+ g(tk−1)(Xs − Xtk−1) = Cπ(s) | Uπ
tk−1

= uk−1}

= inf

{
s > tk−1, Xs − Xtk−1 = Cπ(s) − Yπ

tk−1

g(tk−1)

∣∣∣∣ Uπ
tk−1

= uk−1

}

= inf

{
s > 0, X̃s = Cπ(s) − Yπ

tk−1

g(tk−1)

∣∣∣∣ X̃0 = 0, W̃0 = utk−1,2

}
,

where (X̃t , W̃t )t is a standard IWP and utk−1,2 is the second component of Uπ
tk−1

. Hence, we
have

P[τπ ∈ ds, Ws ∈ dy | Uπ
tk−1

= uk−1] = Ps,(0,utk−1,2)[τ(C−Yπ
tk−1

)/g(tk−1) ∈ ds, Ws ∈ dy],

and the last expression is given by (11) and (12).
We have proved the following theorem.

Theorem 7. Let g be a Lipschitz continuous real function, let T > 0, and π is the partition of
the interval [0, T ]:

0 = t0 < t1 < · · · < tn = T .

Let f be a continuously differentiable function. The first hitting time τπ of the approximated
process Yπ defined by (20) to a cubic spline approximation of f on the partition π , denoted by
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f π , satisfies the equation

P[τπ ≥ T | U0]

=
∫ (2n) n∏

k=1

(
ptk−tk−1

(
xk − xk−1

g(tk−1)
, yk − yk−1; 0, 0

)

−
∫ tk

tk−1

∫
R

ptk−s

(
xk − f π(s)

g(tk−1)
, yk − y; 0, 0

)

× Ps,(0,y)[τ(C−xk−1)/g(tk−1) ∈ ds, Ws ∈ dy]
)

dxk dyk,

where P[τC ∈ ds, Ws ∈ dy] is given by (11) or (12).

6. Numerical evaluation

6.1. Algorithm

In this section we propose an algorithm to evaluate the approximation formula we derived
in the previous section. The expressions we found for the first hitting time involve integrals on
R

2n when there are n+1 points in the mesh, which have no closed-form expression. Numerical
computation of these integrals can be quite intricate and time consuming, so a numerical approx-
imation is needed and another approximation is made besides (16) and Theorem 6. The principle
of the numerical approximation we propose is to express this integral as an expectation over a
certain probability measure and to use a Monte Carlo algorithm to compute this expectation.
The accuracy of this approximation can be assessed through standard procedures for Monte
Carlo simulations [20], [28].

Corollary 1. (Of Theorem 3.) Let (Xt , Wt )t≥0 be a standard IWP-Brownian motion pair, and
let f be a smooth boundary function. The law of the first hitting time τ of X to f satisfies, for
t ∈ [tp−1, tp),

P[τC ≥ t | U0] = E[hp(π, t, Xt1 , Wt1 , . . . , Xtp−1 , Wtp−1 , Xt , Wt ) | U0],

where the function hp is defined, for t ∈ [tp−1, tp), by

hp(π, t, x1, y1, . . . , x, y)

:=
p−1∏
k=1

(
1 −

∫ tk

tk−1

∫
R

ptk−s(xk, yk, C(s), z)

ptk−tk−1(xk, yk, xk−1, yk−1)

× P[τC ∈ ds, WτC
∈ dz | Xtk−1 = xk−1, Wtk−1 = yk−1]

)

×
(

1 −
∫ t

tp−1

∫
R

ptp−1−s(x, y, C(s), z)

pt−tp−1(x, y, xp−1, yp−1)

× P[τC ∈ ds, WτC
∈ dz | Xtp−1 = xp−1, Wtp−1 = yp−1]

)
.

The same method can be applied for the DIP for a given function g.
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Corollary 2. (Of Theorem 7.) Let g be a Lipschitz continuous real function, let (Xt , Wt )t≥0 be
a standard IWP-Brownian motion pair, let T > 0, and π is the partition of the interval [0, T ]:

0 = t0 < t1 < · · · < tn = T .

Let f be a continuously differentiable function. The first hitting time τπ of the approximated
process Yπ defined by (20) to a cubic spline approximation of f on the partition π , denoted
f π , can be computed as the expectation, i.e.

