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A MINIMAL SET LOW FOR SPEED

ROD DOWNEY AND MATTHEW HARRISON-TRAINOR

Abstract. An oracle A is low-for-speed if it is unable to speed up the computation of a set which is
already computable: if a decidable language can be decided in time t(n) using A as an oracle, then it can be
decided without an oracle in time p(t(n)) for some polynomial p. The existence of a set which is low-for-
speed was first shown by Bayer and Slaman who constructed a non-computable computably enumerable
set which is low-for-speed. In this paper we answer a question previously raised by Bienvenu and Downey,
who asked whether there is a minimal degree which is low-for-speed. The standard method of constructing
a set of minimal degree via forcing is incompatible with making the set low-for-speed; but we are able to
use an interesting new combination of forcing and full approximation to construct a set which is both of
minimal degree and low-for-speed.

§1. Introduction. Almost since the beginning of computational complexity
theory, we have had results about oracles and their effect on the running times
of computations. For example Baker et al. [3] showed that on the one hand there
are oracles A such that PA = NPA and on the other hand there are oracles B such
that PB �= NPB , thus demonstrating that methods that relativize will not suffice to
solve basic questions like P vs. NP. An underlying question is whether oracle results
can say things about complexity questions in the unrelativized world. The answer
seems to be yes. For example, Allender together with Buhrman and Koucký [1]
and with Friedman and Gasarch [2] showed that oracle access to sets of random
strings can give insight into basic complexity questions. In [2] Allender et al. showed
that

⋂
U PRKU ∩ COMP ⊆ PSPACEwhereRKU denotes the strings whose prefix-free

Kolmogorov complexity (relative to universal machine U) is at least their length, and
COMP denotes the collection of computable sets. Later the “∩COMP” was removed
by Cai et al. [6]. Thus we conclude that reductions to very complex sets like the
random strings somehow gives insight into very simple things like computable sets.

One of the classical notions in computability theory is that of lowness. An oracle
is low for a specific type of problem if that oracle does not help to solve that problem.
A language A is low if the halting problem relative to A has the same Turing degree
(and hence the same computational content) as the halting problem. Slaman and
Solovay [7] characterized languages L where oracles are of no help in Gold-style
learning theory:EXL = EX if and only if L is low and 1-generic. Inspired by this and
other lowness results in classical computability, Allender asked whether there were
non-trivial sets which were “low for speed” in that, as oracles, they did not accelerate
running times of computations by more than a polynomial amount. Of course, as
stated this makes little sense since using any X as oracle, we can decide membership
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1694 ROD DOWNEY AND MATTHEW HARRISON-TRAINOR

in X in linear time, while without an oracle X may not even be computable at
all! Thus, what we are really interested in is the set of oracles which do not speed
up the computation of computable sets by more than a polynomial amount. More
precisely, an oracle X is low for speed if for any computable language L, if some
Turing machine M with access to oracle X decides L in time f, then there is a Turing
machineM ′ without any oracle and a polynomial p such thatM ′ decides L in time
p ◦ f. (Here the computation time of an oracle computation is counted in the usual
complexity-theoretic fashion: we have a query tape on which we can write strings,
and once a string x is written on this tape, we get to ask the oracle whether x belongs
to it in time O(1).)

There are trivial examples of such sets, namely oracles that belong to P, because
any query to such an oracle can be replaced by a polynomial-time computation.
Allender’s precise question was therefore:

Is there an oracle X /∈ P which is low for speed?

Such an X, if it exists, has to be non-computable, for the same reason as above: if
X is computable and low for speed, then X is decidable in linear time using oracle
X, thus—by lowness—decidable in polynomial time without oracle, i.e., X ∈ P.

A partial answer was given by Lance Fortnow (unpublished), who observed the
following.

Theorem 1.1 (Fortnow). If X is a hypersimple and computably enumerable oracle,
then X is low for polynomial time, in that if L ∈ PX is computable, then L ∈ P.

Allender’s question was finally solved by Bayer and Slaman, who showed the
following.

Theorem 1.2 (Bayer–Slaman [4]). There are non-computable, computably enu-
merable, sets X which are low for speed.

Bayer showed that whether 1-generic sets were low for speed depended on whether
P = NP. In [5], Bienvenu and Downey began an analysis of precisely what kind of
sets/languages could be low for speed. The showed, for instance, randomness always
accelerates some computation in that no Schnorr random set is low for speed. They
also constructed a perfect Π0

1 class all of whose members were low for speed. Among
other results, they demonstrated that being low for speed did not seem to align very
well to having low complexity in that no set of low computably enumerable Turing
degree could also be low for speed.

From one point of view the sets with barely non-computable information are
those of minimal Turing degree. Here we recall that a is a minimal Turing degree
if it is nonzero and there is no degree b with 0 < b < a. It is quite easy to
construct a set of minimal Turing degree which is not low for speed, and indeed
any natural minimality construction seems to give this. That is because natural
Spector-forcing style dynamics seem to entail certain delays in any construction,
even a full approximation one, which cause problems with the polynomial time
simulation of the oracle computations being emulated. In view of this, Bienvenu and
Downey asked the following question:

Question 1.3. Can a set A of minimal Turing degree be low for speed?
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In the present paper we answer this question affirmatively:

Theorem 1.4. There is a set A which is both of minimal Turing degree and low for
speed.

The proof is a complicated construction in which the interaction between different
requirements is quite involved. The main tension is between the minimality
requirements, which might want to wait a long time looking for an e-split while
building an e-splitting tree, and the lowness requirements, which need to make
decisions very quickly in order to have only a polynomial-time delay. The basic
strategies for meeting the requirements are not too difficult, but there are some very
intricate complications that arise when trying to resolve this, some of which only
show up when four requirements interact.

The proof is similar to a forcing construction, in the sense that we meet the
minimality requirements one-by-one by placing the set A on more and more
refined computable trees. Like a forcing construction, these trees are not uniformly
computable; the choice of trees depends on the outcomes of the minimality
requirements. (Once could probably explicitly define a forcing poset, but the trees
are so complicated that this would just add more complexity to the construction.)
The reader might wonder whether the proof could be simplified by instead using a
full approximation construction. We think that such a construction would not be
simpler; a full approximation construction would need the same devices used in our
proof (as they deal with complexity inherent in the combinatorics of the problem),
but would also have extra complexity purely for keeping track of the approximations.

§2. The requirements and basic strategies. We will construct a set A meeting the
following requirements:

Me : If ΦAe is total then it is either computable or computes A.

L〈e,i〉 : If ΨAe = Ri is total and computable in time t(n), then it is

computable in time p(t(n)) for some polynomial p.

Pe : A �=We.
Here, Ri is a partial computable function. The requirements Pe make A
non-computable, while the requirements Me make A of minimal degree. The
requirements L〈e,i〉 make A low for speed.

2.1. Meeting one P requirement. To meet the requirement Pe , we just need to
choose an initial segment of A which ensures that A �=We . There is no dynamic
action to take.

2.2. Meeting one M requirement. When working with Spector-style forcing, it
is common to define a tree to be a map T : 2<� → 2<� such that � � � implies
T (�) � T (�). We will need to allow a node to have more than two children; so for
the purposes of this proof a tree will be a computable subset of 2<� so that each
node � on the tree has finitely many children � 	 �. The children of � may be of
any length, where by length we mean the length as a binary string. Our trees will be
perfect and have no dead ends, and in fact every node will have at least two children.
Moreover, the trees will be what one might call strongly computable: for each node
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1696 ROD DOWNEY AND MATTHEW HARRISON-TRAINOR

on the tree, one can compute a complete finite list of all of its children. As usual,
[T ] denotes the collection of paths through T. For a Turing functional Φe , we will
say that T is e-splitting if for any two distinct paths �1 and �2 through T, there is x
with

Φ�1
e (x) ↓�= Φ�2

e (x) ↓ .
If �1 and �2 are initial segments of �1 or �2 respectively witnessing this, i.e., with

Φ�1e (x) ↓�= Φ�2e (x) ↓,
and with a common predecessor �, we say that they e-split over �, or that they are
an e-split over �. Note that this definition is slightly weaker than the usual definition
of e-splitting (which requires all children of a node to e-split with each other), but
because the trees are strongly computable it is still the case that for an e-splitting
tree T and B ∈ [T ], if ΦBe is total then ΦBe ≥T B .

The requirements Me will be satisfied by an interesting new mix of forcing and
full approximation. Following the standard Spector argument, to satisfy Me we
attempt to make A a path on a computable tree T with either:

(1) T is e-splitting, and so for any path B ∈ [T ], if ΦBe is total then ΦBe ≥T B ; or
(2) for all paths B1, B2 ∈ [T ] and all x, if ΦB1

e (x) ↓ and ΦB2
e (x) ↓ then ΦB1

e (x) =
ΦB2
e (x), and so ΦBe is either partial or computable for any B ∈ [T ].

Given such a tree, any path on T satisfies Me .
The standard argument for building a minimal degree is a forcing argument.

Suppose that we want to meet just the M and P requirements. We can begin with a
perfect tree T–1. Then there is a computable tree T0 ⊆ T–1 which is either 0-splitting
or forces ΦA0 to be either computable or partial. We can then choose A0 ∈ T0 such
that A0 is not an initial segment of We . Then there is a computable tree T1 ⊆ T0

with root A0 which is either 1-splitting or forces ΦA1 to be either computable or
partial. We pick A1 ∈ T1 so that A1 is not an initial segment of W1, then T2 ⊆ T1

with root A1, and so on. Then A =
⋃
Ai is non-computable and is a path through

each Ti , and so is a minimal degree. Though each Ti is computable, they are not
uniformly computable; given Ti , to compute Ti+1 we must know whether Ti+1 is to
be (i + 1)-splitting, to force partiality, or to force computability.

Our construction will be much more complicated, as while building the splitting
trees we will need to take into account the lowness requirements. Nevertheless,
the basic idea is the same: either we can find “enough” e-splits, and put A on an
e-splitting tree, or above some node we can find a subtree with no e-splits which forces
that A is either partial or computable. Sometimes, in addition to options (1) and (2)
above, we will sometimes choose to put A on a tree that forces ΦAe to be partial:

(3) there is an x such that for all paths B ∈ [T ], ΦBe (x) ↑.

2.3. Meeting one L requirement. We use something similar to the Slaman–Beyer
strategy from [4] to meet the lowness requirements. The entire construction will
take place on a tree T–1 with the property that it is polynomial in |�| to determine
whether � ∈ T–1, and that moreover, for each n, there are polynomially many in n
strings of length n on T–1. For example, let � ∈ T–1 if it is of the form

a20

1 a
21

2 a
22

3 a
23

4 ··· ,
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where each ai ∈ {0, 1}. So, for example, 100111100000000 ∈ T–1. In this tree, there
are 2n nodes of height 2n on the nth level of the tree.

First we will show how to meet L〈e,i〉 in the absence of any other requirements.
For simplicity drop the subscripts e and i so that we write Ψ = Ψe and R = Ri .
The idea is to construct a computable simulation Ξ of ΨA, with Ξ(x) computable in
time polynomial in the running time of ΨA(x), so that if ΨA = R then Ξ = ΨA. We
compute Ξ(x) as follows. We computably search over � ∈ T–1 (i.e., over potential
initial segments � of A) and simulate the computations Ψ�(x). When we find � with
Ψ�(x) ↓, we set Ξ(x) = Ψ�(x) for the first such �. Of course, � might not be an
initial segment of A, and so Ξ might not be equal to ΨA; this only matters if ΨA = R
is total, as otherwise L is satisfied vacuously. Consider two cases:

(1) If x is such that Ξ(x) ↓�= R(x) ↓, then there is some � ∈ T–1 witnessing that
Ψ�(x) = Ξ(x). In this case the requirement L asks that A extend �, so that
ΨA(x) �= R(x) and L is satisfied. This is the finitary outcome.

