
TLP 16 (1): 59–110, 2016. C© Cambridge University Press 2015

doi:10.1017/S1471068414000702 First published online 11 February 2015

59

Justifying answer sets using argumentation

CLAUDIA SCHULZ and FRANCESCA TONI

Department of Computing, Imperial College London

London SW7 2AZ, UK

(e-mail: {claudia.schulz,f.toni}@imperial.ac.uk)

submitted 13 April 2014; revised 2 October 2014; accepted 30 October 2014

Abstract

An answer set is a plain set of literals which has no further structure that would explain

why certain literals are part of it and why others are not. We show how argumentation

theory can help to explain why a literal is or is not contained in a given answer set by

defining two justification methods, both of which make use of the correspondence between

answer sets of a logic program and stable extensions of the assumption-based argumentation

(ABA) framework constructed from the same logic program. Attack Trees justify a literal in

argumentation-theoretic terms, i.e. using arguments and attacks between them, whereas ABA-

Based Answer Set Justifications express the same justification structure in logic programming

terms, that is using literals and their relationships. Interestingly, an ABA-Based Answer Set

Justification corresponds to an admissible fragment of the answer set in question, and an

Attack Tree corresponds to an admissible fragment of the stable extension corresponding to

this answer set.

KEYWORDS: answer set programming, assumption-based argumentation, stable extension,

explanation

1 Introduction

Answer Set Programming (ASP) is one of the most widely used non-monotonic

reasoning paradigms, allowing to efficiently compute solutions to problems involving

defaults and exceptions (Gelfond 2008). A problem is represented in terms of a logic

program, that is if-then clauses containing negation-as-failure (NAF) literals which

express exception conditions for the applicability of clauses. The solutions to the

problem are then given by the declarative answer set semantics (Gelfond and

Lifschitz 1991) for the logic program. ASP is applied in a variety of different areas,

ranging from bioinformatics (Baral et al. 2004) over music composition (Boenn

et al. 2011) to multi-agent systems (Son et al. 2009). Answer set solvers like clingo

(Gebser et al. 2011), smodels (Niemelä et al. 2000), and DLV (Eiter et al. 1997)

provide efficient tools for the computation of answer sets.

Especially with respect to the application of ASP in real-world scenarios involving

non-experts, it is useful to have an explanation as to why something does or does

not belong to a solution. As an example, consider a medical decision support system

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

60 C. Schulz and F. Toni

which operates on a logic program comprising general treatment decision rules

along with facts about a patient’s medical conditions. The answer sets of such a

logic program contain treatment suggestions or exclusions for the given patient. For

a doctor using this medical decision support system, it is important to know why

the system suggests a certain treatment as well as why a treatment is not part of a

solution. In ASP terms, the doctor needs a justification as to why a literal is or is not

contained in an answer set. This is particularly important if the doctor’s intended

treatment decision disagrees with the system’s suggestion. However, no matter

whether an answer set is computed by an answer set solver or by hand using trial and

error, it is a plain set of literals. That is to say that an answer set does not provide

any justification as to why certain literals are part of it whereas others are not.

In this paper we present two methods for justifying literals with respect to

an answer set of a consistent logic program by applying argumentation theory,

another widely used technique in the field of non-monotonic reasoning. Here, we

use Assumption-Based Argumentation (ABA) (Bondarenko et al. 1997; Dung et al.

2009), a structured argumentation framework which constructs arguments from rules

and assumptions, and attacks from the notion of contrary of assumptions. ABA is

particularly suitable for our purpose as it was inspired by logic programming, default

logic and other non-monotonic reasoning approaches (Bondarenko et al. 1997) which

are closely related to ASP. Due to this connection, it is straight forward to construct

the translated ABA framework of a logic program, i.e. the ABA framework expressing

the same problem as the logic program. One of the semantics for ABA frameworks

is the stable extension semantics (Dung 1995b; Bondarenko et al. 1997), which has

its roots in the stable model semantics for logic programs. Since the answer set

semantics is based on the stable model semantics as well, every answer set of a logic

program corresponds to a stable extension of the translated ABA framework, and

vice versa. We make use of this connection to justify literals with respect to a given

answer set of a consistent logic program by means of arguments in the context of

the corresponding stable extension of the translated ABA framework.

The first justification approach, an Attack Tree, expresses how to construct

an argument for the literal in question (the supporting argument) as well as

which arguments attack the argument for the literal in question (the attacking

arguments); the same information is provided for all arguments attacking the

attacking arguments, and so on. The second justification approach, an ABA-Based

Answer Set (ABAS) Justification of a literal, represents the same information as an

Attack Tree, but expressed in terms of literals rather than arguments. An ABAS

Justification comprises facts and NAF literals necessary to derive the literal in

question (the “supporting literals”) as well as information about literals which are in

conflict with the literal in question (the “attacking literals”). The same information

is provided for all supporting and attacking literals of the literal in question, for all

their supporting and attacking literals, and so on.

An Attack Tree is a (possibly infinite) tree with nodes holding arguments,

where the argument held by a child node attacks the argument held by the

parent node. Since arguments are trees themselves, indicating which components

(rules, assumptions) are necessary to construct the argument, an Attack Tree has

a two-layered structure: It is a tree consisting of trees. An ABAS Justification is

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 61

the flattened version of an Attack Tree, containing literal-pairs which express the

different parent-child relations expressed in an Attack Tree. The relation between

arguments in the Attack Tree is represented in terms of literal-pairs which are in

an attack relation; the relation between components of an argument is represented

in terms of literal-pairs which are in a support relation. An ABAS Justification

can also be interpreted as a graph, where every literal occurring in a pair forms a

node in the graph. The graph has a support edge between two literal-nodes if these

two literals occur as a literal-pair in a support relation in the ABAS Justification.

Analogously, the graph has an attack edge between two literal-nodes if these two

literals occur as a literal-pair in an attack relation in the ABAS Justification.

Our justification approaches have two purposes. On the one hand, they contribute

to the field of answer set justification research, which has been identified as an

important but not yet sufficiently studied research area (Lacave and Diez 2004;

Brain and De Vos 2008). The reason to use ABA for explanations instead of

constructing justifications from the logic program straight away in terms of simple

derivations or proof trees (Arora et al. 1993; Ferrand et al. 2012) is that ABA is

conceptually close to logic programs but provides additional concepts and constructs

which have been identified as useful for explanation purposes, such as the notion of

arguments and attacks (Bench-Capon et al. 1991; Moulin et al. 2002). On the other

hand, our justification approaches also provide a theoretical impact with respect to

the relation between non-monotonic reasoning systems. Even though ASP has been

applied to argumentation theory in the sense that an argumentation framework can

be equivalently expressed in ASP (Thimm and Kern-Isberner 2008; Toni and Sergot

2011), the converse has not been discussed in the literature. To the best of our

knowledge, Attack Trees and ABAS Justifications are the first approaches applying

argumentation theory for ASP, with the exception of

• early work on manually constructing arguments and attacks from a logic

program according to Toulmin’s argument scheme, which then serves as an

explanation of the logic program (Bench-Capon et al. 1991); and

• Argumentation-Based Answer Set Justification (Schulz et al. 2013) which can

be considered as a predecessor of ABAS Justifications. Similarly to ABAS

Justifications, Argumentation-Based Answer Set Justifications are constructed

from arguments and attacks between them, but using the ASPIC+ argumen-

tation framework (Prakken 2010) instead of ABA.

The paper is organized as follows: In Section 2 we recall some key concepts of

ASP and ABA and give some preliminary definitions and results building upon

this background. Furthermore, we give a motivating (medical) example for ABAS

Justifications. In Section 3 we show how to translate a logic program into an

ABA framework and prove their correspondence with respect to the stable model

semantics. In Section 4 we introduce Attack Trees drawn from a translated ABA

framework as a first justification method, show their relationship with abstract

dispute trees for ABA (Dung et al. 2006), and characterize the explanation they

provide as an admissible fragment of the answer set in question. Based on Attack

Trees, we define two forms of ABAS Justifications: Basic ABA-Based Answer Set

Justifications (Section 5) demonstrate the main idea of flattening Attack Trees,

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

62 C. Schulz and F. Toni

yielding a justification in terms of literals and their relations. Labelled ABA-

Based Answer Set Justifications (Section 6) are a more elaborate version of Basic

ABA-Based Answer Set Justifications, following the same flattening strategy, but

additionally using labels to solve some deficiencies of the basic variant. In Section 7

we compare ABAS Justifications to related work and in Section 8 we conclude.

2 Background and preliminaries

This section describes all necessary background about ASP and ABA to understand

the definitions of ABAS Justifications. In addition, we prove some core results about

concepts in ASP and in ABA which have not or have only partially been considered

in the literature before. We then use these to prove our main results in the remainder

of the paper.

2.1 Answer set programming

A logic program P is a (finite) set of clauses of the form l0 ← l1, . . . , lm, not lm+1, . . . ,

not lm+n with m, n � 0. All li are classical ground1 literals, i.e. atoms a or negated

atoms ¬a, and not lm+1, . . . , not lm+n are NAF literals. The classical literal l0 on the

left-hand side of the arrow is referred to as the clause’s head, all literals on the right

of the arrow form the body of the clause. If the body of a clause is empty, the head

is called a fact.

Notation 1

The letter k is used for a literal in general, i.e. a classical literal l or a NAF literal

not l. HBP denotes the Herbrand Base of P, that is the set of all ground atoms

of P. LitP =HBP ∪ {¬a | a ∈ HBP} is the set of all classical literals of P, and

NAFP = {not l | l ∈ LitP} consists of all NAF literals of P. We say that l is the

corresponding classical literal of a NAF literal not l.

In the following, we recall the concept of answer sets as introduced in Gelfond

and Lifschitz (1991). Let P be a logic program not containing NAF literals. The

answer set of P, denoted AS(P), is the smallest set S ⊆ LitP such that:

(1) for any clause l0 ← l1, . . . , lm in P: if l1, . . . , lm ∈ S then l0 ∈ S; and

(2) S = LitP if S contains complementary classical literals a and ¬a.

For a logic program P, possibly containing NAF literals, and any set S ⊆ LitP,

the reduct PS is obtained from P by deleting:

(1) all clauses with not l in their bodies where l ∈ S , and

(2) all NAF literals in the remaining clauses.