P[τπ ≥ t | U0] = E[hg,π
p (t, Xt1 , Wt1, . . . , Xt , Wt ) | U0], (24)

where the function h
g,π
p is defined by

h
g,π
p (x1, y1 . . . , x, y)

:=
p−1∏
k=1

(
ptk−tk−1((xk − xk−1)/g(tk−1), yk − yk−1; 0, 0)

ptk−tk−1(xk, yk, xk−1, yk−1)

−
∫ tk

tk−1

∫
R

ptk−s((xk − f π(s))/g(tk−1), yk − z; 0, 0)

ptk−tk−1(xk, yk, xk−1, yk−1)

× Ps,(0,ys )[τ(C−xk−1)/g(tk−1) ∈ ds, Ws ∈ dz]
)

×
(

pt−tp−1((x − xp−1)/g(tp−1), y − yp−1; 0, 0)

pt−tp−1(x, y, xp−1, yp−1)

−
∫ t

tp−1

∫
R

pt−s((x − f π(s))/g(tp−1), y − z; 0, 0)

pt−tp−1(x, y, xp−1, yp−1)

× Ps,(0,z)[τ(C−xp−1)/g(tp−1) ∈ ds, Ws ∈ dz]
)

,

where P[τC ∈ ds, Ws ∈ dys] is given by (11) or (12).

Hence, the problem is now reduced to the computation of the expectation of a certain function
of the Gaussian random vector (X0, W0, Xt1 , Wt1 , . . . , Xtn, Wtn). This vector is Gaussian of
mean 0 and covariance matrix defined by blocks as

K(t1, . . . , tn) =

⎛
⎜⎜⎜⎝

t2
j

6
(3ti − tj )

tj

2
(2ti − tj )

t2
j

2
tj

⎞
⎟⎟⎟⎠

(i,j)∈{0,...,n}, j≤i

. (25)

The Monte Carlo algorithm we use to compute the expected probability is the following.

(i) Compute the square root K(t1, . . . , tn)
1/2 of the covariance matrix (25) (using, for

instance, a Cholesky decomposition).

(ii) Generate an independent and identically distributed sample u = [u1, u2, . . . , u2n]� from
the normal standard distribution N (0, 1).

(iii) Compute the transformation x = K(t1, . . . , tn)
1/2u.

(iv) Calculate hn(x) or h
g,π
n (x).
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(v) Repeat steps (ii)–(iv) N times and calculate the frequency

PN = 1

N

∑
over the realizations

hn(x) or PN = 1

N

∑
over the realizations

h
g,π
n (x).

The probability P[τ ≥ T ] is then estimated by PN . The standard error of this estimator is
given by

E(N) =
√∑

(h(x) − PN)2

N(N − 1)
.

6.2. Numerical results

Lachal’s formula has been implemented using the Gauss integration method. This method is
very useful for computing the double integral of Lachal’s formula. It allows us to control the pre-
cision of the approximation using standard methods (see, e.g. [29]). With this method, we obtain
the two-dimensional joint PDF of (τa, Wτa ) conditioned on the starting point. Figure 5 repre-
sents the dependence of this law on the starting point. Note that the probability that the hitting
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Figure 5: Lachal’s PDF for of the first hitting time of the IWP to the constant a = 1 for initial conditions
(a) X0 = 0 and W0 = 0, and (b) X0 = 0 and W0 = 1. Level sets show how the PDF is distributed. The

uppermost half level sets are not displayed for the sake of visibility.
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Figure 6: PDF of the first hitting time of the IWP to the cubic curve (a) t 
→ 1 − 2t − 2t2 − t3 and
(b) t 
→ 1 − 1

2 t + t3, with the initial condition X0 = 0 and W0 = 0. For case (a), the total mass is 1 and,
for case (b), the total mass is approximately 0.2578.

time τa is strictly less than ∞ is always 1, as proved in [18]. The process almost surely crosses
any given constant. Computation times for a precision set to 10−6 are around 0.1 ms.

The formula we obtained for a cubic density is simply a transformation of Lachal’s density
using formulae (11) and (12). It is clear that now the crossing probability will not always be
equal to 1, for instance, when β > 0. Figure 6 illustrates this property and we give a numerical
estimation of the probability of crossing the boundary. This probability can be computed using
the formulae we obtained, but it is not in the scope of the present paper.