(2) If there is no x such that Ξ(x) ↓�= R(x) ↓, then if Ξ and R both total, then
Ξ = R. So eitherL is vacuously satisfied, or Ξ = ΨA = R. The is the infinitary
outcome.

In the second case we need to make sure that Ξ is only polynomially slower than
ΨA. We can do this by appropriately arranging the simulations so that if Ψ�(x) ↓
in time t(x), the simulation Ξ will test this computation in a time which is only
polynomially slower than t(x), and will define Ξ(x) = Ψ�(x) if it is not already
defined, so that Ξ(x) ↓ in time which is only polynomially slower than t(x). It is
important here that T–1 has only polynomially many nodes at height n and that we
can test membership in T–1 in polynomial time. (If T–1 was, for example, the full
binary tree, then there would be 2n different finite oracles � of length n for which
we must simulate computations Ψ�(x); it might be that one of these computations
converges in time ≤ n, but that it takes time exponential in n before we get to
simulating this computation and defining Ξ(x).)

Think of the simulations Ξ as being greedy and taking any computation that they
find; and then, at the end, we can non-uniformly choose the initial segment of A
to get a diagonalization ΦA �= R or to force that either the simulation Ξ is actually
correct.

In the rest of the paper, we will sometimes say that L simulates the computation
Ψ�(x), that L simulates �, or that L simulates computations above �. These are
informal notions which will be helpful to explain the construction; the simulation
process is defined more formally in Section 8.3. When we say that L simulates the
computation Ψ�(x), what we mean is that L computes Ψ�(x) and, if it converges
and Ξ(x) is so far undefined, sets Ξ(x) = Ψ�(x). When we say that L simulates
�, what we mean is that L simulates the computations Ψ�(x) for x ≤ |�|, setting
Ξ(x) = Ψ�(x) if possible. Finally, when we say that Lsimulates computations above
�, we mean that L simulates computations Ψ�(x) for various � extending �, and
sets Ξ(x) = Ψ�(x) whenever it finds such a computation for which Ξ(x) has not
yet been defined. We will also sometimes say that L stops simulating computations
above �.

Convention 2.1. When computing Φ�(x), the computation may run for only |�|
many steps and we require that x < |�|.
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2.4. Meeting oneM requirement and oneL requirement. The interactions between
the requirements get more complicated. Consider now two requirements M = Me

and L, with M is of higher priority than L. Write Φ = Φe . L will work with Ψ, R,
and Ξ.

Assume that for each � ∈ T–1, there are x and �1, �2 	 � such that Φ�1 (x) ↓�=
Φ�2(x) ↓; and that for each � ∈ T–1 and x there is � 	 � such that Φ�(x) ↓.
Otherwise, we could find a subtree of T–1 which forces that ΦA is either partial or
computable, and satisfy M by restricting to that subtree. This assumption implies
that we can also find any finite number of extensions of various nodes that pairwise
e-split, e.g., given �1 and �2, there are extensions of �1 and �2 that e-split. Indeed,
find extensions �1, �2 of �1 that e-split, say Φ�1 (x) ↓�= Φ�2 (x) ↓, and an extension �
of �2 with Φ�(x) ↓. Then � e-splits with one of �1 or �2.

The requirement L non-uniformly guesses at whether or not M will succeed at
building an e-splitting tree. Suppose that it guesses that M successfully builds such
a tree. M begins with the special tree T–1 described above, and it must build an
e-splitting tree T ⊆ T–1. (Of course in general M must build an e-splitting subtree
of the tree produced by some other minimality requirement, which will introduce
additional complexity; we will deal with this later.)

While M is building the tree, L will be simulating various computations Ψ� . The
tree T might be built very slowly, while L has to simulate computations relatively
quickly in order to define Ξ with only a polynomial delay. So when a node is removed
from T, L will stop simulating computations above it; but L will have to simulate
computations Ψ� for nodes � which are extensions of nodes in T as it has been
defined so far, but which have not yet been determined to be in or not in T. This
leads to the following problem: Suppose that � is a leaf of T at stage s, � extends
�, and L simulates Ψ�(x) and sees that it converges, and so defines Ξ(x) = Ψ�(x).
But then the requirement M finds an e-split �1, �2 	 � and wants to set �1 and �2 to
be the successors of � on T, with both �1 and �2 incompatible with �. If we allow
M to do this, then since M has higher priority than L, M has determined that A
cannot extend � as M restricts A to be a path through T. So L has lost its ability
to diagonalize and it might be that ΨA = R (say, because this happens on all paths
through T) but ΨA(x) �= Ψ�(x) = Ξ(x). This means that M needs to take some
action to keep computations that L has found on the tree. We begin by describing
the most basic strategy for keeping a single node � on the tree.

Suppose that at stage s the requirement M wants to add children to a leaf node �
on T, and that L is simulating computations above � (i.e., � is an observation node for
L, to be defined). The tree is supposed to be an e-splitting tree, so we need to look for
e-splits above �. While looking for e-splits, we also need to simulate computations
by Ψ. It might be that, perhaps before finding any e-splits at all, we simulate a
computation Ψ�t (y) ↓ and set Ξ(y) to be equal to this simulated computation. For
the sake of L we must keep � on the tree. (Soon we will extend the strategy to
worry about what happens if we have found multiple such computations, but for
now assume that there is just one.) Eventually we will find some e-splits, but this
might be much later; in particular, we look for �1, �2, �3 extending � such that they
pairwise e-split: for any two �i , �j , there is xi,j such that Φ�ie (xi,j) ↓�= Φ

�j
e (xi,j) ↓.

To begin, we stop simulating any computations extending �. This means that we
are now free to extend the tree however we like above � without worrying about
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how this affects the L-simulations. We also stop simulating any other computations
not compatible with �1, �2, or �3. We keep simulating above �1, �2, and �3 with the
expectation that, in the infinitary outcome where Ξ = R, A will extend one of these.

�

�1 �2 �3 �

Simulated by L

Now look for an extension �∗ of � that e-splits with at least two of �1, �2, and �3. We
can find such a �∗ by looking for one with Φ�

∗
defined on the values xi,j witnessing

the e-splitting of �1, �2, and �3, e.g., if Φ�i (xi,j) �= Φ�j (xi,j), and Φ�
∗
(xi,j) ↓, then �∗

must e-split with either �i or �j . Say that �∗ e-splits with �1 and �2. Then we define
the children of � to be �1, �2, and �∗ and stop simulating computations above �3.

�

�1 �2 �

�∗Simulated by L

So of the extensions of �, some are still simulated by L, and others are not. Recall
that Ψ�(y) converged, and we defined Ξ(y) = Ψ�(y). If R(y) �= Ψ�(y) then L will
insist that A extend �∗ to diagonalize; this is the finitary outcome of L. Since in
this case L is satisfied with the finitary outcome by having ΨA �= R, computations
extending �∗ do not have to be simulated. We call �∗ a diagonalization node (for
L); it is kept on the tree so that we can, if needed, meet the requirement L with the
finitary outcome. On the other hand, if L fails to diagonalize and has the infinitary
outcome, then A will need to extend the nodes �1 and �2 that are simulated. (If A
extended �∗, then it might be that ΨA(z) ↓ using an oracle extending �∗, but Ξ(z)
was not defined because L did not simulate this computation.) We say that �1 and
�2 are observation nodes (for L); by this we mean that computations above them are
still simulated by L. We need two observation children �1 and �2 rather than just one
in order to meet the requirements P . The terms diagonalization node and observation
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node will not be used formally in the construction, but they will make explaining the
construction easier.

We also note that we assumed that L was still simulating computations above �
at the start of the construction. What we mean is that � itself was an observation
node for L, as was its parent, and so on, back to some node which L knows, via its
guesses at the higher priority requirements, is an initial segment of A.

There are still some gaps in the above strategy that we must fix. What if, while
looking for �∗, we simulate a computation Ψ�3(z) ↓, and set Ξ(z) = Ψ�3(z), and
then only after this find that �∗ e-splits with �1 and �2? We can no longer remove
�3 from the tree. Moreover, there might be many different nodes � that we cannot
remove from the tree—indeed, it might be that around stage s, we cannot remove
any nodes at height s from the tree, because each of them has some computation that
we have simulated. To deal with this, we have to build e-splitting trees in a weaker
way. It will no longer be the case that every pair of children of a node � e-split, but
we will still make sure that every pair of paths e-split.

So suppose again that we are trying to extend �. Look for a pair of nodes �1, �2
that e-split. Suppose that �1, ... , �n are nodes for which we have found computations
Ψ�i (yi) ↓ and set Ξ(yi) = Ψ�i (yi). Like � above, we must keep �1, ... , �n on the
tree.1 We stop simulating computations above �1, ... , �n.

�

�1 �2 �1 �2 �3 ···

Simulated by L

The nodes �1 and �2 are observation nodes for L and the �i are diagonalization
nodes for L.

Now at the next step we need to add extensions to �1 and �2 just as we added
extensions of �. We look for extensions �∗1 and �∗∗1 of �1, �∗2 and �∗∗2 of �2, and �∗i
and �∗∗i of �i such that all of these pairwise e-split. While we are looking for these,
L must simulate more computations at nodes � above �1 and �2 and for some of
them we might see that Ψ�(y) ↓ for some y and set Ξ(y) = Ψ�(y). Just as we had to
ensure that �1, �2, ... remained on the tree, we also have to ensure that these � remain

1Suppose that we find �1, �2 at stage s of the construction. It might even be that �1, ... , �n are all of the
other nodes on T–1 that we have considered by stage s. Our construction will be able to handle this case,
so there is no reason not to just assume that we must keep all of these nodes on the tree. This saves the
bookkeeping of remembering which nodes � have actually been the use of a computation Ψ�(x) ↓ for
which we defined Ξ(x); we just keep on the tree anything that might have had a computation converge.
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on the tree. On the other hand, we no longer simulate computations above the �i ,
and so we can just look for e-splits above each �i without having to worry about L.

�

�� ��

�1 �2

�∗1 �∗∗2�∗∗1 �
∗
2

�1

�∗1 �∗∗1

�2

�∗2 �∗∗2

�3

�∗3 �∗∗3

···

Simulated by L

Here �∗1 , �∗∗1 , �∗2 , and �∗∗2 are observation nodes for L, since we still simulate
computations above them. The � are diagonalization nodes for L. The �∗i and �∗∗i
are neither observation nodes nor diagonalization nodes for L (though of course
they are extensions of diagonalization nodes).

Now at the next step of extending the tree we need to extend all of these nodes
to extensions that e-split with each other; but in doing so we will introduce further
extensions (above �∗1 , �∗∗1 , �∗2 , and �∗∗2 ) that do not e-split. So at no finite step do we
get that everything e-splits with each other, but in the end every pair of paths will
e-split with each other.

§3. Outcomes and the general structure of the argument. Now that we have seen
the basic strategies we return to talking about the priority ordering and the outcomes
of the requirements. Order the requirementsMe ,Le , andPe as follows, from highest
priority to lowest:

M0 > L0 > P0 >M1 > L1 > P1 >M2 > ··· .

Each requirement has various possible outcomes:

• A requirement Me can either build an e-splitting tree, or it can build a tree
forcing that Φe is either partial or computable. In the former case, when Me

builds an e-splitting tree, we say that Me has the infinitary outcome ∞. In the
latter case, there is a node � above which we do not find any more e-splittings.
We say that Me has the finitary outcome �.

• A requirement L〈e,i〉 can either have the simulation Ξ of Ψe be equal to Ri
whenever they are both defined, or L〈e,i〉 can force A to extend a node �, with
Ψ�e (x) �= Ri (x) for some x. In the first case, we say that L〈e,i〉 has the infinitary
outcome ∞, and in the latter case we say that L〈e,i〉 has the finitary outcome �.