Then, S is an answer set of P if it is the answer set of the reduct PS , i.e. if

S = AS(PS). A logic program is inconsistent if it has no answer set or if its only

1 As conventional in the logic programming literature, clauses containing variables are shorthand for all
their ground instances.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 63

answer set is LitP; otherwise it is consistent. In the remainder of the paper, and if

not stated otherwise, we assume that logic programs are consistent.

Note that answer sets only contain classical literals. However, if l /∈ S for an

answer set S of P and some classical literal l ∈ LitP, then not l is considered

satisfied with respect to S . Thus, we introduce the following new definition.

Definition 1 (Answer set with NAF literals)

Let P be a logic program and let S ⊆ LitP be a set of classical literals. ΔS = {not l ∈
NAFP | l /∈ S} consists of all NAF literals not l whose corresponding classical literal

l is not contained in S . If S is an answer set of P, then SNAF = S ∪ ΔS is an answer

set with NAF literals of P.

Intuitively, SNAF consists of all literals in an answer set S plus all NAF literals

which are satisfied with respect to S . For the purpose of proving correspondence

between answer sets of a logic program and stable extensions of an argumentation

framework in Section 3, we introduce a new reformulation of answer sets in terms

of modus ponens and prove correspondence with the original definition:

Notation 2

�MP denotes derivability using modus ponens on ← as the only inference rule.

P ∪ ΔS , for P a logic program and ΔS ⊆ NAFP, denotes the logic program

P ∪ {not l ← | not l ∈ ΔS}. When used on such P ∪ ΔS , �MP treats NAF

literals purely syntactically as in Eshghi and Kowalski (1989) and treats facts l ←
as l ← true where P ∪ ΔS �MP true for any logic program P and any set of NAF

literals ΔS .

Lemma 1

Let P be a consistent logic program and let S ⊆ LitP be a set of classical literals.

• S is an answer set of P if and only if S = {l ∈ LitP | P ∪ ΔS �MP l}.
• SNAF = S ∪ ΔS is an answer set with NAF literals of P if and only if

SNAF = {k | P ∪ ΔS �MP k}.
Proof

We prove both items:

• If S is an answer set of P then S = AS(PS). This means that ∀l ∈ S there

exists a clause l ← l1, . . . , lm ∈ PS such that l1, . . . , lm ∈ S . It follows that there

exists a clause l ← l1, . . . , lm, not lm+1, . . . , not lm+n ∈ P such that l1, . . . , lm ∈ S

and lm+1, . . . , lm+n /∈ S . Then, by Definition 1, not lm+1, . . . , not lm+n ∈ ΔS . Thus,

P ∪ ΔS �MP l.

For the other direction, if P ∪ ΔS �MP l then (1) l ∈ ΔS or (2) there exists

a clause l ← l1, . . . , lm, not lm+1, . . . , not lm+n ∈ P such that ∀li(1 � i � m) :

P ∪ ΔS �MP li and ∀not lj(m + 1 � j � m + n) : P ∪ ΔS �MP not lj . In the

first case, l is a NAF literal which should not be part of S . This is satisfied

since l /∈ LitP and therefore l /∈ S = {l ∈ LitP | P ∪ ΔS �MP l}. In the second

case, since P contains no clause with a NAF literal in its head it follows that

not lj ∈ ΔS , i.e. ∀lj : lj /∈ S . Then, by definition of reduct, l ← l1, . . . , lm ∈ PS .

Since P ∪ ΔS �MP li, li ∈ S , thereby satisfying the condition of an answer set

for l to be in S .

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

64 C. Schulz and F. Toni

• If SNAF is an answer set with NAF literals then by Definition 1, SNAF = S ∪ ΔS .

Then, by the first item SNAF = {l ∈ LitP | P ∪ ΔS �MP l} ∪ ΔS . By Notation 2,

∀not li ∈ ΔS : ΔS �MP not li and therefore P ∪ ΔS �MP not li for any logic

program P. Thus, not restricting the conclusions of modus ponens to LitP
yields SNAF = {k | P ∪ ΔS �MP k}.
For the other direction, if P ∪ ΔS �MP k then by the proof of the first item

k ∈ ΔS or k ∈ S where S is an answer set. Thus, SNAF is equivalent to S ∪ ΔS ,

satisfying Definition 1. �

2.2 An intuitive example of ASP

Let Dr. Smith be an ophtalmologist (an eye doctor) and let one of his patients be

Peter, who is diagnosed by Dr. Smith as being shortsighted. Based on this diagnosis,

Dr. Smith has to decide on the most suitable treatment for Peter, taking into account

the additional information he has about his patient, namely that Peter is afraid to

touch his own eyes, that he is a student, and that he likes to do sports. Based

on this information and his specialist knowledge, Dr. Smith decides that the most

appropriate treatment for Peter’s shortsightedness is laser surgery. Dr. Smith now

checks whether this decision is in line with the recommendation of his decision

support system, which is implemented in ASP.

Example 1

The following logic program Pdoctor represents the decision support system used by

Dr. Smith. It encodes some general world knowledge as well as an ophtalmologist’s

specialist knowledge about the possible treatments of shortsightedness. Pdoctor also

captures the additional information that Dr. Smith has about his shortsighted patient

Peter.

tightOnMoney ← student, not richParents

caresAboutP racticality ← likesSports

correctiveLens← shortSighted, not laserSurgery

laserSurgery ← shortSighted, not tightOnMoney, not correctiveLens

glasses← correctiveLens, not caresAboutP racticality,

not contactLens

contactLens← correctiveLens, not afraidToTouchEyes,

not longSighted, not glasses

intraocularLens← correctiveLens, not glasses, not contactLens

shortSighted←
afraidToTouchEyes←

student←
likesSports←

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 65

Pdoctor has only one answer set Sdoctor = {shortSighted, afraidToTouchEyes,

student, likesSports, tightOnMoney, correctiveLens, caresAboutP racticality,

intraocularLens}.

To Dr. Smith’s surprise, the answer set computed by the decision support system

contains the literal intraocularLens but not laserSurgery, suggesting that Peter

should get intraocular lenses instead of having laser surgery. Dr. Smith now finds

himself in the difficult situation to determine whether to trust his own treatment

decision or whether to take up the system’s suggestion even without understanding

it. Providing Dr. Smith with an explanation of the system’s treatment suggestion or

with an explanation as to why his own intended decision might be wrong would

make it considerably easier for Dr. Smith to decide whether to trust himself or the

decision support system.

We will use this example of Dr. Smith and his patient Peter to demonstrate

our explanation approaches and to show how they can be applied to explain the

solutions of a decision support system which is based on ASP.

2.3 ABA frameworks

Much of the literature on argumentation in Artificial Intelligence focuses on two

kinds of argumentation frameworks. Abstract Argumentation (Dung 1995b) assumes

that a set of abstract entities (the arguments) are given along with an attack relation

between them. In contrast, structured argumentation frameworks such as (Garcı́a

and Simari 2004; Governatori et al. 2004; Prakken 2010) provide mechanisms for

the construction of arguments from given knowledge, mostly in the form of rules,

and for identifying the attack relation between arguments based on the structure

of arguments. We will here focus on the structured argumentation framework of

Bondarenko et al. (1997) and Dung et al. (2009) called ABA.

An ABA framework (Dung et al. 2009) is a tuple 〈L,R,A, ¯〉, where

• (L,R) is a deductive system with

L a formal language and

R a set of inference rules of the form α0 ← α1, . . . , αm such that m � 0 and all

αi are sentences in L;

• A ⊆ L is a non-empty set of assumptions;

• ¯ is a total mapping from A into L defining the contrary of each assumption,

where α denotes the contrary of α ∈ A.

Note that in this paper we use the same notation ← for inference rules in

ABA and for clauses in a logic program. This will facilitate the presentation of our

methods later. We also adopt the logic programming terminology of “head”, “body”,

“fact”, and �MP (see Notation 2) for ABA frameworks. The following definitions

are restricted to flat ABA frameworks, where assumptions do not occur as the head

of inference rules, as we only need this kind of framework for our purposes.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

66 C. Schulz and F. Toni

In this paper we use a notion of ABA argument which is slightly different from

the definitions in the ABA literature, in that an ABA argument as defined here

comprises not only the set of assumptions supporting this argument as in standard

ABA, but also the set of facts used in the construction of this argument.

Definition 2 (ABA Argument)

Let 〈L,R,A, ¯〉 be an ABA framework. An argument for (the conclusion) α ∈ L
supported by a set of assumption-premises AP ⊆ A and a set of fact-premises

FP ⊆ {β | β ← ∈ R} is a finite tree, where every node holds a sentence in L, such

that

• the root node holds α;

• for every node N

— if N is a leaf then N holds either an assumption or a fact;

— if N is not a leaf and N holds the sentence γ0, then there is an inference

rule γ0 ← γ1, . . . , γm (m > 0) and N has m children, holding γ1, . . . , γm
respectively;

• AP is the set of all assumptions held by leaves;

• FP is the set of all facts held by leaves.

We now define some further terminology for special kinds of arguments and for

naming arguments in general.

Notation 3

An argument for α supported by AP and FP is denoted (AP , FP) � α. We often use

a unique name to denote an argument, e.g. A : (AP , FP) � α is an argument with

name A. With an abuse of notation, the name of an argument sometimes stands

for the whole argument, for example A denotes the argument A : (AP , FP) � α.

An argument of the form ({α}, ∅) � α is called assumption-argument, and similarly

an argument of the form (∅, {α}) � α is called fact-argument. Given some argument

A : (AP , FP) � α with β ∈ AP and γ ∈ FP , we say that ({β}, ∅) � β is the

assumption-argument of the assumption-premise β of argument A and that (∅, {γ}) � γ

is the fact-argument of the fact-premise γ of A.

Definition 2 generates the notion of argument in Dung et al. (2009): If (AP , FP) �
α is an argument according to Definition 2, then AP � α is an argument in Dung

et al. (2009). Conversely, if AP � α is an argument in Dung et al. (2009), then there

exists some FP ⊆ {β | β ← ∈ R} such that (AP , FP) � α is an argument according

to Definition 2.

ABA arguments can be naturally formulated in terms of �MP , as follows:

Lemma 2

Let 〈L,R,A, ¯〉 be an ABA framework. (AP , FP) � α is an argument in 〈L,R,A, ¯〉
if and only if R ∪ AP �MP α and AP ⊆ A.