Finally, our last formula can be implemented using different Monte Carlo algorithms. Here
we obtain only the inverse cumulative distribution function of the first hitting time. Computation
times are quite large, but the main interest of this technique is not computational. In Figure 7 we
present some results obtained for the sinusoidal functions f (x) = sin(x) and g(x) = cos(x)

and a comparison between the results obtained using (24) and a direct integration of Lachal’s
formula in the case where f and g are identically equal to 1 and the constant boundary is equal
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Figure 7: (a) Inverse cumulative distribution of the first hitting time of a linear curve of a DIP defined by
the sinusoidal functions f (x) = sin(x) and g(x) = cos(x). (b) Inverse cumulative distribution function
of the IWP to a constant boundary equal to 1 obtained by our method compared with the theoretical

evaluation.

to 1. In these cases, computation times are reasonable since there is no need to have a large
number of points in our partition.

In Table 1 we present results obtained with (24) for the first hitting time of the IWP to
the sinusoidal function t 
→ 1 − sin(2t/π) in the interval [0, 1]. We discretized the interval
with five points (hence, the approximation is of order 10−3). Monte Carlo calculations take
quite long to obtain the same order of approximation (106 trials for points in R

10 per point
of the curve). Indeed, the computation of the function inside the integral on R

2p involves the
computation of a fourth-order integral that we compute using a Gauss method of the same order
of approximation, which requires a long computation time. Hence, we only show a table of
results.

Probably other algorithms would be more efficient, but the corresponding computational
issues are outside the scope of the present paper.
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Table 1: Table of the probabilities of crossing the sinusoidal function t 
→ 1 − sin(2t/π) after time t by
an IWP starting at the origin.

Time P[τπ ≥ t | U0]
0.1 1.008819
0.2 1.003199
0.3 1.000000
0.4 0.999871
0.5 0.999576
0.6 0.996399
0.7 0.984581

7. Conclusion

In this paper we have provided a method of approximation of the probability distribution of
the first hitting time of a DIP to a curved boundary. To our knowledge, this is the first result for
this problem.

We first obtained a closed-form expression of the probability distribution of the first hitting
time of the IWP to a continuous piecewise-cubic boundary.

By approximating a general smooth boundary with a piecewise-cubic function we used this
expression to compute an approximation of the probability distribution of the first hitting time
of the IWP to any smooth curved boundary, and proved that it converges (very fast in many
cases) towards the probability distribution of the first hitting time of the IWP to the original
curved boundary.

We then extended the method to solve the problem of approximating the probability distri-
bution of the first hitting time of a DIP to a smooth curved boundary.

Lastly, we sketched a numerical procedure based on a Monte Carlo simulation to compute
the probability distribution efficiently.

These results have potential applications in many fields of physics and biology.

Acknowledgements

This work was partially supported by the ‘Fondation d’Entreprise EADS’ and the EC IP
project #015879, FACETS.

References

[1] Anderssen, R. S., Hood, F. R. D. and Weiss, R. (1973). On the numerical solution of Brownian motion
processes. J. Appl. Prob. 10, 409–418.

[2] Borovkov, K. and Novikov, A. (2005). Explicit bounds for approximation rates for boundary crossing
probabilities for the Wiener process. J. Appl. Prob. 42, 82–92.

[3] Buonocore, A., Nobile, A. G. and Ricciardi, L. M. (1987). A new integral equation for the evaluation of
first-passage-time probability densities. Adv. Appl. Prob. 19, 784–800.

[4] Daniels, H. E. (1996). Approximating the first crossing-time density for a curved boundary. Bernoulli 2,
133–143.

[5] Durbin, J. (1985). The first-passage-density of a continuous Gaussian process to a general boundary. J. Appl.
Prob. 22, 99–122. (Correction: 25 (1988), 840.)

[6] Durbin, J. (1992). The first-passage density of the Brownian motion process to a curved boundary. J. Appl.
Prob. 29, 291–304.

[7] Favella, L., Reineri, M., Ricciardi, L. and Sacerdote, L. (1982). First passage time problems and related
computational methods. Cybernetics Systems 13, 95–128.

[8] Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models. Cambridge University Press.

https://doi.org/10.1239/aap/1214950214 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950214


528 J. TOUBOUL AND O. FAUGERAS

[9] Giraudo, M., Sacerdote, L. and Zucca, C. (2001). A Monte Carlo method for the simulation of first passage
time diffusion processes. Method. Comput. Appl. Prob. 3, 215–231.