• A requirement Pe chooses an initial segment � of A that ensures that A is not
equal to the eth c.e. setWe . This node � is the outcome of Pe .

The tree of outcomes is the tree of finite strings � where �(3e) is an outcome for
Me , �(3e + 1) is an outcome for Le , and �(3e + 2) is an outcome for Pe . For
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convenience, given a requirementRwe write �(R) for the outcome ofR according to
�: �(Me) = �(3e), �(Le) = �(3e + 1), and �(Pe) = �(3e + 2). Using this notation
allows us to avoid having to remember exactly how we have indexed the entries of
�. Given a requirement R, we say that � is a guess by R if � has an outcome for
each requirement of higher priority than R, e.g., a guess by Le is a string � of length
3e + 1 with

� = 〈�(M0), �(L0), �(P0), ... , �(Me–1), �(Le–1), �(Pe–1), �(Me)〉.
Just as in the standard forcing construction of a minimal degree, we will meet

the M requirements one-by-one by asking, non-effectively for each e, whether there
are enough e-splits on the tree Te–1 built by Me–1. If there are, then we build an
e-splitting tree (by a complicated procedure taking into account the lower priority
L requirements), and if not, then we can find a tree forcing that Ψe is partial or
computable. Let Te be the e-splitting tree in the former case, or the tree forcing
that Ψe is partial or computable in the latter case. In the former case, Me has the
infinitary outcome, and in the latter case the finitary outcome. Having constructed
T–1, ... , Te , we non-effectively determine the outcomes of Le and Pe . (It is important
here thatT–1, ... , Te were specially constructed taking into accountLe .) Then, having
determined these outcomes, we turn to Me+1. The outcome of each requirement
determines some initial segment of A, giving A as the limit of these extensions.

When Me is constructing Te and taking into account the lower priority L
requirements, say some particular one L, Me does not know the outcomes of
the intermediate requirements of lower priority than Me but of higher priority than
L. L, on the other hand, does know these outcomes. So Me will have to consider,
for each guess � by L at the higher priority outcomes, an instance L� of L which
makes this guess. Of course, once we come to actually meeting L, there will only be
one instance taking action, namely the one corresponding to the true outcomes of
the higher priority requirements, but Me does not know which this is and so has to
consider all possible instances.2

The formal construction will be somewhat “static” in the sense that while Me

is constructing Te , it is not actually running, in a dynamic way, the simulation
procedures defining Ξ for the low priority L requirements. (See footnote 1.)
Nevertheless it will be helpful to think of a dynamic construction for now, to see
what kinds of interactions there are between the requirements; then in Section 5
we will develop a labeling system capturing these interactions in a static way. The
e-splitting part of the construction will of course always be dynamic.

2In seeing the complexity of the construction, the reader might wonder whether things can be simplified
by using a full approximation argument. The answer, we believe, is that a full approximation argument
would only add more complexity to the construction, in that we would have to dynamically guess at the
outcomes of the minimality requirements, while not simplifying the combinatorics involved in meeting
the lowness requirements. Fix a minimality requirement M. Because a full approximation argument
can never be sure M has the finitary outcome (as we might always find more splits), the instances of
lowness requirements guessing that M has the infinitary outcome must keep simulating computations
even when we think that M has the finitary outcome. Thus all of the complicated interactions between
lowness requirements soon to be described would still have to be considered.
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§4. Interactions between three or more requirements. We now need to consider in
more detail the interactions between the requirements. We saw in the previous section
that an M requirement must take into account lower priority L requirements. In the
full construction, we will have not only many different lower priorityL requirements,
but also many different instances of each one that the M requirement must take
into account.

4.1. OneM requirement, twoL requirements. Consider three requirements:M =
Me of highest priority, L0 of middle priority, and L1 of lowest priority. Write Ψ0,
R0, and Ξ0 and Ψ1, R1, and Ξ1 for the functionals and sets corresponding to L0

and L1 respectively. Suppose that both L0 and L1 correctly guess that M has the
infinitary outcome, building a splitting tree. Suppose also that L1 correctly guesses
that L0 has the infinitary outcome, which means that if ΨA0 = R0 is total, then we
must have Ξ0 = ΨA0 ; this means that L0 must simulate every initial segment of A,
i.e., they must all be observation nodes for L0.

Suppose that the requirement M is trying to extend a node �. We use the same
strategy as before to extend �, keeping certain nodes �1, �2, ... on the tree. These
�i might be kept on the tree either for the requirement L0 (because we defined
Ξ0(yi) = Ψ�i0 (yi)) or for the requirement L1 (because we defined Ξ1(zi) = Ψ�i1 (zi)).
Indeed, for each �i , it might be that both requirements want to keep �i on the tree.

�

�1 �2 �1 �2 �3 ···

The requirement L1 has guessed that the outcome of L0 is the infinitary outcome,
which means that L0 does not need to force A to extend one of �1, �2, .... This means
that L1 can use the same strategy as in the previous section with only one lowness
requirement, and stop simulating computations above the �i .

�

�1 �2 �1 �2 �3 ···

Simulated by L1

Now depending on the outcome of L1 it might force A to extend any one of these
nodes. (For example, if L1 has the finitary outcome �i , then A must extend �i in
order to obtain a diagonalization ΨA1 �= R1; and if L1 has the infinitary outcome,
then A will extend one of �1 or �2.) L0 must simulate initial segments of A, but it
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does not know the outcome of L1 which is a lower priority requirement. So L0 must
simulate computations through all of these nodes.

�

�1 �2 �1 �2 �3 ···

Simulated by L1

Simulated by L0

Here �1 and �2 are the observation nodes for L1, while the �i are diagonalization
nodes for L1. All of �1, �2, and the �i are observation nodes for L0. All of the
observed and diagonalization nodes for L1 are observation nodes for L0.

Now in the next step we found extensions �∗1 and �∗∗1 of �1, �∗2 and �∗∗2 of �2,
and �∗1 and �∗∗1 of �1 that e-split with each other. Before, we could simply extend
�1 to �∗1 and �∗∗1 . Now, while we are looking for the extensions, L0 might simulate
other computations, say �1 extending �1, �2 extending �2, and so on. If L0 sees that
Ψ�i0 (zi) ↓ and sets Ξ0(zi) = Ψ�i0 (zi), then �i must be kept on the tree. (Of course, in
general, each �i might have many such nodes extending it.) Above each �i , we are
essentially in the case from the previous section of having only one L requirement;
so as before, L0 stops simulating above the �i but continues simulating above the �∗i
and �∗∗i . Above �1 and �2, we do the same thing that we did above �.

�

�1 �2

�∗1 �∗∗2�∗∗1 �
∗
2

�1

�∗1 �∗∗1 �1

�2

�∗2 �∗∗2 �2

�3 ···

Simulated by L1
Simulated by L0Simulated by L0

Simulated by L0

Here �∗1 , �∗∗1 , �∗2 , and �∗∗2 are observation nodes for L1, while the other (unnamed)
children of �1 and �2 are diagonalization nodes for L1. The �∗i , �∗∗i , and �i are
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neither observation nodes nor diagonalization nodes for L1 but they extend the
diagonalization nodes �i . All of the children of �1 and �2, together with the �∗i and
�∗∗i , are observation nodes for L0. The �i are diagonalization nodes for L0. Again,
all of the observed and diagonalization nodes for L1 are observation nodes for L0.

Note that, for example, �1 may not e-split with �∗1 . This is because we were
not able to choose �1 or �1; they were both forced onto the tree by the lowness
requirements. But we have still made some progress: computations above �1 are not
being simulated, and so when we extend �1, we can find extensions that e-split with
the e-splitting extensions of the other nodes.

Note that the number of levels we wait to find e-splits is now two, since there
are two lowness requirements, whereas in Section 2.4 we only had to wait one level.
In general, the more lowness requirements we are considering, the longer we have
to wait before we can find e-splits along all paths. So it is important that we only
deal with finitely many lowness requirements at a time, so that we eventually arrive
at a point where parts of the tree are no longer being simulated by any lowness
requirement. In the full construction, there will be some important bookkeeping to
manage which lowness requirements are being considered at any particular time, so
that we sufficiently delay the introduction of new lowness requirements. (This will
be accomplished by giving each element of the tree a scope; see Section 5.)

Note also that every node simulated by L1 is also simulated by the lower priority
requirement L0, but that there are nodes simulated by L0 which are not simulated by
L1. Moreover, every diagonalization node for L1 is an observation node for L0 and
so the nodes above diagonalization nodes for L1 are simulated by L0. This is the first
example of a relationship between the nodes simulated by one requirement and the
nodes simulated by another requirement. There will be further such relationships as
well.

4.2. Two M requirements and one L requirement. Consider three requirements:
M0 of highest priority, M1 of middle priority, and L of lowest priority. Suppose
that M0 is trying to build a 0-splitting tree T0, and that M1 and L correctly guess
that it is successful in doing so and has the infinitary outcome. Suppose further that
M1 is trying to build a 1-splitting tree T1, and L is working with Ξ, Ψ, and R.

When M0 is building T0 we follow the same strategy as before. When extending a
node � which is simulated by L, we have two children which are observation nodes,
and a number of other children which are diagonalization nodes.

�

�1 �2 �1 �2 �3 ···

Simulated by L
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So we can think of the tree T0 as a finitely branching tree which has, embedded
in it, a subtree of nodes which are observation nodes for L; each such node L has at
least two children which are themselves observation nodes for L. We can picture the
tree T0 as looking something like this. We show the observation nodes with filled in
circles, and the diagonalization nodes with open circles.

The children along bold lines are observations nodes which are children of
observation nodes and so on back to the root node.3

4.2.1. M1 has the infinitary outcome. Suppose that M1 succeeds in building a
1-splitting subtree T1 of T0, and that L correctly guesses this.

Since L is of lower priority than M1, M1 does not know the outcome of L. So
when L simulates a computation Ψ�(x) ↓ and sets Ξ(x) = Ψ�(x), M1 must keep �
on the tree T1. That is, M1 must keep the diagonalization nodes for L on T1. L will
have the finitary outcome and have A extend one of these � if, by doing so, it can
ensure that ΨA �= R.

Now suppose that L has the infinitary outcome, though of course M1 does not
know this. Then:

(1) Because L has the infinitary outcome, L must simulate all of the initial
segments of A, i.e., the initial segments of A must be observation nodes
on T0.

(2) On the other hand, to meet M1, A must be on the 1-splitting tree T1.
Every path through T1 contains, as initial segments, many nodes which are part of
a 1-split. In order to reconcile (1) and (2) it must be that when M1 is looking for
1-splits above an observation node for L, it cannot look for just any 1-split; it should
look through extensions that are also observation nodes for L. In the picture of T0

above with the bold lines and dashed lines, this means that when M1 is looking for
a 1-split above a bold node, it should look through the bold subtree. (Of course in
building T1 the requirement M1 must also implement the rest of the strategy given
above, keeping certain nodes � on the tree, etc.)

3As we saw in Section 4.1, when considering multiple L requirements, an observation node for a
requirement may have more than two children which are observation nodes for that requirement.

https://doi.org/10.1017/jsl.2021.108 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.108


A MINIMAL SET LOW FOR SPEED 1707

4.2.2. M1 has the finitary outcome. Suppose that M1 fails to build a 1-splitting
subtree of T0 and that L correctly guesses this. This means that there is some node �
onT0 such that M1 cannot find a 1-split extending �, or it cannot find a convergence
of Ψ on some input above �. In the standard construction of a minimal degree, we
would then define a tree T ∗

1 as the full subtree of T0 below �; T ∗
1 forces that ΦA1

is partial or computable for every A ∈ [T ∗
1 ]. However, we just saw that M1 might

not look for 1-splits through all of the extensions of � on T0, but just through some
subtree of T0 above �. Then we must define T ∗

1 not to be the full subtree of T0 above
�, but rather to be the subtree of T0 above � where we M1 looked for (and failed to
find) a 1-split.