Proof

This follows directly from the definition of arguments. �

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 67

The attack relation between arguments defined here is a slight variation of the

notion in Dung et al. (2009), as it considers arguments with both assumption- and

fact-premises.

Definition 3 (Attacks)

An argument (AP1, FP1) � α1 attacks an argument (AP2, FP2) � α2 on the assumption-

premise α3 if and only if α3 ∈ AP2 and α3 = α1. Equivalently, we say that (AP2, FP2) �
α2 is attacked by (AP1, FP1) � α1 or that (AP1, FP1) � α1 is an attacker of (AP2, FP2) �
α2.

A set of arguments X attacks an argument B if and only if there is an argument

A ∈ X which attacks B. A set of arguments X1 attacks a set of arguments X2 if and

only if X1 attacks some argument B ∈ X2.

This definition of attack is purely based on the notion of contrary of assumptions,

i.e. fact-premises only occur as part of the argument but do not directly influence

the attack relation. Since arguments as introduced here and in Dung et al. (2009)

correspond, the attack relation in Definition 3 directly correspond to attacks in Dung

et al. (2009): If an argument (AP1, FP1) � α1 attacks an argument (AP2, FP2) � α2

according to Definition 3, then AP1 � α1 attacks AP2 � α2 as defined in Dung

et al. (2009). Conversely, if AP1 � α1 attacks AP2 � α2 as defined in Dung et al.

(2009), then there exist FP1, FP2 ⊆ {β | β ← ∈ R} such that (AP1, FP1) � α1 attacks

(AP2, FP2) � α2 according to Definition 3.

2.4 ABA semantics

The semantics of argumentation frameworks are given in terms of extensions, i.e.

sets of arguments deemed to be “winning”. For our purposes we focus on the

admissible and on the stable extension semantics introduced in Dung (1995b) for

Abstract Argumentation and in Bondarenko et al. (1997) for ABA. Let 〈L,R,A, ¯〉
be an ABA framework and let X be a set of arguments in 〈L,R,A, ¯〉.

• X defends an argument A if and only if X attacks all attackers of A.

• X is an admissible extension of 〈L,R,A, ¯〉 if and only if X does not attack

itself and X defends all arguments in X.

• X is a stable extension of 〈L,R,A, ¯〉 if and only if X does not attack itself

and X attacks each argument in 〈L,R,A, ¯〉 which does not belong to X, or,

equivalently, if and only if X = {A in 〈L,R,A, ¯〉 | X does not attack A}.

Admissible extensions can also be defined using trees of attacking arguments.

An abstract dispute tree (Dung et al. 2006) for an ABA argument A is a (possibly

infinite) tree such that:

(1) Every node in the tree is labelled by an argument and is assigned the status of

proponent or opponent node, but not both.

(2) The root is a proponent node labelled by A.

(3) For every proponent node N labelled by an argument B and for every argument

C attacking B, there exists a child of N which is an opponent node labelled

by C .

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

68 C. Schulz and F. Toni

(4) For every opponent node N labelled by an argument B, there exists exactly one

child of N which is a proponent node labelled by an argument which attacks B.

(5) There are no other nodes in the tree except those given by 1-4 above.

An abstract dispute tree is admissible (Dung et al. 2009) if and only if no argument

labels both a proponent and an opponent node. It has been shown that the set of all

arguments labelling proponent nodes in an admissible dispute tree is an admissible

extension (Dung et al. 2007). We will use this result to characterize our justification

approaches.

We now look at some properties of the stable extension semantics which will

be used throughout the paper. Lemma 3 characterizes a stable extension in terms

of the assumption-premises of arguments contained in this stable extension as all

arguments not attacked by this stable extension.

Lemma 3

Let 〈L,R,A, ¯〉 be an ABA framework and let X be a set of arguments in

〈L,R,A, ¯〉. X is a stable extension of 〈L,R,A, ¯〉 if and only if X = {(AP , FP) �
α | AP ⊆ ΛX} where ΛX = {β ∈ A | �(AP , FP) � β ∈ X}.

Proof

Similar to the proof of Theorem 3.10 in Bondarenko et al. (1997): By the definition

of stable extension, X is a stable extension if and only if X = {A in 〈L,R,A, ¯〉 |
X does not attack A}. Then, X = {(AP1, FP1) � α1 | �(AP2, FP2) � α2 ∈ Xattacking

(AP1, FP1) � α1} by Definitions 2 and 3, and X = {(AP1, FP1) � α1 | �(AP2,

FP2) � α2 ∈ X s.t. β ∈ AP1, β = α2} by Definition 3. This can be split into

X = {(AP1, FP1) � α1 | ∀β ∈ AP1 : β ∈ ΛX} where ΛX = {β ∈ A | �(AP2, FP2) �
α2 ∈ X s.t. α2 = β}. �

After defining a stable extension in terms of the properties of its arguments, we

now take a closer look at conditions for an argument to be or not to be contained

in a stable extension. The following lemma characterizes the arguments contained

in a stable extension: An argument is part of a stable extension if and only if the

assumption-arguments of all its assumption-premises and the fact-arguments of all

its fact-premises are in this stable extension.

Lemma 4

Let 〈L,R,A, ¯〉 be an ABA framework and let X be a stable extension of

〈L,R,A, ¯〉. (AP , FP) � α ∈ X if and only if ∀β ∈ AP it holds that ({β}, ∅) � β ∈ X

and ∀γ ∈ FP it holds that (∅, {γ}) � γ ∈ X.

Proof

Note that fact-arguments are always part of a stable extension as they cannot be

attacked, so we only focus on assumption-arguments.

• From left to right: If (AP , FP) � α ∈ X then by Lemma 3 ∀β ∈ AP ,

(AP1, FP1) � β /∈ X. Consequently, ({β}, ∅) � β is not attacked by X, so by

definition of stable extension ({β}, ∅) � β ∈ X.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 69

• From right to left: If ∀β ∈ AP it holds that ({β}, ∅) � β ∈ X then by definition

of stable extension no ({β}, ∅) � β is attacked by X, so for none of the β ∈ AP

there exists an (AP1, FP1) � β ∈ X. Thus, (AP , FP) � α is not attacked by X,

so (AP , FP) � α ∈ X.

�

The following lemma characterizes conditions for an argument not to be in a

given stable extension: An argument is not part of a stable extension if and only

if the assumption-argument of one of its assumption-premises is not in this stable

extension:

Lemma 5

Let 〈L,R,A, ¯〉 be an ABA framework and let X be a stable extension of

〈L,R,A, ¯〉. (AP , FP) � α /∈ X if and only if ∃β ∈ AP such that ({β}, ∅) � β /∈ X.

Proof

• From left to right: If (AP , FP) � α /∈ X then (AP , FP) � α is attacked by X on

some β ∈ AP . Consequently, ({β}, ∅) � β is attacked by X, so ({β}, ∅) � β /∈ X.

• From right to left: If ∃β ∈ AP such that ({β}, ∅) � β /∈ X then ({β}, ∅) � β

is attacked by X, meaning that there is some (AP1, FP1) � β ∈ X. Thus,

(AP , FP) � α is attacked by X on β, so (AP , FP) � α /∈ X.

�

3 Translating a logic program into an ABA framework

In order to use ABA for the justification of literals with respect to an answer set

of a consistent logic program, the logic program has to be expressed as an ABA

framework first.

3.1 The translation

We use the approach of Bondarenko et al. (1997) for translating a logic program

into an ABA framework, where the clauses of a logic program form the set of ABA

rules and NAF literals are used as assumptions in ABA.

Definition 4 (Translated ABA framework)

Let P be a logic program. ABAP = 〈LP,RP,AP, 〉̄ is the translated ABA framework

of P where:

• RP = P
• AP = NAFP
• for every not l ∈ AP: not l = l

• LP = LitP ∪ NAFP

Note that the clauses of a logic program can be directly used as rules in the translated

ABA framework as we utilize the same notation for both of them. Note also that

translated ABA frameworks are always flat since NAF literals do not occur in the

head of clauses of a logic program.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

70 C. Schulz and F. Toni

Example 2

The following logic program P1 will serve as a running example throughout the

paper, where LitP1
= {a,¬a, c,¬c, d,¬d, e,¬e}:

a← not ¬a
a← ¬a, not c, not e
¬a← not c, not d

c← not e

d← not ¬a
e←

The translated ABA framework of P1 is ABAP1
= 〈LP1

,RP1
,AP1

, ¯〉 with:

• RP1
= P1

• AP1
= NAFP1

= {not a, not ¬a, not c, not ¬c, not d, not ¬d, not e, not ¬e}
• not a = a; not ¬a = ¬a; not c = c; not ¬c = ¬c; not d = d; not ¬d = ¬d;
not e = e; not ¬e = ¬e
• LP1

= LitP1
∪ NAFP1

The following fourteen arguments can be constructed in ABAP1
, including eight

assumption-arguments (A1 - A8) and one fact-argument (A14):

A1 : ({not a}, ∅) � not a

A2 : ({not ¬a}, ∅) � not ¬a
A3 : ({not c}, ∅) � not c

A4 : ({not ¬c}, ∅) � not ¬c
A5 : ({not d}, ∅) � not d

A6 : ({not ¬d}, ∅) � not ¬d
A7 : ({not e}, ∅) � not e

A8 : ({not ¬e}, ∅) � not ¬e
A9 : ({not ¬a}, ∅) � a

A10 : ({not c, not d, not e}, ∅) � a

A11 : ({not c, not d}, ∅) � ¬a
A12 : ({not e}, ∅) � c

A13 : ({not ¬a}, ∅) � d

A14 : (∅, {e}) � e

The attacks between these arguments are given as a graph in Figure 1. An arrow

from a node N1 to a node N2 in the graph represents that the argument held by N1

attacks the argument held by N2.

3.2 Correspondence between answer sets and stable extensions

In this section, we describe the relationship between answer sets of a logic program

and stable extensions of the translated ABA framework. This connection will be

used for our justification approaches. Theorem 1 states that an answer set with

NAF literals consists of the conclusions of all arguments in the “corresponding”

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 71

Fig. 1. Attacks between arguments in the translated ABA framework of P1 (see Example 2)

represented by arrows between the arguments. The three arguments at the top (A4, A6, A8)

are neither attacked nor do they attack other arguments, so there are no arrows connecting

them with other arguments.

stable extension. Conversely, Theorem 2 expresses that a stable extension consists

of all arguments supported by NAF literals which are satisfied with respect to the

“corresponding” answer set. Note that part of this correspondence has been stated

without a formal proof in Bondarenko et al. (1997).