[10] Goldman, M. (1971). On the first passage of the integrated Wiener process. Ann. Mat. Statist. 42, 2150–2155.
[11] Groeneboom, P. (1989). Brownian motion with parabolic drift and Airy functions. Prob. Theory Relat. Fields

81, 79–109.
[12] Karatzas, I. and Shreve, S. (1987). Brownian Motion and Stochastic Calculus. Springer, New York.
[13] Kloeden, P. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations. Springer, Berlin.
[14] Lachal, A. (1991). Sur le premier instant de passage de l’intégrale du mouvement brownien. Ann. Inst. H.

Poincaré Prob. Statist. 27, 385–405.
[15] Lachal, A. (1996). Quelques martingales associées à l’intégrale du processus d’Ornstein–Uhlenbeck.

Application à l’étude des premiers instants d’atteinte. Stoch. Stoch. Rep. 58, 285–302.
[16] Lachal, A. (1997). Les temps de passages successifs de l’intégrale du mouvement brownien. Ann. Inst.

H. Poincaré Prob. Statist. 33, 1–36.
[17] Lefebvre, M. (1989). First-passage densities of a two-dimensional process. SIAM J. Appl. Math. 49, 1514–1523.
[18] McKean, H. P. (1963). A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2,

227–235.
[19] Nardo, E. D., Nobile, A. G., Pirozzi, E. and Ricciardi, L. M. (2001). A computational approach to first

passage time problems for Gauss–Markov processes. Adv. Appl. Prob. 33, 453–482.
[20] Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial

and Applied Mathematics, Philadelphia, PA.
[21] Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985). Exponential trends of first-passage-time densities

for a class of diffusion processes with steady-state distribution. J. Appl. Prob. 22, 611–618.
[22] Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985). Exponential trends of Ornstein–Uhlenbeck first-

passage-time densities. J. Appl. Prob. 22, 360–369.
[23] Novikov, A., Frishling, V. and Kordzakhia, N. (1999). Approximations of boundary crossing probabilities

for a Brownian motion. J. Appl. Prob. 36, 1019–1030.
[24] Patie, P. (2004). On some first passage time problem motivated by financial applications. Doctoral thesis, ETH

Zurich.
[25] Pötzelberger, K. and Wang, L. (2001). Boundary crossing probability for Brownian motion. J. Appl. Prob.

38, 152–164.
[26] Ricciardi, L. M. and Sato, S. (1988). First-passage time density and moments of the Ornstein–Uhlenbeck

process. J. Appl. Prob. 25, 43–57.
[27] Ricciardi, L., Sacerdote, L. and Sato, S. (1984). On an integral equation for first passage time probability

density function. J. Appl. Prob. 21, 302–314.
[28] Ripley, B. D. (1987). Stochastic Simulation. John Wiley, New York.
[29] Stoer, J. and Burlisch, R. (1980). Introduction to Numerical Analysis. Springer, New York.
[30] Touboul, J. and Faugeras, O. (2007). The spikes trains probability distributions: a stochastic calculus

approach. J. Physiol. Paris 101, 78–98.
[31] Wang, L. and Pötzelberger, K. (1997). Boundary crossing probability for Brownian motion and general

boundaries. J. Appl. Prob. 34, 54–65.
[32] Wang, L. and Pötzelberger, K. (2007). Crossing probabilities for diffusion processes with piecewise

continuous boundaries. Methodol. Comput. Appl. Prob. 9, 21–40.

https://doi.org/10.1239/aap/1214950214 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950214

	1 Introduction
	2 The DIP
	2.1 Motivation
	2.2 Definition and main properties of DIPs

	3 First hitting time of the IWP
	3.1 First hitting time to a constant boundary
	3.2 First hitting time to a cubic boundary

	4 Approximation of the first hitting time of the IWP to a general boundary
	4.1 First hitting time to a continuous piecewise-cubic function
	4.2 Approximation of the first hitting time to a general boundary

	5 Approximation of the first hitting time of a general DIP to a general boundary
	6 Numerical evaluation
	6.1 Algorithm
	6.2 Numerical results

	7 Conclusion
	Acknowledgements
	References