We meet M1 by having A be a path through T ∗
1 . Since L correctly guessed that

M1 has the finitary outcome, �, we must ensure that L is satisfied. When we defined
T0, there were certain nodes � (the diagonalization nodes for L) for which L found
computations Ψ�1 (x) ↓ and set Ξ1(x) = Ψ�1 (x) ↓. M0 was required to ensure that
these nodes � stayed on the tree T0. Similarly, these nodes � must stay on the
tree T ∗

1 ; if they were not on T ∗
1 , then we would lose the opportunity to achieve

diagonalizations ΨA �= R. However, the tree T ∗
1 is not being defined dynamically,

so we cannot take some dynamic action to keep these nodes on the tree. Instead, we
must ensure that these nodes are among those we look for 1-splits through, so that
they end up on T ∗

1 .

4.3. Two M requirements and two L requirements. Now consider four require-
ments: M0 of highest priority, M1 of middle priority, and L0 and L1 of lowest
priority. As above, suppose thatM0 has the infinitary outcome, successfully building
a 0-splitting tree T0, and that all of the other requirements correctly guess this.
Suppose that L0 guesses that M1 has the infinitary outcome, successfully building
a 1-splitting subtree T1 of T0, and suppose that L1 guesses that M1 has the finitary
outcome, failing to build a 1-splitting tree. (L0 and L1 might be of any priority
ordering relative to each other, or might even be instances of the same lowness
requirement which have different guesses about M1.) This is the combination of
the situations described in Sections 4.2.1 and 4.2.2. The observations there create a
dependence between L0 and L1:

(1) When M1 looks for a 1-split extending an observation node for L0, it should
look through extensions which are also observation nodes (Section 4.2.1).

(2) The diagonalization nodes for L1 must be among those through which M1

looks for 1-splits (Section 4.2.2).

Taken together, this means that L0 must simulate computations at the diagonal-
ization nodes for L1, i.e., the diagonalization nodes for L1 should be observation
nodes for L0. This might seem somewhat odd, because L0 and L1 are incompatible
in the sense that they have different guesses at the outcome of the higher priority
requirement M1, and because L0 and L1 might be of any priority ordering relative
to each other. Nevertheless, they are entangled; this is a significant source of
combinatorial complexity in the full construction.

Now let us return to the construction of T0 by M0 in the presence of these two
requirements L0 and L1. The construction goes in exactly the same way as in Section
4.1, though some of the reasoning is slightly different. In Section 4.1 the requirement
L0 was of higher priority than L1, and L1 guessed that L0 has the infinitary outcome.
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Now L0 might be of lower priority than L1 (or L0 and L1 might even be different
instances of the same requirement); but there is some minimality requirement M1

such that L0 guesses that M1 has the infinitary outcome and L1 guesses that it has
the finitary outcome. As M0 has higher priority than M1, M0 does not know the
outcome of M1, and hence does not know which of L0 or L1 has guessed correctly.
Thus it has to take both of them into account.

As in Section 4.1 suppose that M0 is extending a node � which is simulated by
both L0 and L1, and suppose that M0 must keep nodes �1, �2, ... on T0 because we
have set Ξ1(xi) = Ψ�i1 (xi). As in Section 4.1 we will make the extension as follows:

�

�1 �2 �1 �2 �3 ···

simulated by L1

simulated by L0

This is exactly the same as in Section 4.1, but now the argument that L0 must
continue to simulate computations above �1, �2, ... is different from before. It is
now because the �i are diagonalization nodes for L1 and, as argued above, as a
consequence of (1) and (2) these must be observation nodes for L0.

4.4. The relation of watching. We have already seen two situations in which a
requirement L1 must ensure that the diagonalization nodes for another requirement
L0 are all observation nodes forL1, thereby ensuring thatL1 simulates computations
above these diagonalization nodes for L0.

We will introduce a relation L	1d1
� L	2d2

to represent this. We suggest reading
L	1d1

� L	2d2
as “L	1d1

watches L	2d2
.” The two situations we have seen are:

(1) If d1 < d2 and 	1 ≺ 	2 then we should have L	1d1
� L	2d2

(Section 4.1).
(2) If L	1d1

and L	2d2
first disagree on the outcome of a minimality requirement M,

L	1d1
guesses that M will have the infinitary outcome, and L	2d2

guesses that it
will have the finitary outcome, then we should have L	1d1

� L	2d2
(Section 4.3).

The reader will immediately notice that this resembles a lexicographic ordering. We
will give a formal definition of � which captures (1) and (2).

Definition 4.1. Given a string of outcomes 	, define Δ(	) ∈ {f,∞}<� to be the
string

〈	(M0), 	(M1), 	(M2), ...〉,
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except that we replace any entry which is not ∞ with f. Put an ordering � on these
using the lexicographic order with ∞ < f.

Definition 4.2. Suppose that 	1 and 	2 are guesses by Ld1 and Ld2 respectively
at the outcomes of the higher priority requirements. Define L	1d1

� L	2d2
if and only

if Δ(	1) ≺ Δ(	2) in the ordering just defined.

L	1d1
� L	2d2

means that, given a node � which is an observation node for both
requirements, any child of � which is an observation or diagonalization node for
L	2d2

should be an observation node for L	1d1
.

4.5. Two M requirements and one L requirement, sandwiched. In Section 4.2 we
considered the case of four requirements: M0 of highest priority, M1 of middle
priority, and L of lowest priority. Consider now three requirements: Me of highest
priority, Le of middle priority, and Me+1 of lowest priority. Suppose that Me

successfully builds an e-splitting tree Te , and that L correctly guess this.
Consider the diagram from Section 4.2 of the tree Te , with the observation nodes

for L given in bold. We show the observation nodes with filled in circles, and the
diagonalization nodes with open circles.

Suppose moreover that Le has the infinitary outcome. This means that Le was not
able to obtain a diagonalization by having A extend one of the diagonalization nodes.
So as previously described, Le requires that A be a path through the observation
nodes for Le . The way that we will enforce this is to ensure that when Me+1 builds an
e + 1-splitting tree T1, or a tree T ∗

e+1 with no e + 1-splits, it builds it as a subtree of
the observation nodes for Le . (Recall also from Section 4.4 that Le is minimal under
the watching relation among all instances of lowness requirements of lower priority
than Me ; this means that all of the diagonalization nodes for these requirements are
observation nodes for Le , and so these diagonalization nodes can all be preserved
on the tree built by Me+1.)

§5. The labeling system. In the full construction there will be many things to keep
track of, such as which nodes are observation nodes or diagonalization nodes for
which L requirements, how many L requirements we are considering, and so on. In
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this section we will describe a labeling system that will allow us to keep track of all of
this. These labels have nothing to do with the labels in a full approximation argument.

One simplification we can make is to note that the relation L	1d1
� L	2d2

depends
entirely on Δ(�1) and Δ(�2), that is, only on the guesses at the M outcomes, and
only at whether the outcome is finitary or infinitary. Requirements L	1d1

and L	2d2
with

Δ(�1) = Δ(�2) can then be treated the same in terms of the labeling. Of course,
there are some differences; for example, if L	1d1

knows from its guesses at the higher
priority requirements that A must extend a node �, then it will not simulate any
computation incompatible with �. So the labels on their own do not completely
determine which nodes are simulated by L	1d1

, or which nodes are observation nodes
or diagonalization nodes, but they are sufficient together with the initial segment
of A guessed by 	1. Think of this initial segment of A as being the first observation
node of L	1d1

, so that there is a subtree of observation nodes with it as a root.
Consider the e-splitting tree T constructed by Me . Let 
 be the outcomes of lower

priority requirements. When building T, Me must take into account instances of
lowness requirements L�d with d ≥ e and � extending 
ˆ∞. (Since T is being built
under the assumption that Me has the infinitary outcome, it only needs to respect
lowness requirements that guess that this is the case.) When considering L�d while
building T, we will only need to know the guesses by L�d at the outcomes of the M
requirements Me+1, ... ,Md of lower priority than Me but higher priority than Ld
(because the only lowness requirements we need to consider have the same guesses
at the requirements M1, ... ,Me), and moreover we will only care about whether the
guess is the infinitary outcome or a finitary outcome.

Definition 5.1. Given an instance L�e+n of a lowness requirement of lower
priority than Me , we write Δ>e(�) for

〈Δ(�)(e + 1),Δ(�)(e + 2), ... ,Δ(�)(e + n)〉 ∈ {f,∞}n.

Recall that Δ(�) just replaces the entries of � by f or ∞; Δ>e(�) is the string
which consists of the guesses by � at the outcomes (finitary f or infinitary ∞) of
Me+1, ... ,Md .

The tree T will be a labeled tree. These labels have nothing to do with the labels
used in a full approximation construction, which represent a guess at whether we can
find a splits above a node. Instead, these signify whether a node is an observation
node, a diagonalization node, or neither for the various L requirements. Figure 1
below may help the reader to understand the structure of the tree. In Section 6 we
will also revisit some of the examples from Sections 2 and 4 and show how the labels
work there.

Recall from Section 4.1 that at any point in the construction we will consider
only finitely many L requirements. Each node � is given a scope scope(�), which
is a natural number that represents the number of lowness requirements that are
being considered at this level of the tree, i.e., if the scope of a node is n, then we are
considering lowness requirements Le , ... ,Le+n. Each node � will also be given label
�(�). The label is an element of

Labels = {f,∞}<� ∪ {�}.
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Nodes labeled ∅ have no sec-
ondary children.

Since we have not yet passed the
second expansionary stage, main
children are not the second expan-
sionary nodes.

The scope of these nodes is now 2,
so the labels can have length ≤ 2.
Along the secondary children, the
labels keep decreasing.

The expansionary nodes
do not all occur at the
same level, but we can see
that each path eventually
has one.

These children labeled � are not expan-
sionary because we have not reached the
third expansionary level.

Second expansionary level.

Figure 1. An example of what the labeled tree might look like. We draw the main children with a solid line and the secondary children
with a dashed line. Expansionary nodes are shown by a circle. To fit the tree onto a single page, we have made some simplifications:
(a) we have omitted some nodes from the diagram; (b) we have assumed that each node has only one secondary child; and (c) we
have assumed that the second expansionary level e2 is much smaller than the value of 128 that we set in the construction. We show
the second expansionary level with the long horizontal dashed line.
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If a node � has scope n, then the label of � will be an element of

Labelsn = {f,∞}≤n ∪ {�}.
Note that the label might have length less than n, and might even be the empty string;
an element of Labelsn of length m corresponds to a guess by Le+m at the outcomes
of Me+1, ... ,Me+m. We order the labels lexicographically with ∞ < f, and with �
as the greatest element. For example, in Labels2, we have

� � ff � f∞ � f � ∞f � ∞∞ � ∞ � ∅.

We use � for this ordering, which is of course the same ordering that defined the
watching relation �. We often think of this ordering as being an ordering �n on
Labelsn, and write predn(�) for the predecessor of � in Labelsn. Though Labels is
well-founded, it does not have order type �, and so we need to restrict to Labelsn
to make sense of the predecessor operator. The label f∞, for example, represents the
instances of Le+2 which guesses that Me+1 has the finitary outcome and Me+2 has
the infinitary outcome; the label ∅ represents Le , which has no M requirements of
lower priority than Me to guess at. In Labels2, we have pred2(f) = ∞f, whereas in
Labels1 we have pred1(f) = ∞.