Theorem 1

Let P be a logic program and let ABAP = 〈LP,RP,AP, ¯ 〉. Let X be a set

of arguments in ABAP and let T = {k | ∃(AP , FP) � k ∈ X} be the set of all

conclusions of arguments in X.

X is a stable extension of ABAP if and only if T is an answer set with NAF literals

of P.

Proof

• X is a stable extension of ABAP
• iff X = {(AP1, FP1) � k is an argument in ABAP | AP1 ⊆ ΛX} with

ΛX = {not l ∈ AP | �(AP2, FP2) � l ∈ X} (by Lemma 3)

• iff X = {(AP1, FP1) � k | AP1 ⊆ ΛX,RP ∪ ΛX �MP k} with

ΛX = {not l ∈ AP | �(AP2, FP2) � l ∈ X} (by Lemma 2)

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

72 C. Schulz and F. Toni

• iff X = {(AP1, FP1) � k | AP1 ⊆ ΛX,P ∪ ΛX �MP k} with

ΛX = {not l ∈ NAFP | �(AP2, FP2) � l ∈ X} (by Definition 4)

• iff X = {(AP1, FP1) � k | AP1 ⊆ ΛX,P ∪ ΛX �MP k} with

ΛX = {not l ∈ NAFP | l /∈ T } and T = {k | ∃(AP , FP) � k ∈ X}
(by construction of T , see above)

• iff X = {(AP1, FP1) � k | AP1 ⊆ ΔT ,P ∪ ΔT �MP k} with

ΔT = {not l ∈ NAFP | l /∈ T } and T = {k | ∃(AP , FP) � k ∈ X} (by

Definition 1)

• iff ΔT = {not l ∈ NAFP | l /∈ T } and T = {k | P ∪ ΔT �MP k}
(substituting X in T)

• iff T is an answer set with NAF literals of P (by Lemma 1).

�

Theorem 2

Let P be a logic program and let ABAP = 〈LP,RP,AP, ¯〉. Let T ⊆ LitP be a set

of classical literals and let X = {(AP , FP) � k | AP ⊆ ΔT } be the set of arguments

in ABAP whose assumption-premises are in ΔT .

T is an answer set of P if and only if X is a stable extension of ABAP.

Proof

• T is an answer set of P
• iff T = {l1 ∈ LitP | P ∪ ΔT �MP l1} with

ΔT = {not l ∈ NAFP | l /∈ T } (by Lemma 1 and Definition 1)

• iff T = {k ∈ LP\AP | RP ∪ ΔT �MP k} with

ΔT = {not l ∈ AP | l /∈ T } (by Definition 4)

• iff T = {k ∈ LP\AP | ∃(AP , FP) � k, AP ⊆ ΔT } with

ΔT = {not l ∈ AP | l /∈ T } (by Lemma 2)

• iff T = {k ∈ LP\AP | ∃(AP , FP) � k, AP ⊆ ΔT } with

ΔT = {not l ∈ AP | P ∪ ΔT �MP l} (by Lemma 1)

• iff T = {k ∈ LP\AP | ∃(AP , FP) � k, AP ⊆ ΔT } with

ΔT = {not l ∈ AP | �(AP , FP) � l, AP ⊆ ΔT } (by Lemma 2)

• iff T = {k ∈ LP\AP | ∃(AP , FP) � k, AP ⊆ ΔT } with

ΔT = {not l ∈ AP | �(AP , FP) � l ∈ X} and X = {(AP , FP) � k | AP ⊆ ΔT }
(by construction of X, see above)

• iff T = {k ∈ LP\AP | ∃(AP , FP) � k, AP ⊆ ΛX} with

ΛX = {not l ∈ AP | �(AP , FP) � l ∈ X} and X = {(AP , FP) � k | AP ⊆ ΛX}
(by Lemma 3)

• iff ΛX = {not l ∈ AP | �(AP , FP) � l ∈ X} and X = {(AP , FP) � k | AP ⊆
ΛX}

• iff X is a stable extension of ABAP (by Lemma 3).

�

Example 3

The logic program P1 from Example 2 has two answer sets: S1 = {e, d, a} and

S2 = {e,¬a}. The respective sets of satisfied NAF literals are ΔS1
= {not ¬a, not c,

not ¬c, not ¬d, not ¬e} and ΔS2
= {not a, not c, not ¬c, not d, not ¬d, not¬e}.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 73

Considering the attacks between arguments in the translated ABA framework

ABAP1
(see Fig. 1), two stable extensions can be determined for ABAP1

: A4, A6,

A8, and A14 have to be part of all stable extensions as they are not attacked. Then,

A7, A10, and A12 cannot be in any stable extension as they are attacked by A14.

Consequently, A3 is part of all stable extensions since it is only attacked by A12,

which is definitely not contained in any stable extension. As A11 and A13 attack

each other and are not furthered attacked by other arguments, there are two stable

extensions, one containing A13 and the other one containing A11. The first stable

extension also comprises A2 and A9 as A13 attacks all their attackers, whereas the

second one additionally comprises A1 and A5 since A11 attacks all their attackers.

Thus, the two stable extensions of ABAP1
are E1 = {A2, A3, A4, A6, A8, A9, A13, A14}

and E2 = {A1, A3, A4, A5, A6, A8, A11, A14}. As expected, the conclusions of arguments

in the stable extensions, {not ¬a, not c, not ¬c, not ¬d, not ¬e, a, d, e} for E1 and

{not a, not c, not ¬c, not d, not ¬d, not ¬e,¬a, e} for E2, coincide with S1NAF and S2NAF ,

as stated in Theorem 1. Conversely, the two sets of arguments whose assumption-

premises are subsets of ΔS1
and ΔS2

, respectively, coincide with the two stable

extensions E1 and E2, respectively, as stated in Theorem 2.

The following notation introduces some terminology to refer to the stable

extension which corresponds to a given answer set.

Notation 4

Given an answer set S of P and a stable extension E of ABAP such that SNAF =

{k | ∃(AP , FP) � k ∈ E}, E is called the corresponding stable extension of S . Given a

literal k ∈ SNAF and the corresponding stable extension E of S , an argument A ∈ E
with conclusion k is called a corresponding argument of k.

It is easy to show that for every literal k in an answer set with NAF literals

there is at least one corresponding argument in the corresponding stable extension.

Conversely, if a literal k is not contained in an answer set with NAF literals, then

no argument with conclusion k is part of the corresponding stable extension.

Theorem 3

Let P be a logic program, S an answer set of P, and E the corresponding stable

extension of S in ABAP. Let k ∈ LitP ∪ NAFP.

(1) If k ∈ SNAF, then there exists an argument A ∈ E such that A : (AP , FP) � k

with AP ⊆ ΔS and FP ⊆ S .

(2) If k /∈ SNAF, then there exists no A : (AP , FP) � k in ABAP such that A ∈ E.

Proof

(1) By Theorem 1, SNAF = {k1 | ∃(AP , FP) � k1 ∈ E}, so if k ∈ SNAF then there exists

at least one argument A : (AP , FP) � k ∈ E. By Theorem 2, E = {(AP1, FP1) �
k1 | AP1 ⊆ ΔS}, so it follows that for argument A, AP ⊆ ΔS . Furthermore,

FP ⊆ S because FP ⊆ {β | β ← ∈ P} and for consistent logic programs it

trivially holds that {β | β ←∈ P} ⊆ S .

(2) Assume that there exists A : (AP , FP) � k in ABAP such that A ∈ E. Then

according to Theorem 1, k ∈ SNAF. Contradiction.

�

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

74 C. Schulz and F. Toni

Example 4

As demonstrated in Example 3, the answer sets of P1 correspond to the stable

extensions of ABAP1
, where S1 corresponds to E1 and S2 corresponds to E2. When

taking a closer look at S1NAF , we can verify that every literal has a corresponding

argument in E1: e has A14, d has A13, a has A9, not ¬a has A2, not c has A3, and

so on. Furthermore, for all literals not contained in S1NAF , there is no argument with

this conclusion in the stable extension E1, e.g. ¬a /∈ S1NAF and A11 /∈ E1. The same

relationship holds between S2 and E2.

Note that the first part of Theorem 3 only states that for a literal k in the answer

set with NAF literals there exists a corresponding argument in the corresponding

stable extension. However, there might be further arguments (AP , FP) � k which

are not part of the corresponding stable extension, where AP � ΔS . Note also

that the second part of Theorem 3 does not exclude the existence of arguments

with conclusion k. It merely states that no such argument is contained in the

corresponding stable extension.

Example 5

Consider the logic program P1 and its answer set S1. a ∈ S1 has the corresponding

argument A9 in E1, but there is another argument with conclusion a in ABAP1
which

is not in E1, namely A10. Furthermore, c /∈ S1 but there exists an argument with

conclusion c in ABAP1
, namely A12. As expected, this argument is not contained in

the corresponding stable extension E1.

Theorem 3, part 1, provides the starting point for our justification approaches as

it allows us to explain why a literal is in an answer set based on the reasons for

a corresponding argument to be in the corresponding stable extension. Similarly,

Theorem 3, part 2, is a starting point for justifying that a literal is not contained in

an answer set based on arguments for that literal, all of which are not contained in

the corresponding stable extension. In ABA, it is easy to explain why an argument is

or is not contained in a stable extension: An argument is part of a stable extension

if it is not attacked by it. Since the stable extension attacks all arguments which are

not part of it, this entails that an argument in the stable extension is defended by

the stable extension, i.e. the stable extension attacks all attackers of this argument.

Conversely, an argument is not part of a stable extension if it is attacked by this

stable extension. In the following section, we will make use of these results in order

to develop a justification method that provides explanations in terms of arguments

and attacks between them.

4 Attack trees

Our first justification approach explains why arguments are or are not contained in

a stable extension by constructing an Attack Tree of this argument with respect to

the stable extension. This tree of attacking arguments is later used to construct a

justification in terms of literals: Due to the correspondence between answer sets and

stable extensions, a justification of a literal k with respect to an answer set can be

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 75

obtained from an Attack Tree of an argument with conclusion k constructed with

respect to the corresponding stable extension. In this section we define the notion

of Attack Trees and show their relationship with abstract dispute trees for ABA,

characterizing the explanations they provide as admissible fragments of the stable

extension as well as of the answer set if an Attack Tree is constructed with respect

to a corresponding stable extension.

4.1 Constructing attack trees

Nodes in an Attack Tree hold arguments which are labelled either '+' or '−'. An

Attack Tree of an argument A has A itself in the root node, where either one or all

attackers of A form the child nodes of this root. In the same way, every of these child

nodes holding some argument B have either all or one of B’s attackers as children,

and so on. Whether only one or all attackers of an argument are considered as child

nodes depends on the argument’s label in the Attack Tree, which is determined with

respect to a given set of arguments (typically a stable extension of the translated

ABA framework). If an argument is part of given set, it is labelled '+' and has all

its attackers as child nodes. If the argument is not contained in the set, it is labelled

'−' and has exactly one of its attackers as a child node.

Definition 5 (Attack Tree)

Let P be a logic program, X a set of arguments in ABAP, and A an argument in

ABAP. An Attack Tree of A (constructed) with respect to X, denoted attT reeX(A),

is a (possibly infinite) tree such that:

(1) Every node in attT reeX(A) holds an argument in ABAP, labelled '+' or '−'.
(2) The root node is A+ if A ∈ X or A− if A /∈ X.

(3) For every node A+
N and for every argument Ai attacking AN in ABAP, there

exists a child node A−i of A+
N .

(4) Every node A−N

(i) has no child node if AN is not attacked in ABAP or if for all attackers Ai

of AN: Ai /∈ X; or else

(ii) has exactly one child node A+
i for some Ai ∈ X attacking AN .

(5) There are no other nodes in attT reeX(A) except those given in 1–4.

If attT reeX(A) is an Attack Tree of A with respect to X we also say that A

has the Attack Tree attT reeX(A). Note that due to condition 4(ii), where only one

of possibly many arguments Ai is chosen, an argument can have more than one

Attack Tree. Furthermore, note the difference between 3, where Ai is any argument

attacking AN , and 4(ii), where Ai has to be an attacking argument contained in X.

Notation 5

If A ∈ X, and thus the root node of attT reeX(A) is A+, we denote the Attack Tree

as attT ree+
X(A) and call it a positive Attack Tree. If A /∈ X, and thus the root node of

attT reeX(A) is A−, we denote the Attack Tree as attT ree−X(A) and call it a negative

Attack Tree.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

76 C. Schulz and F. Toni

A−
10 : ({not c, not d, not e}, ∅) � a

A+
14 : (∅, {e}) � e

A−
10 : ({not c, not d, not e}, ∅) � a

A+
13 : ({not ¬a}, ∅) � d

A−
11 : ({not c, not d}, ∅) � ¬a

A+
13 : ({not ¬a}, ∅) � d

...

Fig. 2. The two negative Attack Trees attT ree−E1
(A10)1 (left) and attT ree−E1

(A10)2 (right) of

A10 with respect to E1, as described in Example 6. The left Attack Tree is also the unique

negative Attack Tree attT ree−E2
(A10) of A10 with respect to E2.

The next example illustrates the notion of Attack Trees with respect to a set of

arguments which is a stable extension.

Example 6

We consider the logic program P1 and its translated ABA framework ABAP1

(see Example 2). Figure 2 shows the two negative Attack Trees of argument

A10 with respect to the stable extension E1 = {A2, A3, A4, A6, A8, A9, A13, A14}, i.e.

attT ree−E1
(A10)1 and attT ree−E1

(A10)2. Since A10 /∈ E1, the root node of all Attack

Trees of A10 holds A−10, and consequently has exactly one or not attacker of A10 as a

child node. A10 is attacked by the three arguments A12, A13, and A14 (see Fig. 1), so

these are the candidates for being a child node of A−10. However, A+
12 cannot serve

as a child node of A−10 as A12 /∈ E1 (see condition 4(ii) in Definition 5). Since both

A13 and A14 are contained in E1, either of them can be used as a child node of A−10,

leading to two possible Attack Trees of A10. The left of Figure 2 depicts the negative

Attack Tree attT ree−E1
(A10)1 where A+

14 is chosen as the child node of A−10, whereas

the right illustrates attT ree−E1
(A10)2 where A+

13 is chosen. attT ree−E1
(A10)1 ends with

A+
14 since A14 is not attacked in ABAP1

. In contrast, choosing A+
13 as the child node

of A−10 leads to an infinite negative Attack Tree attT ree−E1
(A10)2: A+

13 has a single

child A−11 since A11 is the only argument attacking A13; A11 is attacked by both A12

and A13 in P1, but only A+
13 can serve as a child node of A−11 as A12 /∈ E1; at this

point, the Attack Tree starts to repeat itself, since the only possible child node of

A−11 is A+
13, whose only child node is A−11, and so on.

With respect to the stable extension E2 = {A1, A3, A4, A5, A6, A8, A11, A14} (see Exam-

ple 3), A10 has a unique negative Attack Tree attT ree−E2
(A10), which is exactly the

same as attT ree−E1
(A10)1. The reason is that only A+

14 can serve as a child node of

A−10 since both A12 /∈ E2 and A13 /∈ E2.

Figure 2 illustrates that an argument might have more than one Attack Tree, as

well as that Attack Trees can be infinite. Figure 3 depicts another negative Attack

Tree, illustrating the case where a node labelled '+' has more than one child node.

Note that every argument in an ABA framework has at least one Attack Tree.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 77

A−
9 : ({not ¬a}, ∅) � a

A+
11 : ({not c, not d}, ∅) � ¬a

A−
12 : ({not e}, ∅) � c A−

13 : ({not ¬a}, ∅) � d

A+
14 : (∅, {e}) � e A+

11 : ({not c, not d}, ∅) � ¬a

A−
12 : ({not e}, ∅) � c A−

13 : ({not ¬a}, ∅) � d

A+
14 : (∅, {e}) � e

...

Fig. 3. The unique negative Attack Tree attT ree−E2
(A9) of A9 with respect to the stable

extension E2 in ABAP1
(see Examples 2 and 3).

However, an Attack Tree may solely consist of the root, for example the unique

positive Attack Tree attT ree+
E1

(A14) of A14 with respect to the stable extension E1

consists of only one node, namely the root node A+
14 as this argument has no

attackers.

From the definition of Attack Trees it follows that the Attack Trees of an argument

are either all positive or all negative.

Lemma 6

Let P be a logic program and let X be a set of arguments in ABAP.

(1) If A ∈ X then all Attack Trees of A with respect to X are positive Attack Trees

attT ree+
X(A).

(2) If A /∈ X then all Attack Trees of A with respect to X are negative Attack Trees

attT ree−X(A).

Proof

This follows directly from Definition 5 and Notation 5. �

Intuitively, an Attack Tree of an argument with respect to a set of arguments

explains why the argument is or is not in the set by showing either that the argument

is defended by the set, i.e. the set attacks all attackers of the argument, or that the

argument is attacked by the sets and cannot defend itself against it. The first case

explains why the argument is part of the set, whereas the second one justifies that

the argument is not part of the set.

4.2 Attack trees with respect to stable extensions

For justification purposes we construct Attack Trees with respect to stable extensions

rather than an arbitrary set of arguments. This enables us to later extract a

justification of a literal with respect to an answer set from an Attack Tree constructed

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

78 C. Schulz and F. Toni

with respect to the corresponding stable extension. In this section we show some

properties of Attack Trees when constructed with respect to a stable extension,

which hold for both positive and negative Attack Trees.

One of these characteristics is that we can deduce whether or not an argument

held by a node in an Attack Tree constructed with respect to a stable extension is

contained in this stable extension: all arguments labelled '+' in the Attack Tree are

contained in the stable extension, whereas all arguments labelled '−' are not in the

stable extension.

Lemma 7

Let P be a logic program and let E be a stable extension of ABAP. Let Υ =

attT reeE(A) be an Attack Tree of some argument A in ABAP with respect to E.

Then:

(1) For each node A+
i in Υ: Ai ∈ E.

(2) For each node A−i in Υ: Ai /∈ E.

Proof

(1) A+
i is either the root node, then by definition Ai ∈ E, or it is the only child node

of some A−N , meaning that by definition Ai ∈ E.

(2) A−i is either the root node, then by definition Ai /∈ E, or A−i is a child node of

some A+
N , and Ai attacks AN . From part 1 we know that AN ∈ E, hence Ai /∈ E

because E does not attack itself.

�

Another interesting characteristic of an Attack Tree constructed with respect to

a stable extension is that all nodes holding arguments labelled '−' have exactly one

child node, rather than none. Furthermore, all leaf nodes hold arguments labelled

'+'.

Lemma 8

Let P be a logic program and let E be a stable extension of ABAP. Let Υ =

attT reeE(A) be an Attack Tree of some argument A in ABAP with respect to E .

Then:

(1) Every node A−N in Υ has exactly one child node.

(2) All leaf nodes in Υ hold arguments labelled '+'.

Proof

(1) By condition 4 in Definition 5, any node A−N in an Attack Tree has either no

or exactly one child node. By Lemma 7 AN /∈ E. Assume that A−N has no child

node. Then AN is not attacked in ABAP. But by definition of stable extension

all arguments not contained in a stable extension are attacked by the stable

extension. Contradiction.

(2) This follows directly from part 1 as nodes holding an argument labelled '−'
always have a child node and thus cannot be a leaf node.

�

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 79

Note that infinite branches of Attack Trees do not have leaf nodes, in which case

the second part of Lemma 8 is trivially satisfied.

Lemma 8 highlights how an Attack Tree justifies an argument A with respect to

a stable extension. If the argument A is part of the stable extension, the Attack

Tree shows that the reason is that A is defended by the stable extension. This

means that any attackers of A are counter-attacked by an argument in the stable

extension, defending A against the attacker, and even if the defending argument is

further attacked, there will be another argument in the stable extension defending

this defender, until eventually the defending arguments from the stable extension are

not further attacked, forming the leaf nodes of the Attack Tree. Thus A is defended

by the stable extension and consequently belongs to it. If an argument A is not part

of the stable extension, the leaf nodes of the Attack Tree again hold arguments from

the stable extension, but this time these leaf nodes defend the argument attacking A,

meaning that this attacker is contained in the stable extension. Thus, A is attacked

by the stable extension and consequently A is not part of the stable extension.