We think of elements of {f,∞}n as guesses by Le+n at the outcomes of
Me+1, ... ,Me+n. Think of a label � of length n as being associated with all of
the lowness requirements L�e+n with � extending 
ˆ∞ and with Δ>e(�) = �. Given
two requirements L	1d1

and L	2d2
with 	1, 	2 extending 
ˆ∞, L	1d1

� L	2d2
if and only if

Δ>e(	1) ≺ Δ>e(	2) lexicographically.
The labels �(�∗) are the formal replacement for the more informal notions of

diagonalization nodes and observation nodes. Suppose that �∗ is a child of � on
T. Giving �∗ the label �(�∗) means that �∗ is a diagonalization node on T for
requirements L�

e+|�(�∗)| with Δ>e(�) = �(�∗) and for which � was an observation

node. Combining this with the relation �, we get that if L�d is an instance of a
lowness requirement, and �∗ is the child of � on T, with d ≤ e + scope(�∗), then:

• if �(�∗) � Δ>e(�), then if � is an observation node for L�
d

then �∗ is an
observation node for L�

d
and

• if �(�∗) = Δ>e(�), then if � is an observation node for L�
d

then �∗ is a
diagonalization node for L�

d
.

If �(�∗) = � then �∗ is an observation node for every requirement L�d for which
the parent node � was an observation node. These are nodes such as �1 and �2 from
the examples of Sections 2.4 and 4.1. If �(�∗) = ∅ then �∗ is not an observation
node for any requirement (but, if � was an observation node for Le , then �∗ is a
diagonalization node for Le). These are nodes such as the � from Section 2.4 and
the � from Section 4.1; the � in Section 4.1 are observation nodes for L0 and hence
would not be labeled ∅.

The following notation will be helpful for talking about observation nodes among
other things.

Definition 5.2. For any labeled tree S, node � ∈ S, and relation R(�∗) (or even
a relation R(�∗, �) between a node �∗ and its parent �), we can define the subtree
S{ �

R
�
} as the tree with root node �, and such that whenever � ∈ S{ �

R
�
}, the children
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�∗ of � on S{ �

R
�
} are exactly the children �∗ of � on S such that R(�∗) holds (or

R(�∗, �)).

We will use this notation for the trees S{ �

��
�

} and S{ �

��
�

} for � ∈ Labels, and
for S{ �

main
�

} (to be defined). So:

• if � is an observation node for L�
d

then any element of T{ ��Δ>e(�)
� } is also an

observation node for L�
d

and

• if � is an observation node for L�
d

, �′ ∈ T{ ��Δ>e(�)
� }, and �∗ is a child of �′

with �(�∗) = Δ>e(�), then �∗ is a diagonalization node for L�
d

.

We need a system by which we consider more and more requirements L as we
move up the tree. We must be careful about how we introduce new requirements,
because introducing a new requirement could be disruptive to our strategy. Certain
levels of the tree Te will be called expansionary levels. From the nth expansionary
level of the tree on, we will consider requirements Le+1, ... ,Le+n, using guesses from
at the outcomes of Me+1, ... ,Me+n. The nodes at the nth expansionary level or
higher, but below the (n + 1)st expansionary level, will be said to be in the nth strip.
We write e1, e2, e3, ... for the expansionary levels. Conveniently we can precompute
the expansionary levels; they are defined statically by e1 = 0 and

ei+1 = ei + 2i+5.

One might expect that if � is in the nth strip, then scope(�) will be n. This will
not quite be the case; an expansionary level is where we start considering more
requirements, but this might not happen immediately for particular nodes. Instead,
if � is in the nth strip, we will have scope(�) = n – 1 or scope(�) = n. The scope of
a child will always be at least the scope of its parent. We say that �∗, a child of �, is
an expansionary node if scope(�∗) > scope(�). We say that an expansionary node
�∗ is an nth expansionary node if scope(�∗) = n. The scopes will be non-decreasing
along paths on the tree. Along any path in the tree, there is one expansionary node
for each n; it is clear from the fact that the scopes are non-decreasing that there is at
most one, and we will show in Lemma 7.3 that there is at least one. Moreover, the
nth expansionary node along a path will occur in the nth strip.

Suppose that �∗ is a child of �, with scope(�) = n. If �∗ is an (n + 1)st
expansionary node, then we will have scope(�∗) = n + 1 and �(�∗) = �. Otherwise,
scope(�∗) = scope(�) = n and we will have either �(�∗) = �(�) or �(�∗) ≺ �(�).

Definition 5.3. If �(�∗) = �(�) (or if �∗ is an expansionary node, and �(�∗) =
�) then we say that �∗ is a main child of �. Otherwise, if �(�∗) ≺ �(�), then we say
that �∗ is a secondary child of �.

Each node will have two main children and any finite number (including zero) of
secondary children. In Section 6 we will return to the examples of Sections 2 and 4
and explain which children are main children and which are secondary children. One
should think of the main children as those where the construction “went smoothly”:
they are the nodes where we found e-splittings. They are not diagonalization nodes
for any lowness requirement, and are observation nodes for any lowness requirement
for which the parent was an observation node. In contrast, the secondary children
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are those we were forced to keep on the tree by lowness requirements; they are all
diagonalization nodes for some requirement.

Using the notation of Definition 5.2, we will often consider S{ �

main
�

} where
main(�∗, �) is the relation of being a main child. So for example T{ �

main
�

} is the tree
consisting of main children of main children of... main children of �.

Consider the construction by Me of an e-splitting subtree of Te–1. Recall from
Section 4.3 that when we look for e-splits, we do so through only a subtree of Te–1.
Namely, if we are looking for an e-split above � ∈ Te–1, and if � is an observation
node for a requirement L�d which guesses that Me has the infinitary outcome, then
we should look for that e-split among extensions of � which are also observation
nodes for L�e+d . Let us translate this into the language of labels.
Te–1 itself will be a labeled tree, with scopes scopee–1 : Te–1 → � and labels

�e–1 : Te–1 → Labels. The nodes on Te–1 which are observation nodes for all
requirements L�d which guess that Me has the infinitary outcome are the nodes
with label �e–1(�) = f ··· or �e–1(�) = �; equivalently, we may write �e–1(�) 	 f. Let
Te–1{ �

�f
�
} be the subtree of Te–1 above � (so that � is the root node of Te–1{ �

�f
�
})

such that given � on Te–1{ �

�f
�
}, the children of � in Te–1{ �

�f
�
} are the children �∗

of � on Te–1 with �e–1(�∗) � f. When we look for a splitting extension of �, we look
through Te–1{ �

�f
�
}.

The input tree Te–1 will have similar properties to those described above.

Definition 5.4. We say that a tree T with labels � and scope is admissible if:

(1) Each � ∈ T has two main children �∗ and �∗∗ with �(�∗) 	 �(�) and �(�∗∗) 	
�(�).

(2) If �∗ is a child of �, then scope(�∗) ≥ scope(�).
(3) For each n, each path through T contains a node � with �(�) = � and

scope(�) ≥ n.

We must also begin with an admissible tree. As in Section 2.3 let T–1 be the tree
consisting of all nodes in 2<� of the form

a20

1 a
21

2 a
22

3 a
23

4 ··· ,

where each ai ∈ {0, 1}. We put �–1(�) = � and scope–1(�) = |�| for each � ∈ T–1.
This T–1 is admissible.

§6. Three or four requirements revisited. Now that we have described the labeling
system formally, let us return to the situations described in Sections 2 and 4 to see
what happens with the labels.

6.1. One M requirement and one L requirement, redux. We begin by revisiting
Section 2.4. We have two requirements M = Me and L = Le , so that M is of
higher priority than L. Let Te–1 be the tree built by Me–1, and assume that we have
enough e-splits on Te–1. M is building an e-splitting tree T and L is guessing that it
is successful.

Suppose that we have determined that � is on T and we are trying to extend
it. Suppose also that scopee(�) = 0 so that we are only concerned with the single
requirement L. We are then assigning labels from Labels1 = {� � ∅}. Suppose
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that � has the label �, and is an observation node for L. We look for a pair of nodes
�1, �2 on Te–1{ �

�f
�
} that e-split. Since we assumed that these exist, at some point we

will find them at stage s. Now let �1, ... , �n be the other nodes on Te–1[s]. L stops
simulating computations above �1, ... , �n.

�
	

�1
	

�2
	

�1
∅

�2
∅

�3
∅

···

simulated by L

The nodes �1 and �2 are the main children of � and are also labeled �, while the �i
are secondary children and are labeled ∅.

Now at the next step we look for �∗1 and �∗∗1 onTe–1{ �

�f
�2
}, �∗2 and �∗∗2 onTe–1{ �

�f
�2
},

and �∗i and �∗∗i on Te–1{ �

�f
�i
} such that all of these pairwise e-split. The nodes �1 and

�2 also get children �.

�
	

�
∅

�
∅

�
∅

�
∅

�1
	

�2
	

�∗1
	

�∗∗2
	

�∗∗1
	
�∗2
	

�1
∅

�∗1
∅

�∗∗1
∅

�2
∅

�∗2
∅

�∗∗2
∅

�3
∅

�∗3
∅

�∗∗3
∅

···

simulated by L

Here �∗1 , �∗∗1 , �∗2 , and �∗∗2 are labeled �, and the �, �∗i , and �∗∗i are labeled ∅. The
main children of �1 are �∗1 and �∗∗1 ; the main children of �2 are �∗2 and �∗∗2 ; and the
main children of �i are �∗i and �∗∗i . The � are secondary children.

6.2. One M requirement and two L requirements, redux. We now revisit Section
4.1. Consider three requirements: Me of highest priority, Le of middle priority, and
Le+1 of lowest priority. Because Le+1 is guessing at the outcome of Me+1, and Me

does not know this outcome, Me has to consider both instances Lf
e+1 and L∞

e+1
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which guess that Me+1 has the finitary or infinitary outcome respectively. (We omit
from the superscript of the instance the guesses at the outcomes of requirements
M0, ... ,Me .)

Suppose that the requirementMe is trying to extend a node � and that scope(�) =
1 so that we are only concerned with Le , Lf

e+1, and L∞
e+1. We have

Labels2 = {� � f � ∞ � ∅}.

The labels ∅, f, and ∞ correspond respectively to Le , Lf
e+1 and L∞

e+1. So we have

Le � L∞
e+1 � Lf

e+1.

At the first level, we have:

�
	

�1
	

�2
	

�1
f

�2
f

�3
f

···

simulated by Lf
e+1

simulated by Le and L∞
e+1

At the next level, we have:

�

ff ff

� �

� �� �

f

f f ∞

f

f f ∞

f ···

simulated by Lf
e+1

simulated by L∞
e+1simulated by L∞

e+1simulated by L∞
e+1

simulated by L∞
e+1
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It is only at the following stage that we get some nodes which are labeled ∅ and
which are not observation nodes for L∞

e+1.

6.3. Two M requirements and one L requirement, sandwiched, redux. Finally, we
revisit Section 4.5. We consider three requirements: Me of highest priority, Le of
middle priority, and Me+1 of lowest priority. Suppose that Me successfully builds
an e-splitting tree Te , and that Le correctly guesses this. If Le has the infinitary
outcome, then we need A to live within the observation nodes for Le . Recall that
the way that we ensure that this happens is that Me+1 will work only within the
observation nodes for Le when it builds its 1-splitting tree.

Let � be the guesses by Le at the higher priority requirements. Since Le is the
highest priority requirement after Me , we have Δ>e(�) = ∅. Thus the nodes labeled
∅ are those that might be diagonalization nodes for Le , and those with labels � ∅

are observation nodes for Le . Thus if � is the node at which we want to start building
Te+1, then we want to build Te+1 as a subtree of Te{ �

�∅

�
}.