Lemma 8 also emphasizes the idea that to justify an argument which is not in the

stable extension, it is enough to show that one of its attackers is contained in the

stable extension, even if there might be more than one such attacker. This follows

the general proof concept that something can be disproven by giving one counter-

example. So an Attack Tree disproves that the argument held by the root node is in

the stable extension by showing one way in which the argument is attacked by the

stable extension.

From these considerations is follows directly that the subtree of any negative

Attack Tree obtained by removing the root node is a positive Attack Tree of the

argument attacking the root node.

Lemma 9

Let P be a logic program and let E be a stable extension of ABAP. Let Υ =

attT ree−E (A) be an Attack Tree of some argument A /∈ E and let A+
i be the (only)

child node of the root node A− in attT ree−E (A). Let Υ′ be the subtree of Υ with

root node A+
i obtained from Υ by removing its root node A−. Then Υ′ is a positive

Attack Tree of Ai.

Proof

This follows directly from Definition 5 and Notation 5. �

This observation will be useful when comparing Attack Trees to abstract dispute

trees in the following section. Example 7 demonstrates how an Attack Tree can be

used to explain why a literal is or is not contained in an answer set in terms of an

argument for this literal.

Example 7

Consider Dr. Smith, his patient Peter, and the decision support system introduced

in Section 2.2. In order to explain to Dr. Smith why laserSurgery is not a suggested

treatment of the decision support system, an Attack Tree for an argument with

conclusion laserSurgery with respect to the corresponding stable extension of the

answer set Sdoctor can be constructed. Figure 4 displays such an Attack Tree, which

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

80 C. Schulz and F. Toni

A−
1 : ({shortSighted}, {not tightOnMoney, not correctiveLens}) � laserSurgery

A+
2 : ({student}, {not richParents}) � tightOnMoney

Fig. 4. A negative Attack Tree of the argument A1 with conclusion laserSurgery with respect

to the corresponding stable extension of the answer set Sdoctor of the logic program Pdoctor

(see Example 1), explaining why Peter should not have laser surgery as treatment of his

shortsightedness.

expresses that Peter should not have laser surgery as the decision to use laser surgery

is based on the assumption that the patient is not tight on money; however there is

evidence that Peter is tight on money as he is known to be a student and there is no

evidence against the assumption that his parents are not rich. Note that this is not

the only Attack Tree for A1 and therefore not the only possible explanation why

Peter should not have laser surgery: a second Attack Tree can be constructed using

an argument with conclusion correctiveLens as an attacker of A1.

On the other hand, Dr. Smith might want to know why the treatment recom-

mended by the decision support system is intraocularLens. The respective Attack

Tree is illustrated in Figure 5. It expresses that Peter should get intraocular lenses

because for every possible evidence against intraocular lenses (A1, A4, A6) there is

counter-evidence (A2, A5, and A7 respectively): for example, receiving intraocular

lenses is based on the assumption that it has not been decided that the patient should

have glasses. Even though there is some evidence that Peter could have glasses, this

evidence is based on the assumption that he does not care about the practicality of

his treatment. However, it is known that Peter cares about practicality since he likes

to do sports.

4.3 Relationship between attack trees and abstract dispute tress

In order to further characterize Attack Trees, we prove that Attack Trees constructed

with respect to stable extensions are special cases of abstract dispute trees (Dung

et al. 2006). Using this correspondence, we show that Attack Trees provide expla-

nations of an argument in terms of an admissible fragment of the stable extension.

This result is then extended, proving that given a literal k and an answer set, an

Attack Tree of an argument with conclusion k with respect to the corresponding

stable extension provides a justification in terms of an admissible fragment of the

answer set. We first define a translation of the nodes holding arguments labelled

'+' and '−' in Attack Trees into the status of proponent and opponent nodes in

abstract dispute trees.

Definition 6 (Translated abstract dispute tree)

LetP be a logic program, X a set of arguments in ABAP, and attT reeX(A) an Attack

Tree of some argument A in ABAP with respect to X. The translated abstract dispute

tree TX(A) is obtained from attT reeX(A) by assigning the status of proponent to all

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 81

A+
3 : ({shortSighted}, {not laserSurgery, not glasses, not contactLens})

� intraocularLens

A−
1 : (. . .) � laserSurgery

A+
2 : (. . .) � tightOnMoney

A−
6 : ({shortSighted}, {not laserSurgery,

not caresAboutPracticality, not contactLens})
� glasses

A+
7 : ({likesSports}, ∅) � caresAboutPracticality

A−
4 : ({shortSighted}, {not laserSurgery,

not afraidToTouchEyes, not longSighted, not glasses})
� contactLens

A+
5 : ({afraidToTouchEyes}, ∅) � afraidToTouchEyes

Fig. 5. A positive Attack Tree of the argument A3 with conclusion intraocularLens with

respect to the corresponding stable extension of the answer set Sdoctor of the logic program

Pdoctor (see Example 1), explaining why Peter should get intraocular lenses as treatment of

his shortsightedness. The nodes holding A−1 and A+
2 are abbreviated as they are the same as

in Figure 4.

nodes holding an argument labelled '+', the status of opponent to all nodes holding

an argument labelled '−', and dropping the labels '+' and '−' of all arguments in

the tree.

If Attack Trees are constructed with respect to a stable extension, they correspond

to abstract dispute trees in the following way:

Lemma 10

Let P be a logic program and E a stable extension of ABAP. Let attT reeE(A) be

an Attack Tree of some argument A in ABAP with respect to E and let TE(A) be

the translated abstract dispute tree. Then:

(1) If A ∈ E, then TE(A) is an abstract dispute tree for A.

(2) If A /∈ E, then the subtree of TE(A) with root node Ai, where A+
i is the only

child of the root A− in attT reeE(A), is an abstract dispute tree for Ai.

Proof

This follows directly from the definition of abstract dispute trees and

Lemma 8. �

Note that the converse of Lemma 10.1 does not hold, i.e. it is not the case

that every abstract dispute tree for an argument A corresponds to an Attack Tree

attT reeE(A). Example 8 illustrates Lemma 10 as well as that its converse does not

hold.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

82 C. Schulz and F. Toni

A−
4 : ({not a, not b}, ∅) � a

A+
5 : ({not a, not c}, ∅) � b

A−
4 : ({not a, not b}, ∅) � a A−

6 : ({not b}, ∅) � c

A+
5 : ({not a, not c}, ∅) � b

...

...

Fig. 6. The unique negative Attack Tree attT ree−E (A4) of A4 with respect to the stable

extension E of ABAP2
(see Example 8).

Example 8

Let P2 be the following logic program:

a← not a, not b

b← not a, not c

c← not b

Six arguments can be constructed in the translated ABA framework ABAP2
:

A1 : ({not a}, ∅) � not a A4 : ({not a, not b}, ∅) � a

A2 : ({not b}, ∅) � not b A5 : ({not a, not c}, ∅) � b

A3 : ({not c}, ∅) � not c A6 : ({not b}, ∅) � c

The only stable extension of ABAP2
is E = {A1, A3, A5}. Figure 6 illustrates the

unique negative Attack Tree attT ree−E (A4) of A4 with respect to E. Constructing the

translated abstract dispute tree of attT ree−E (A4) results in the tree shown in Figure 7.

As stated in Lemma 10.2 deleting the opponent root node of the translated abstract

dispute treeTE(A4) yields an abstract dispute tree for A5. Figure 8 gives an example

of an abstract dispute tree which does not correspond to an Attack Tree, showing

that the converse of Lemma 10 does not hold. The abstract dispute tree for A6

starts with a proponent node, which corresponds to the label '+' in an Attack Tree.

However,any Attack Tree of A6 is negative since A6 /∈ E, so the root node is always

A−6 . Thus, there is no Attack Tree which corresponds to the abstract dispute tree

for A6.

Using the correspondence with abstract dispute trees, we can further characterize

Attack Trees constructed with respect to a stable extension as representing admissible

fragments of this stable extension. Starting with positive Attack Trees, we show that

translated abstract dispute trees of positive Attack Trees with respect to a stable

extension are admissible.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 83

opponent: A4 : ({not a, not b}, ∅) � a

proponent: A5 : ({not a, not c}, ∅) � b

opponent: A4 : ({not a, not b}, ∅) � a opponent: A6 : ({not b}, ∅) � c

proponent: A5 : ({not a, not c}, ∅) � b proponent: A5 : ({not a, not c}, ∅) � b
...

...

Fig. 7. The translated abstract dispute tree TE(A4) of attT ree−E (A4) (see Example 8 and

Fig. 6). As the root of TE(A4) is an opponent node, it is not an abstract dispute tree.

However, the subtree with root node A5 is an abstract dispute tree for the argument A5, as

stated in Lemma 10.

proponent: A6 : ({not b}, ∅) � c

opponent: A5 : ({not a, not c}, ∅) � b

proponent: A6 : ({not b}, ∅) � c
...

Fig. 8. An abstract dispute tree for A6 in ABAP2
(see Example 8).

Lemma 11

Let P be a logic program, E a stable extension of ABAP, and A some argument in

E. For every positive Attack Tree attT ree+
E (A) of A with respect to E, TE(A) is an

admissible abstract dispute tree.

Proof

According to Lemma 7, for each A+
i in attT ree+

E (A), Ai ∈ E, and for each A−j in

attT ree+
E (A), Aj /∈ E. By definition of stable extension, for all arguments B in ABAP

either B ∈ E or B /∈ E. Thus, Ai �= Aj for all i, j, and therefore by Definition 6 no

argument labels both a proponent and an opponent node in TE(A), satisfying the

condition for admissibility. By Lemma 10, TE(A) is an abstract dispute tree. �

Since a positive Attack Tree constructed with respect to a stable extension

corresponds to an admissible abstract dispute tree, the set of all arguments labelled

'+' in the Attack Tree forms an admissible extension, in particular one that is a

subset of this stable extension.

Theorem 4

Let P be a logic program, E a stable extension of ABAP, and attT ree+
E (A) a positive

Attack Tree of some argument A in ABAP. Then the set Args of all arguments

labelled '+' in attT ree+
E (A) is an admissible extension of ABAP and Args ⊆ E.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

84 C. Schulz and F. Toni

Proof

Let Args denote the set of all arguments labelled '+' in attT ree+
E (A). Then Args is

the set of arguments held by proponent nodes in the translated abstract dispute tree

TE(A) of attT ree+
E (A). By Lemma 11, TE(A) is an admissible abstract dispute tree.