6.4. A new issue. There is one more issue which we have glossed over previously
(and so some of the previous examples are somewhat misleading without keeping
this issue in mind). Consider the requirements Me–1, with corresponding tree Te–1,
and Me , which is building an e-splitting subtree of Te–1. Suppose that Me has the
infinitary outcome. Let L	 be an instance of a requirement of lower priority than
Me . The issue is that the labels on Te–1 might affect the labels on Te : essentially, if
we determine that a node on Te–1 is not an observation node for L	 , then this means
that L	 stops simulating computations above that node, and so no node extending
that node should be an observation node on Te .

Let � = Δ>e(	). Assume that L guesses correctly that Me has the infinitary
outcome, so that Δ>e–1(	) = ∞�.

Suppose that we have determined on Te that �∗ should be a child of �, with � an
observation node for L on both Te–1 and Te . On Te–1, we might have a sequence of
children � = �0, �1, ... , �n = �∗. If any of these is not an observation node for L	
on Te–1—that is, if �e–1(�i) � ∞�—then �∗ should not be an observation node for
L	 on Te—that is, we should have �e(�∗) � �.

§7. Construction.

7.1. Procedure for constructing splitting trees. We are now ready to describe the
procedure for constructing splitting trees. Given the tree Te–1 constructed by Me–1,
we will describe the (attempted) construction by Me of an e-splitting subtree T.
This construction will be successful if there are enough e-splittings in Te–1. The
construction will happen above some root node �, which is determined by Te–1

together with the outcomes of the requirements Le–1 and Pe–1. For example, if Le–1

has the finitary outcome, then � will extend this.
The construction will be given by a procedureProcedure(e, �,Te–1) for building an

e-splitting tree T with root � in Te–1. We write T [n] for the tree up to and including
the nth level.

Procedure(e, �, Te–1):
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Input: A value e ≥ 0, an admissible labeled tree Te–1 with labels �e–1(·) and scopes
scopee–1(·), and a node � on Te–1 with �e–1(�) = �.

Output: A possibly partial labeled e-splitting tree T, built stage-by-stage.
Construction. To begin, the root node of T is � with scope(�) = 1 and �(�) = �.

This is the zeroth level of the tree, T [0]. At each stage of the construction, if we have
so far built T up to the nth level T [n], we try to add an additional (n + 1)st level.

At stage s, suppose that we have defined the tree up to and including level n, and
the last expansionary level ≤ n was et . Look for a length l such that for each leaf �
of T [n], there is an extension �′ of � with �′ ∈ Te–1{ �

main
�

} with �e–1(�′) = �, and

there are extensions �∗ and �∗∗ of � on Te–1{ �

�f
�′ }, such that �∗ and �∗∗ are of

length l, and such that all of these extensions pairwise e-split, i.e., for each pair of
leaves �, � of T [n], these extensions �∗, �∗∗, �∗, and �∗∗ all e-split with each other.
(At stage s, we look among the first s-many extensions of these leaves, and we run
computations looking for e-splits up to stage s. If we do not find such extensions,
move on to stage s + 1.)

If we do find such extensions, we will define T [n + 1] as follows. To begin, we
must wait for Te–1[s] to be defined. In the meantime, we designate each � as waiting
with main children �∗and �∗∗.4 While waiting, we still count through stages of the
construction, so that after we resume the next stage of the construction will not be
stage s + 1 but some other stage t > s depending on how long we wait. Once Te–1[s]
has been defined, for each leaf � of T [n], the children of � in T [n + 1] will be:

• �∗, with:
– If no predecessor of � on T, including � itself, is a tth expansionary

node, set scope(�∗) = scope(�) + 1 and �(�∗) = � (so that �∗ is a tth
expansionary node).

– Otherwise, set scope(�∗) = scope(�) and �(�∗) = �(�).
• �∗∗, with:

– If no predecessor of � on T, including � itself, is a tth expansionary
node, set scope(�∗∗) = scope(�) + 1 and �(�∗∗) = � (so that �∗∗ is a
tth expansionary node).

– Otherwise, set scope(�∗∗) = scope(�) and �(�∗∗) = �(�).
• If �(�) � ∅, each other maximal extension �† of � on Te–1{ ��∅

� }[s] which is
incompatible with �∗ and �∗∗ will be a child of � on T.5 Put scope(�†) =
scope(�). Define �(�†) as follows. Let n = scope(�). Let � ∈ Labelsn be
greatest such that �† ∈ Te–1{ �
�� }. Then:

– If � is � or begins with f, then let �(�†) = predn(�(�)).
– If � begins with ∞, say � = ∞�∗, then �(�†) will be the minimum, in

Labelsn, of predn(�(�)) and �∗.6

4This designation is purely for the use of the simulations for lowness requirements, and has no effect
on the resulting tree T. See (∗) of the definition of Ξ in Section 8.3.

5We take only nodes from Te–1{ ��∅

� } in order to meet the infinitary outcome of the lowness
requirement Le–1. If Le–1 has the finitary outcome there will be no harm in taking nodes only from
Te–1{ ��∅

� }. See Sections 4.5 and 6.3 and Remark 7.2. This fact will be used in Lemma 8.4.
6See Section 6.4 for why we define the labels in this way with reference to �. The main place this is

used is in Lemma 7.7, which is then used in Lemma 8.4 to verify that the simulations Ξ work.
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Note that predn(�(�)) exists because �(�) � ∅. (Recall that predn is the
predecessor relation on labels of length at most n.)

The children �∗ and �∗∗ are the main children of �, and the �†, if they exist, are
secondary children. This ends the construction at stage s.

End construction.

We say that the procedure is successful if it never gets stuck, and constructs the
nth level of the tree T for every n. The next lemma is the formal statement that if
Te–1 has enough e-splits, then the procedure is successful.

Lemma 7.1. Fix e, an admissible labeled tree Te–1, and � ∈ Te–1 with �e–1(�) = �.
Suppose that for all � ∈ Te–1{ �

�∅

�
} with �e–1(�) = �,

• for all n, there is � ∈ Te–1{ �
f
� } such that Φ�e(n) ↓ and

• there are n and �1, �2 ∈ Te–1{ �
f
� } such that

Φ�1e (n) �= Φ�2e (n).

Then Procedure(e, �, Te–1) is successful.

As part of proving this lemma, we will use the following remark, which follows
easily from the construction:

Remark 7.2. Every node on T is a node on Te–1{ �

�∅

�
}.

Proof of Lemma 7.1. If we have built T up to level n, and T [n] has leaves
�1, ... , �k , then as Te–1 is admissible, for each i there are �′i on Te–1{ �

main
�i

} with

�(�′i ) = �. By the remark, each �′i ∈ Te–1{ �

�∅

�
}. Then using the assumption of

the lemma and standard arguments there are �∗i , �
∗∗
i on Te–1{ �

�f

�′i
} such that all of

the �∗i and �∗∗i pairwise e-split. For sufficiently large stages s, we will find these
extensions. �

The remaining lemmas of this section give properties of the tree constructed by
the procedure. The next few lemmas show that the tree T has expansionary levels
and is e-splitting. As a result, we will see that T is admissible.

Lemma 7.3. Suppose that Procedure(e, �, Te–1) successfully constructs T. For each
�∗ ∈ T [en+1], there is a predecessor � of �∗ which is n-expansionary.

Proof. Let �0 ∈ T [en] be the predecessor of �∗ at the nth expansionary level,
and let �0, �1, �2, ... , �k = �∗ be the sequence of predecessors of �∗ between �0 and
�∗. If any �i+1 were a main child of �i , then either �i+1 would be n-expansionary, or
�i or one of its predecessors would be n-expansionary as desired. If none of these
are expansionary, then we must have

� 	 �(�0) � �(�1) � �(�2) � ··· � �(�k) = �(�∗),

with all of these in Labelsn–1. Since en+1 > en + 2n+1 > |Labelsn–1|, this cannot be
the case, and so some predecessor of �∗ must be expansionary. �

The following lemma is easy to see by inspecting the construction.
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Lemma 7.4. Suppose that Procedure(e, �, Te–1) successfully constructs T. Given
distinct leaves � and � of T [n], and �∗, �∗ ∈ T [n + 1] which are children of � and �
respectively, either:

• �∗ and �∗ are main children of � and � respectively, and �∗ and �∗ e-split,
• �∗ is a secondary child of �, and scope(�∗) = scope(�) and �(�∗) ≺ �(�), or
• �∗ is a secondary child of �, and scope(�∗) = scope(�) and �(�∗) ≺ �(�).

Lemma 7.5. Suppose that Procedure(e, �, Te–1) successfully constructs T. Given
distinct � and � in T at the nth expansionary level of the tree, and �∗, �∗ which are
extensions of � and � respectively at the (n + 1)st expansionary level of the tree, �∗

and �∗ are e-splitting.

Proof. Let �0 = �, �1, �2, ... , �k = �∗ be the sequence of predecessors of �∗

between � and �∗, and similarly for �0 = �, �1, �2, ... , �k = �∗. Since �0 and �0 are at
the level en, and �∗ and �∗ are at the level en+1, we have k ≥ 2n+5. If, for any i, both
�i+1 and �i+1 are main children of �i and �i , then by Lemma 7.4, �i+1 and �i+1 are
e-splitting. We argue that this must happen for some i < k.

For each i, either (a) �i+1 is n-expansionary and �(�i+1) = �, or scope(�i+1) =
scope(�i) and either (b) �(�i+1) ≺ �(�i), or (c) �(�i+1) = �(�i). There is at most one
i for which (a) is the case. Thus there are at most |Labelsn| + |Labelsn+1| ≤ 2n+3

values of i for which (b) is the case. The same is true for the �i . So, as k ≥ 2n+5,
there must be some i for which neither (a) nor (b) is the case for either the �i or the
�i . For this i, we have both �i+1 and �i+1 are main children of �i and �i respectively,
and so �i+1 and �i+1 are e-splitting. Thus �∗ and �∗ are e-splitting. �

Lemma 7.6. Suppose that Procedure(e, �, Te–1) successfully constructs T. T is an
e-splitting tree: any two paths in T are e-splitting.

Proof. Choose �1 and �2 initial segments of the two paths, long enough that they
are distinct, which are at the nth expansionary level T [en]. Let �1, �2 be the longer
initial segments of the paths at the (n + 1)st expansionary level T [en+1]. Then by
the previous lemma, �1 and �2 are e-splitting, and so the two paths are e-splitting.

�
The next lemmas relate the labels of T to the labels on Te–1. If a node is labeled

on Te–1 so that it is not an observation node for some lowness requirement L, then
it should also be labeled on T to not be an observation node for L. (The converse
is not necessary; T might determine that some node is not an observation node for
L even if that was not determined by Te–1.) See Section 6.4. Translating this into
labels, we get the following lemmas:

Lemma 7.7. Suppose that Procedure(e, �, Te–1) successfully constructs T. Given
� ∈ T , with �e–1(�) = �, and �∗ ∈ T{ �

��
�

} we have �∗ ∈ Te–1{ �

�∞�
�

}. In particular,
if �e(�∗) � �, then �e–1(�∗) � ∞�.

Proof. It suffices to prove the lemma when �∗ is a child of � on T, and �(�∗) � �.
We have two cases, depending on whether �∗ is a main child or secondary child of
� on T.

• If �∗ is a main child of � on T, then �∗ ∈ Te–1{ �


f
�′ } and �′ ∈ Te–1{ �main� }, and

�e–1(�′) = �.Since �e–1(�) = �, for every � on Te–1 between � and �′ we have
�e–1(�) = �. Thus �e–1(�′) = �.

https://doi.org/10.1017/jsl.2021.108 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.108


A MINIMAL SET LOW FOR SPEED 1721

Now for every � on Te–1 between �′ and �∗, we have �e–1(�) 	 f � ∞�. So
�e–1(�∗) � ∞�.