By Theorem 3.2(i) in Dung et al. (2007), Args is an admissible extension, and by

Lemma 7, Args ⊆ E. �

This result characterizes Attack Trees as a way of justifying an argument by

means of an admissible fragment of the stable extension. In other words, the Attack

Tree does not use whole stable extension to explain that an argument is in the

stable extension, but only provides an admissible subset sufficient to show that

it defends the argument in question. Furthermore, we can express this result in

logic programming terms: Given a literal and an answer set, an Attack Tree of

an argument for this literal constructed with respect to the corresponding stable

extension justifies the argument using an admissible fragment of the answer set.

Theorem 5

Let P be a logic program, S an answer set of P, k ∈ SNAF , and E the corresponding

stable extension of S in ABAP. Let A ∈ E be a corresponding argument of k,

attT ree+
E (A) an Attack Tree of A, and Asms = {α | α ∈ AP ,A+

1 : (AP , FP) �
k1 in attT ree+

E (A)}. Then

(1) P ∪ Asms is an admissible scenario of P in the sense of Dung and Ruamvi-

boonsuk (1991);

(2) {k1 | A+
1 : (AP , FP) � k1 in attT ree+

E (A)} ⊆ SNAF .

Proof

(1) By Theorems 4 and 2.2(ii) in Dung et al. (2007), Asms is an admissible set of

assumptions. Then by Theorem 4.5 in Bondarenko et al. (1997), P ∪ Asms is

an admissible scenario of P in the sense of Dung and Ruamviboonsuk (1991).2

(2) By Theorems 4 and 1.

�

This result enables us to construct a justification of a literal in an answer set from

an Attack Tree (in Section 5) using an admissible fragment of the answer set. The

following example illustrates the characteristics of positive Attack Trees and how

they can be used for justifying an argument for a literal in an answer set.

Example 9

Consider the logic program P1 and its answer set S1 = {e, d, a} with the correspond-

ing stable extension E1 = {A2, A3, A4, A6, A8, A9, A13, A14} (see Examples 2 and 3). To

justify that not c ∈ S1NAF , we can construct an Attack Tree of an argument for not c,

i.e. of A3, with respect to E1. The resulting positive Attack Tree attT ree+
E1

(A3) is

depicted on the left of Figure 9. Translating this Attack Tree into an abstract dispute

2 Theorem 4.5 refers to Dung (1995a) where admissible scenarios are defined for logic programs without
classical negation. This result can be easily extended to the definition of admissible scenarios of
logic programs with both classical negation and NAF as we are only concerned with consistent logic
programs.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 85

A+
3 : ({not c}, ∅) � not c

A−
12 : ({not e}, ∅) � c

A+
14 : (∅, {e}) � e

proponent: A3 : ({not c}, ∅) � not c

opponent: A12 : ({not e}, ∅) � c

proponent: A14 : (∅, {e}) � e

Fig. 9. The positive Attack Tree attT ree+
E1

(A3) of A3 with respect to the corresponding stable

extension E1 of S1 (left) and the translated abstract dispute tree TE1
(A3) of attT ree+

E1
(A3)

(right) (see Example 9).

tree as described in Definition 6, yields the translated abstract dispute tree TE1
(A3)

illustrated on the right of Figure 9. This abstract dispute tree is admissible as stated

in Lemma 11. The set arguments labelled '+' in attT ree+
E1

(A3) is {A3, A14} ⊆ E1

which is an admissible extension of ABAP1
and the set of conclusions of these

arguments is {not c, e} ⊆ S1NAF as stated by Theorems 4 and 5. The Attack Tree

attT ree+
E1

(A3) explains that the literal not c is in the answer set S1 because it is

supported and defended by an admissible subset of S1, namely by {not c, e}. In terms

of literal the Attack Tree expresses that not c is “attacked” by the literal c, which is

“counter-attacked” by e, thereby defending not c.

Similarly to positive Attack Trees, we can characterize the explanations given by

negative Attack Trees using the correspondence between the subtree of a negative

Attack Tree and an abstract dispute tree: Negative Attack Trees justify that an

argument is not in a stable extension because it is attacked by an admissible fragment

of this stable extension. We first prove that when deleting the opponent root node

of the translated abstract dispute tree of a negative Attack Tree constructed with

respect to a stable extension, the resulting abstract dispute tree is admissible.

Lemma 12

Let P be a logic program, E a stable extension of ABAP, and A some argument not

contained in E. For every negative Attack Tree attT ree−E (A) of A with respect to E,

the subtree of TE(A) with root node Ai, where A+
i is the only child of the root A−

in attT ree−E (A), is an admissible abstract dispute tree.

Proof

By Lemma 9, the subtree of Υ′ of attT ree−E (A) with root node Ai is a positive Attack

Tree of Ai. By Lemma 11, Υ′ is an admissible abstract dispute tree. Trivially, the

subtree of TE(A) with root node Ai coincides with the translated abstract dispute

tree of Υ′. �

Knowing that the argument held by the root of a negative Attack Tree constructed

with respect to a stable extension is attacked by an admissible abstract dispute tree,

we show that this Attack Tree justifies the root by showing that it is attacked by an

admissible extension of ABAP, and in particular by an admissible extension which

is a subset of the stable extension.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

86 C. Schulz and F. Toni

Theorem 6

Let P be a logic program, E a stable extension of ABAP, and attT ree−E (A) a

negative Attack Tree of some argument A in ABAP. Then the set Args of all

arguments labelled '+' in attT ree−E (A) is an admissible extension of ABAP and

Args ⊆ E.

Proof

Let Args denote the set of all arguments labelled '+' in attT ree−E (A). Then Args

is the set of arguments held by proponent nodes in the translated abstract dispute

tree TE(A) of attT ree−E (A). By Lemma 12, the subtree of TE(A) with root node

Ai, where A+
i is the only child of the root A− in attT ree−E (A), is an admissible

abstract dispute tree. By Theorem 3.2(i) in Dung et al. (2007), Args is an admissible

extension. By Lemma 7, Args ⊆ E. �

It follows, that a negative Attack Tree justifies an argument for a literal which is

not in the answer set in question in terms of an admissible fragment of the answer

set “attacking” the literal.

Theorem 7

Let P be a logic program, S an answer set of P, k /∈ SNAF , and E the corresponding

stable extension of S in ABAP. Let A be some argument for k, attT ree−E (A) an

Attack Tree of A, and Asms = {α | α ∈ AP ,A+
1 : (AP , FP) � k1 in attT ree−E (A)}.

Then

(1) P ∪ Asms is an admissible scenario of P in the sense of Dung and Ruamvi-

boonsuk (1991);

(2) {k1 | A+
1 : (AP , FP) � k1 in attT ree−E (A)} ⊆ SNAF .

Proof

(1) By Theorems 6 and 2.2(ii) in Dung et al. (2007), Asms is an admissible set of

assumptions. Then by Theorem 4.5 in Bondarenko et al. (1997), P ∪ Asms is

an admissible scenario of P in the sense of Dung and Ruamviboonsuk (1991).2

(2) By Theorems 6 and 1.

�

This result provides the basis for the construction of a justification of a literal

not contained in an answer set from an Attack Tree which provides a meaningful

explanation in terms of an admissible subset of the answer set.

Example 10

Consider the logic program P2 and its only answer set S = {b} with the correspond-

ing stable extension E = {A1, A3, A5} (see Example 8). To justify why a /∈ S we can

construct an Attack Tree of an argument with conclusion a, i.e. of A4, with respect to

E. The resulting negative Attack Tree attT ree−E (A4) is depicted in Figure 6 and the

translated abstract dispute treeTE(A4) in Figure 7. When deleting the root opponent

node A4 of TE(A4), the resulting abstract dispute tree is admissible as observed in

Lemma 12. Furthermore, the set of arguments labelled '+' in attT ree−E (A4) is {A5},
which is a subset of the corresponding stable extension E and an admissible extension

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 87

of ABAP2
(by Theorem 6). Moreover, the set of conclusions of arguments in this

admissible extension is {b} ⊆ S , which is an admissible scenario of P as stated

in Theorem 7. Therefore, the negative Attack Tree attT ree−E (A4) explains that the

argument A4 is not in the corresponding stable extension because it is attacked by

an admissible fragment of this stable extension, namely by {A5}. Even though A4

together with A6 counter-attacks this attack, A5 defends itself against this counter-

attack. This explanation can also be interpreted in terms of literals: a is not in the

answer set S because its derivation is “attacked” by a derivation of b, which is an

admissible fragment of S . Even though the derivation of a and the derivation of c

both “counter-attack” the derivation of b, attempting to defend a, the derivation

of b can attack both counter-attacks and thus the derivation of b defends itself.

Consequently, the attack of the derivation of b on the derivation of a “succeeds”,

which is the reason that a is not part of the answer set.

In conclusion, Attack Trees provide a justification of an argument with respect

to a stable extension in terms of an admissible subset of this stable extension. Due

to the correspondence between answer sets and stable extensions, Attack Trees can

also be used to justify a literal with respect to an answer set by constructing an

Attack Tree of an argument for this literal with respect to the corresponding stable

extension. The resulting Attack Tree justifies the argument for the literal in question

using an admissible fragment of the answer set. If the literal in question is contained

in the given answer set, the admissible fragment supports and defends a derivation

of this literal. If the literal in question is not contained in the given answer set, the

admissible fragment of the answer set “attacks” a derivation of this literal, in fact

by Theorem 3 the admissible fragment attacks all derivations of this literal.

The only shortcoming of justifying literals with respect to an answer set in terms of

Attack Trees is that they use argumentation-theoretic concepts for the explanation.

Thus, we now define a second type of justification which provides explanations in

terms of literals and relations between them, rather than in terms of arguments

as used in Attack Trees. The new type of justification is constructed from Attack

Trees by flattening the structure of arguments occurring in an Attack Tree as well

as of the attack relation between these arguments. In addition to better fitting

logic programming concepts, another advantage of the new justifications is that

they are finite even if constructed from infinite Attack Trees. We first introduce

a basic version of this new justification to illustrate the idea of flattening Attack

Trees. Then, we define a more elaborate version using the same flattening approach

but simultaneously labelling literals and their relations, yielding a more informative

explanation.