• If �∗ is a secondary child of �, let n = scope(�) and let 	 ∈ Labelsn be least
such that �∗ ∈ Te–1{ �
	� }. If 	 is � or begins with f, then 	 � ∞� and so
�∗ ∈ Te–1{ ��∞�

� }. Otherwise, if 	 begins with ∞, say 	 = ∞	∗, then �(�∗) � �
is the minimum, in Labelsn, of predn(�(�)) and 	∗. Thus 	∗ � �, which means
that ∞	∗ � ∞�, and so �∗ ∈ Te–1{ ��∞�

� }.

This proves the lemma. �
Similarly, we can prove the same lemma but replacing � with 	. We have:

Lemma 7.8. Suppose that Procedure(e, �, Te–1) successfully constructs T. Given
� ∈ T , with �e–1(�) = �, if:

• �∗ ∈ T{ �
�� }, we have �∗ ∈ Te–1{ �
∞�
� }. In particular, if �e(�∗) 	 �, then

�e–1(�∗) 	 ∞�.
• �∗ ∈ T{ �
�

� }, we have �∗ ∈ Te–1{ �
�
� }. In particular, if �e(�∗) = �, then

�e–1(�∗) = �.

Finally, putting together results from all of these lemmas, we have:

Lemma 7.9. Suppose that Procedure(e, �, Te–1) successfully constructs T. Then T
is an admissible tree.

7.2. Construction ofA and the true path. We simultaneously define A, the treesTe
satisfying Me , and a true path of outcomes � by finite extension. This construction
is non-uniform, and is analogous to choosing a generic in a forcing construction.

Begin with A–1 = ∅ and �–1 = ∅. Recall that, as in Section 2.3, we let T–1 be the
tree consisting of all nodes in 2<� of the form

a20

1 a
21

2 a
22

3 a
23

4 ··· ,
where each ai ∈ {0, 1}. We put �–1(�) = � and scope–1(�) = |�| for each � ∈ T–1.
This T–1 is admissible.

Suppose that we have so far defined As ≺ A, Ts , and �s ≺ �, with |�s | = s + 1.
To define As+1 and �s+1 we first ask the next requirement what its outcome is, and
then define the extensions appropriately.

s+1 = 3e: Consider M�s
e . If Procedure(e,As ,Te–1) successfully constructs a tree

T, let Te be this tree T, and set �s+1 = �s ˆ∞ and As+1 = As . Otherwise, by
Lemma 7.1, there is � ∈ Te–1{ �

�∅

As
}with �e–1(�) = � and scopee–1(�) ≥ 1 such

that either:
(1) there is n such that for all � ∈ T{ �

�f
�
}e–1, Φ�e(n) ↑ or

(2) for all �1, �2 ∈ T{ �

�f
�
}e–1 and n,

Φ�1e (n) ↓ ∧ Φ�2e (n) ↓ −→ Φ�1
e (n) = Φ�2

e (n).

In either case, let �s+1 = �s ˆ� andAs+1 = � 	 As . LetTe be the treeTe–1{ �

�f
�
}.

The labels �e and scopes of the tree Te are defined by setting scopee(�) =
scopee–1(�) – 1 and:
• �e(�) = � if �e–1(�) = � or
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• �e(�) = � if �e–1(�) = f�.7

s+1 = 3e+1: Consider L�se with e = 〈e1, e2〉. If there is � ∈ Te and n such that
Ψ�e1(n) �= Re2(n), then letAs+1 = � and �s+1 = �s ˆ�. We may choose � to have
�e(�) = �, as (by Lemma 7.10 below) Te is admissible. Otherwise, if there is
no such �, let As+1 = As and �s+1 = �s ˆ∞.

s+1 = 3e+2: ConsiderP�se . IfAs = � ∈ Te , let �1 and �2 be the two main children
of � on Te . Choose As+1 � � to be whichever of �1, �2 is not an initial segment
of the eth c.e. setWe .

We define A =
⋃
s As and the true sequence of outcomes � =

⋃
s �s . We denote by

�R the true outcome up to and including the requirementR; for example,�Me = �3e ;
and similarly for AR.

In the following lemma, we prove that along the true path, the trees that we
construct are total and admissible.

Lemma 7.10. For each e, Te is an admissible labeled tree.

Proof. We argue by induction on e. T–1 is an admissible tree. Given Te total and
admissible, if Me+1 has the infinitary outcome then Te+1 is defined from Te using
the Procedure, which is successful, and hence by Lemma 7.9 is admissible.

So suppose that Me+1 has the finitary outcome, and Te+1 is the tree Te{ �

�f
�
} for

some � ∈ Te{ �

�∅

APe–1
} with �e(�) = �. We must argue that Te+1 is admissible:

(1) Each � ∈ Te+1 has two main children �∗ and �∗∗, namely the same two
main children of � in Te . We have �e+1(�∗) 	 �e+1(�). There are two cases
to check: if �e(�∗) = f�e+1(�∗), then �e(�) = f�e+1(�) and from �e(�∗) 	
�e(�) we conclude that �e+1(�∗) 	 �e+1(�); and otherwise, �e(�∗) = � and
so �e+1(�∗) 	 �e+1(�). Similarly for �∗∗ we have �e+1(�∗∗) 	 �e+1(�).

(2) If �∗ is a child of � on Te+1, then �∗ is a child of � on Te and scopee+1(�∗) =
scopee(�) – 1 ≥ scopee(�) – 1 = scopee+1(�).

(3) For each n, each path through Te+1 is also a path through Te , and hence
contains a node � with �e+1(�) = �e(�) = � and scopee+1(�) = scopee(�) –
1 ≥ n. �

§8. Verification. In this section, we check that the A constructed above is non-
computable, of minimal degree, and low for speed.

8.1. Non-computable. We chose the initial segment APe = A3e+2 of A such that
it differs from the eth c.e. set. Thus A is not computable. (These requirements also
ensure that A is extended to an infinite string.)

8.2. Minimal degree. We show that A is of minimal degree by showing that it lies
on the trees Te which are either e-splitting or force ΦAe to be partial or computable.

Lemma 8.1. For all e, A ∈ [Te ].

7The definitions of the labels here are to ensure that nodes which are determined not to be observation
nodes on Te–1 are also not observation nodes on Te ; this is in some sense the equivalent, for the finitary
outcome of Me , of Lemmas 7.7 and 7.8. See also Section 6.4.
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Proof. Fix e. ThenA3e = AMe is the root of Te . Then we chooseA3e � A3e+1 �
A3e+2 in Te . Then for each e′ ≥ e, Ae′ = AMe′ ∈ Te′ which is a subtree of Te . So
A ∈ [Te ]. �

Lemma 8.2. A is a minimal degree.

Proof. A is non-computable. We must show that A is minimal. Suppose that
ΦAe is total. If the outcome of Me is ∞, then A lies on the e-splitting tree Te = T
produced by Procedure(e,APe–1 ,Te–1) and hence ΦAe ≥T A. If the outcome of Me is
�, then A lies on Te = Te–1{ �

�f
�
} and (since ΦAe is total) for all �1, �2 ∈ Te–1{ �

�f
�
}

and for all n,

Φ�1e (n) ↓ ∧ Φ�2e (n) ↓ −→ Φ�1e (n) = Φ�2e (n).

Thus ΦAe is computable. �

8.3. Low-for-speed. Our final task is to show that A is low-for-speed. Fix a lowness
requirement Le . Define � = Δ(�L) ∈ {f,∞}e+1; � is the sequence of guesses, f or ∞,
at the outcomes of M0, ... ,Me . Write �>i for the final segment 〈�(i + 1), ... , �(e)〉
of �, the guesses at Mi+1, ... ,Me .

In checking that Le is satisfied, we will refer only to the trees T–1, ... , Te . Write
scopei and �i for the scope and labeling function on Ti .

By stage s of the construction of Ti we mean:

(1) for i =– 1, the strings of length ≤ s in T–1;
(2) if the outcome of Mi was infinitary, stage s of the Procedure constructing Ti ;

and
(3) if the outcome of Mi was finitary, that part of Ti which is determined by

stage s of the construction of Ti–1.

One can check that the sth stage of Procedure takes time polynomial in s. The
particular polynomial will depend on the parameters for Procedure. In checking
this, it is important to note that if the leaves of T have been designated waiting, then
we charge the time required to wait forTe–1[s] to be defined to stages s + 1, s + 2, ....
Also, because all of these trees are subtrees of T–1, there are only polynomially in s
many elements of each tree of length (as a binary string) at most s.

Now we will define the simulation procedure. Let �1, ... , �k be incomparable
nodes on Te such that (a) every path on Te passes through some �i , (b) each �i
has �e(�i) = �, and (c) for each i and each e′ ≤ e, scopee′(�i) ≥ e – e′. We can find
such �i because Te is admissible. (Think of the �i as an open cover of Te by nodes
whose scope, in every Te′ (e′ ≤ e), includes Le .) For each i, we define a simulation
Ξe,i which works for extensions of �i . As A extends some �i , one of these simulations
will work for A. Fix i, for which we define the simulation Ξ = Ξe,i :

Simulation Ξ = Ξe,i : Begin at stage 0 with Ξ(x) ↑ for all x. At stage s of the
simulation, for each � ∈ T–1 with |�| < s and � 	 �i , check whether, for each e′ ≤ e,
if Te′ [n] is the greatest level of the tree Te′ defined by stage s of the construction of
the trees T, then either:

(S1) � is on Te′ [n] and � ∈ Te′{ �

��>e′
�i }, or

(S2) � extends a leaf �′ of Te′ [n], with �′ ∈ Te′{ �

��>e′
�i }, and:
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(∗) if Te′ is defined using Procedure (i.e., Me′ has the infinitary outcome),

predscopee′ (�′)(�e′(�
′)) = �>e′ ,

and �′ has at stage s been designated waiting with main children �∗and
�∗∗, then � extends or is extended by either �∗ or �∗∗.8

If for some � this is true for all e′ ≤ e, then for any k < s with Ψ�s (k) ↓, set Ξ(k) =
Ψ�s (k) if it is not already defined.

Remark 8.3. Stage s of the simulation can be computed in time polynomial in s.
(The polynomial may depend on e.) This is because there are polynomially many in
s nodes � ∈ T–1 with |�| < s .

We can now make a more formal definition of an observation node and a
diagonalization node for L�e on Te′ (e′ ≤ e) above �i , though this terminology
will only be used for explaining the proofs and not in the proofs themselves. A node
� extending �i is an observation node for L�e above �i on Te′ if � ∈ Te′{ �

��>e′
�i

}. A
node � extending �i is a diagonalization node for L�e above �i on Te′ if the parent of
� is in Te′{ �

��>e′
�i

} and if �(�) = �>e′ .
The next series of lemmas are proved in the context above of a fixed e, with

�1, ... , �k . If e = 〈e1, e2〉, we write Ψ for Ψe1 . Fix j such that A extends �j , and write
Ξ = Ξe,j .

If Le has outcome ∞, then we need the initial segments of A to be observation
nodes for Le , so that if ΨA(x) ↓ then we set Ξ(x) = ΨA(x) if it was not already
defined. First we prove that the initial segments of A have the right labels, i.e., that
they are observation nodes, and second that these observation nodes actually get
simulated by the simulation procedure.

Lemma 8.4. If �(Le) = ∞, for each e′ ≤ e, A ∈ [Te′{ �

��>e′
�j

}] for some i.

Proof. Let � = AMe be the root of Te . Since �(Le) = ∞, ALe = AMe . Let
�∗ = 
(Pe) = APe . Then, by construction, �∗ is a main child of �. A is a path
through Te+1 extending �∗, and Te+1 is one of the following two trees, depending
on the outcome of Me+1:9

(1) the labeled tree T produced by Procedure(e + 1,�∗,Te), which is a subtree of
Te{ �

�∅

�∗ } or
(2) the tree Te{ �

�f
�
} for some � ∈ Te{ �

�∅

�∗ } with �e(�) = �.

In either case,A ∈ [Te{ �

�∅

�j
}], and ∅ = �>e . (Note that �j extends � and is extended

by A.)
Now we argue backward by induction. Suppose that A ∈ [Te′{ �

��>e′
�j

}]. We want

to argue that A ∈ [Te′–1{ �

��>e′–1
�j

}]. We have two cases, depending on the outcome

of Me′ :

8The idea behind the condition (∗) is that if �′ has been designated waiting, this is a warning that
the secondary children of � will not be simulated by any lowness requirement with guess � �>e′ . We
just have not yet determined what these children are because we are waiting for Te–1. So, if Le is such a
lowness requirement, and if � is along a secondary child of �′, then we should not simulate �.

9Recall from Sections 4.5 and 6.3 that when Le has the infinitary outcome it is the choice of Te+1
that forces the initial segments of A to be observation nodes for Le , which is why we consider Te+1 here.
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• The outcome of Me′ is ∞. Then �>e′–1 = ∞�>e′ and Te′ is the labeled tree
T produced by Procedure(e′,APe′–1

,Te′–1). By Lemma 7.7, given � ∈ Te′ and

�∗ ∈ Te′{ �
��>e′
� }, we have that �∗ ∈ Te′–1{ �

�∞�>e′
� } = Te′–1{ �

��>e′–1
� }. AsA ∈

[Te{ �

��>e′
�j }] we have A ∈ [Te′–1{ �

��>e′–1
�j }].

• The outcome of Me′ is f. Then �>e′–1 = f�>e′ and Te′ is the treeTe′–1{ �
f
� } for

some � ∈ Te–1{ �
�∅

APe′–1
} with �e–1(�) = �. The labels on Te′ are defined so that

if � ∈ Te′ , then �e′–1(�) = f�e′(�) or �e′–1(�) = �. Thus, asA ∈ [Te′{ �

��>e′
�j }],

we get that A ∈ [Te′–1{ �
�f�>e′
�j }] = [Te′–1{ �

��>e′–1
�j }]. �

Now we prove that if ΨA(r) converges, then the simulation Ξ(r) converges as
well, though it is possible that it will have a different value if there was some other
computation Ψ�(r) which converged before ΨA(r) did. Moreover, the simulation
will not be too much delayed. The proof is essentially showing that we do in fact
simulate computations at observation nodes.

Lemma 8.5. If �(Le) = ∞, and ΨA(r) ↓, then Ξ(r) ↓. Moreover, there is a
polynomial p depending only on e such that if ΨAs (r) ↓, then Ξp(s)(r) ↓.

Proof. By the previous lemma for each e′ ≤ e, A ∈ [Te′{ �
��>e′
�j

}]. Let � ∈ Te be

an initial segment of A and s a stage such that Ψ�s (r) ↓. We may assume that � is
sufficiently long that � extends �j .

Fix e′ and let Te′ [n] be the greatest level of the tree Te′ defined by stage s. Then,
as A ∈ [Te′{ �

��>e′
�j

}], � ∈ Te′{ �

��>e′
�j

}. We check the conditions (for e′) from the

definition of the simulation Ξ. Either � ∈ Te′{ �

��>e′
�j

}[n], or some initial segment �′

of � is in Te′{ �

��>e′
�j

}[n]. In the second case, let us check that we satisfy (∗). We only

need to check (∗) in the case that Te′ was defined using Procedure,

predscopee′ (�′)(�e′(�
′)) = �>e′ ,

and �′ has at stage s been designated waiting with main children �∗ and �∗∗. Now,
if � ∈ Te does not extend �∗ or �∗∗ then it would have to extend one of the other
children of �, namely a secondary child �† of �′ with

�e′(�
†) � predscopee′ (�′)(�e′(�

′)) = �>e′ .

This contradicts the fact that � ∈ Te′{ �

��>e′
�j

}.

Since this is true for every e′ ≤ e, and Ψ�s (r) ↓, the simulation defines Ξ(r) =
Ψ�s (r) if Ξ(r) is not already defined.

The simulation defines Ξ(r) at the sth stage of the simulation. By Remark 8.3, the
sth stage of the simulation can be computed in time polynomial in s. �

Lemma 8.5 covers the infinitary outcome of Le . For the finitary outcome, we need
to see that any computation simulated by Ξ is witnessed by a computation on the
tree, because the use of such a computation is a diagonalization nodes that was not
removed from the tree.

Lemma 8.6. If Ξ(r) ↓ then there is � ∈ Te , � 	 �j , such that Ψ�(r) = Ξ(r).
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Proof. Since Ξ(r) ↓, by definition of the simulation, there is a stage s and a
� ∈ T–1 with |�| < s such that Ψ�s (r) ↓ for which we set Ξ(r) = Ψ�s (r). At stage s,
for each e′ ≤ e this � satisfied either (S1) or (S2). Fix this s for the rest of the proof.

We argue by induction on – 1 ≤ i ≤ e that there is �∗ a child on Ti of a node �
with:

(1) �i(�∗) 	 �>i ;
(2) � ∈ Ti{ �

��>i
�j

};

(3) Ξ(r) = Ψ�
∗
s (r); and

(4) �∗ satisfies either (S1) or (S2) for each e′ with i < e′ ≤ e.
By the previous paragraph, this is true for i =– 1. If we can show it for i = e, then
the lemma is proved. All that is left is the inductive step.

Suppose that it is true for i; we will show that it is true for i + 1. We have two
cases, depending on the outcome of Mi+1.

Case 1. �Mi+1 = ∞, the infinitary outcome.

Since �Mi+1 = ∞, Ti+1 is the (i + 1)-splitting tree defined by Procedure(i +
1,APi ,Ti). Fix �∗ from the induction hypothesis. Since Ψ�

∗
s (r) converges, we have

that |�∗| ≤ s and so �∗ ∈ Ti [s]. Let n be the greatest level of Ti+1 defined by stage s.
At stage s, �∗ satisfied either (S1) or (S2) for i + 1. If it satisfies (S1) then

�∗ ∈ Ti+1{ �

��>i+1
�j

} and we are done. So assume that �∗ satisfies (S2). Then �∗

extends a leaf �0 of Ti+1[n], with �0 ∈ Ti+1{ �

��>i+1
�j

}, and also satisfies (∗). Let

�0, �1, ... , �n be the maximal sequence of children of �0 on Ti+1 which are strict
predecessors of �∗.

Claim 1. For each k, �k+1 is a main child of �k onTi+1. Thus for each k, �i+1(�k) �
�>i+1.

Proof. We argue inductively. Suppose that �k is a main child of �k–1, �k–1 is a
main child of �k–2, and so on. Thus �i+1(�k) � �>i+1. (If �0 = �j we use the fact
that �i+1(�j) = �.)

Suppose that �k+1 is put on Ti+1 at a stage t ≥ s . We claim that if �k+1

was a secondary child of �k , then �k+1 would extend �∗. It suffices to show
that �∗ ∈ Ti{ �

�∅

�k
}[t]. Indeed, as remarked above, �∗ ∈ Ti [s], �∗ ∈ Ti{ �

��>i
�j

}, and
�>i = ∞�>i+1 � ∅. �

Claim 2. One of the children �n+1 of �n extends �∗ and has �i+1(�n+1) 	 �>i+1.

Proof. Suppose that the children of �n are put on Ti+1 at a stage t ≥ s . To see
that one of the children of �n extends �∗, it suffices to show that �∗ ∈ Ti{ �

�∅

�n
}[t]

as all such nodes are either compatible with a main child of �n—in which case
�∗ would be extended by this main child by choice of �n—or are extended by a
secondary child of �n. Indeed, as in the previous claim, �∗ ∈ Ti [s], �∗ ∈ Ti{ �

��>i
�j

},

and �>i = ∞�>i+1 � ∅.
We have two cases. (a) Suppose that �∗ is extended by a main child �n+1 of �n.

Then �i+1(�n+1) 	 �i+1(�n) � �>i+1 and we are done.
(b) Suppose that �∗ is extended by a main child of �n. We have �∗ ∈ Ti{ �

��>i
�j

},

and so there is an extension �n+1 of �∗ on Ti with �n+1 on the tth level of Ti{ �

��>i
�j

},
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namely, �n+1 is a main child (onTi) of main children of ...of �∗. Now �n+1 is taken as
a secondary child of �n. As �i+1(�n) � �>i+1, �n+1 ∈ Ti{ �

��>i
�n

}, and �>i = ∞�>i+1,
we have �i+1(�n+1) 	 �>i+1. �

Claim 3. �n+1 and its parent �n satisfy (1)–(4).

Proof. We get (1) from Claim 2. We get (2) from Claim 1 together with the fact
that �0 ∈ Ti+1{ �

>�>i+1
�j

}. (3) follows immediately from the fact that �n+1 extends �∗.

Fix e′, i + 1 < e′ ≤ e. Note that as �∗ did not satisfy (S1) for i + 1 we had
�∗ /∈ Ti+1[n]. Thus �∗ /∈ Te′ [s] and so �∗ did not satisfy (S1) for e′. So �∗ satisfied
(S2) for e′. As an extension of �∗, �n+1 also satisfies (S2) for e′. �

This ends Case 1.

Case 2. �Mi+1 = �, a finitary outcome.

Let �∗ be as in the induction hypothesis for i. Let � be the parent of �∗ on Ti+1;
note that � is a predecessor of the parent of �∗ on Ti . We have that �i(�∗) 	 �>i
and � is on Ti{ �

��>i
�j

}.

Note that since �Mi+1 = � is the finitary outcome, �>i begins with f, and �>i =
f�>i+1. Ti+1 is the tree Ti{ �

�f
�
} for some � ∈ Ti{ �

�∅

�Pi
}. The labels �i+1 of the tree

Ti+1 are defined from the labels �i of the tree Ti by setting �i+1(�′) = � if �i(�′) =
�, or �i+1(�′) = �∗ if �i(�′) = f�∗. Thus �∗ is still on Ti+1, and �i+1(�∗) 	 �>i+1.
Moreover, for each �′ ∈ Ti+1, �i(�′) � �>i if and only if �i+1(�′) � �>i+1. So � is on
Ti+1{ �

��>i+1
�j

}, as desired. �

We now show how to use these lemmas to prove that A is low-for-speed.

Lemma 8.7. A is low-for-speed.

Proof. Given 〈e, i〉, suppose that ΨAe = Ri and that ΨAe (n) is computable in time
t(n). We must show that Ri is computable in time p(t(n)) for some polynomial p.
Note that the outcome of L〈e,i〉 must be ∞, as otherwise we would have ensured
that ΨAe �= Ri . Let j be such that A extends the �j from the simulation for e. So by
Lemma 8.5 Ξ〈e,i〉,j is total and there is a polynomial p depending only on 〈e, i〉 such
that if ΨAe (n) is computed in time s, then Ξ〈e,i〉,j(n) is computed in time p(s).

Now we argue that Ξ〈e,i〉,j computes Ri = ΨAe . Suppose not; then there is n
such that Ξ〈e,i〉,j(n) �= Ri(n) = ΨAe (n). Since Ξ〈e,i〉,j(n) does in fact converge, by
Lemma 8.6 there is � ∈ T〈e,i〉 extending �j such that Ψ�e (n) = Ξ〈e,i〉,j(n) �= Ri(n).
This contradicts the fact that the outcome of L〈e,i〉 is ∞, as we would have chosen
� as the outcome. �
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