5 Basic ABA-based answer set justifications

In this section we define the basic concepts for constructing justifications of a literal

k in terms of literals and their relations, based on Attack Trees of arguments with

conclusion k. The idea is to extract the assumptions- and fact-premises of each

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

88 C. Schulz and F. Toni

argument in the Attack Tree to express a support-relation between each of the

premise-literals and the literal forming the conclusion of an argument. Furthermore,

the attacks between arguments in an Attack Tree are translated into attack-relations

between the literals forming the conclusions of these arguments. We first introduce

some terminology to refer to the structure of an Attack Tree.

Notation 6

Let Υ be an Attack Tree and let N be a node in Υ. arg(N) denotes the argument

held by node N. If arg(N) is A : (AP , FP) � k, then name(N) = A, conc(N) = k,

AP (N) = AP , FP (N) = FP , and label(N) is either '+' or '−', depending on the

label of A in Υ. The set of all child nodes of N in Υ is denoted children(N).

5.1 Basic justifications

We now define how to express the structure of an Attack Tree as a set of relations

between literals.

Definition 7 (Basic justification)

Let P be a logic program and let X be a set of arguments in ABAP. Let A be an

argument in ABAP and Υ = attT reeX(A) an Attack Tree of A with respect to X.

The Basic Justification of A with respect to Υ, denoted justBΥ(A), is obtained as

follows:

justBΥ(A) =
⋃

N in Υ

{supp rel(k, conc(N)) | k ∈ AP (N) ∪ FP (N)\{conc(N)}} ∪
{att rel(conc(M), k) |M ∈ children(N), conc(M) = k}

Example 11

Consider the logic program P1 from Example 2 and the Attack Trees discussed

in Example 6. Since Υ1 = attT ree+
E1

(A14) comprises only the node A+
14, the Basic

Justification of A14 with respect to Υ1 is justBΥ1
(A14) = ∅.

Now consider the negative Attack Tree Υ2 = attT ree−E2
(A10) of A10 with respect

to E2 depicted on the left of Figure 2. The Basic Justification of A10 with respect to

Υ2 is:

justBΥ2
(A10) = {supp rel(not c, a), supp rel(not d, a), supp rel(not e, a)} ∪

{att rel(e, not e)}
= {supp rel(not c, a), supp rel(not d, a), supp rel(not e, a),

att rel(e, not e)}

The following Basic Justification is obtained from the negative Attack Tree

Υ3 = attT ree−E2
(A9) of A9 with respect to the stable extension E2 (see Fig. 3):

justBΥ3
(A9) = {supp rel(not ¬a, a), att rel(¬a, not ¬a), supp rel(not c,¬a),

supp rel(not d,¬a), att rel(c, not c), att rel(d, not d),
supp rel(not e, c), att rel(e, not e), supp rel(not ¬a, d)}

Note that even though Υ3 is an infinite Attack Tree, the Basic Justification of A9

with respect to Υ3 is finite. In particular, when A11 reoccurs in the Attack Tree as an

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 89

attacker of A13, no new att rel or supp rel pairs are added to the Basic Justification:

even though A11 attacks A9 with conclusion a at its first occurrence and A13 with

conclusion d at its second occurrence, no new att rel pair is added since the attacked

assumption is in both cases not ¬a.

In Basic Justifications attacks between arguments are translated into “attacks”

between literals, and supports of arguments into “supports” of literals. In other

words, a Basic Justification is the flattened version of an Attack Tree. Even though

it provides an explanation in terms of literals rather than arguments, it is not

sufficient to justify a literal with respect to an answer set for two reasons, as

explained below.

Firstly, a Basic Justification does not contain the literal being justified, which is

for example a problem when justifying a fact. When justifying a fact k, we construct

an Attack Tree of the fact-argument for k, which consists of only the root node

A+ : (∅, {k}) � k, leading to an empty Basic Justification. An empty set is not

meaningful, so it would be useful if the literal in question was contained in the

justification. Furthermore, a problem arises when trying to justify a literal for which

no argument exists in the translated ABA framework, i.e. a literal which cannot be

derived in any way from the logic program. For such a literal, which is trivially not

part of any answer set, it is not possible to construct an Attack Tree as no argument

for this literal exists in the translated ABA framework. Since a Basic Justification is

constructed from an Attack Tree, there is no Basic Justification for such a literal.

This is unsatisfying, so we would like to have some kind of justification, rather than

failing.

The second problem or shortcoming of a Basic Justification is that it only provides

one reason why a literal is not in an answer set as it is constructed from a single

negative Attack Tree, which provides one explanation how the root argument is

attacked by the set of arguments in question. However, it is more meaningful to

capture all different explanations of how a literal “failed” to be in the answer set in

question. Thus, we want the justification of a literal not in the answer set to consist

of all possible Basic Justifications of this literal.

In order to overcome these two deficiencies, we introduce Basic ABA-Based

Answer Set (BABAS) Justifications, which add the literal being justified to the Basic

Justification set and provide a collection of all Basic Justifications for a literal which

is not contained in an answer set.

5.2 BABAS justifications

We now define the BABAS Justification of a literal with respect to an answer

set, which is based on the Basic Justifications of an argument with respect to an

Attack Tree. If a literal k is contained in an answer set, its BABAS Justification

is constructed from one Basic Justification of one of the corresponding arguments

of k. This is inspired by the result in Theorem 3 that a literal k is part of an

answer set if and only if there exists some argument with conclusion k in the

corresponding stable extension. Conversely, if k is not contained in an answer set,

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

90 C. Schulz and F. Toni

its BABAS Justification is constructed from all Basic Justifications of all arguments

with conclusion k, expressing all reasons why k is not part of this answer set. Again,

the choice to consider all arguments with conclusion k is based on Theorem 3,

stating that a literal k is not part of an answer set if and only if all arguments with

conclusion k are not contained in the corresponding stable extension.

Definition 8 (Basic ABA-based answer set justification)

Let P be a logic program and S an answer set of P. Let E be the corresponding

stable extension of S in ABAP.

(1) Let k ∈ SNAF, A ∈ E a corresponding argument of k, and Υ = attT ree+
E (A) some

positive Attack Tree of A with respect to E. A Positive BABAS Justification of

k with respect to S is:

justB+
S (k) = {k} ∪ justBΥ(A).

(2) Let k /∈ SNAF, A1, . . . , An (n � 0) all arguments with conclusion k in ABAP,

and Υ11, . . . ,Υ1m1
, . . . ,Υn1, . . . ,Υnmn

(m1, . . . , mn � 0) all negative Attack Trees of

A1, . . . , An with respect to E.

(a) If n = 0, then the Negative BABAS Justification of k with respect to S is:

justB−S (k) = ∅
(b) If n > 0, then the Negative BABAS Justification of k with respect to S is:

justB−S (k) = {{k} ∪ justBΥ11
(A1), . . . , {k} ∪ justBΥ1m1

(A1), . . . ,

{k} ∪ justBΥnmn
(An)}.

Note that there can be more than one Positive BABAS Justification of a literal

contained in an answer set, but only one Negative BABAS Justification of a literal

not contained in an answer set. Note also that the Positive BABAS Justification is

a set of supp rel and att rel pairs (plus the literal which is justified), whereas the

Negative BABAS Justification is a set of sets containing these pairs (where each set

also contains the literal which is justified).

A BABAS Justification can be represented as a graph, where all literals occurring

in a supp rel or att rel pair form nodes, and the supp rel and att rel relations are

edges between these nodes. For Negative BABAS Justifications, a separate graph

for each set in the justification is given. In contrast, Positive BABAS Justifications

are illustrated as a single graph.

Example 12

Based on the Basic Justifications in Example 11, we illustrate the construction of

BABAS Justifications. Consider e ∈ S1, where the corresponding stable extension

of S1 is E1 (see Example 3). There is only one corresponding argument of e in E1,

namely A14 : (∅, {e}) � e, which has a unique positive Attack Tree with respect to E1,

Υ1 = attT ree+
E1

(A14). As shown in Example 11, the Basic Justification of A14 with

respect to Υ1 is justBΥ1
(A14) = ∅. Therefore, the unique Positive BABAS Justification

of e with respect to S1 is justB+
S1

(e) = {e}. This justification expresses that e is in the

answer set S1 because it is supported only by itself, in other words, it is a fact.

We now consider the BABAS Justification of a /∈ S2, where the corresponding

stable extension of S2 in ABAP1
is E2. Since a /∈ S2, we examine all arguments

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 91

a

not ¬a

¬a

not c not d

c d

not e

e

a

not c not d not e

e

Fig. 10. Graphical representation of the Negative BABAS Justification justB−S2
(a) in

Example 12, where the left graph represents the first set and the right graph the second

set in justB−S2
(a). Dotted lines stand for supp rel pairs in the BABAS Justification, whereas

solid lines represent att rel pairs.

with conclusion a in ABAP1
, that is A9 and A10. Both A9 and A10 have a unique

negative Attack Tree with respect to E2, Υ3 = attT ree−E2
(A9) (see Fig. 3) and

Υ2 = attT ree−E2
(A10) (see left of Fig. 2). From the Basic Justifications justBΥ3

(A9)

and justBΥ2
(A10) explained in Example 11, the BABAS Justification of a with respect

to S2 is obtained as follows:

justB−S2
(a) = {{a, supp rel(not ¬a, a), att rel(¬a, not ¬a), supp rel(not c,¬a),

supp rel(not d,¬a), att rel(c, not c), att rel(d, not d),
supp rel(not e, c), att rel(e, not e), supp rel(not ¬a, d)},
{a, supp rel(not c, a), supp rel(not d, a), supp rel(not e, a),

att rel(e, not e)}}

Figure 10 depicts the graphical representation of the Negative BABAS Justification

justB−S2
(a), where the left of the figure represents the first set in justB−S2

(a), and the

right of the figure the second set.

So far, we only illustrated BABAS Justifications of literals k for which at least

one argument with conclusion k exists in the translated ABA framework. The next

example demonstrates the BABAS Justification of a literal which does not have such

an argument. In general, the BABAS Justification of such literals is the empty set.

Example 13

Consider the literal ¬c /∈ S1 in the logic program P1 (see Examples 2 and 3). There is

no rule with head ¬c inP1, and consequently ABAP1
does not comprise an argument

with conclusion ¬c. Thus, there is no Attack Tree of an argument for ¬c and no

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

92 C. Schulz and F. Toni

Basic Justification of an argument for ¬c. As a consequent the Negative BABAS

Justification of ¬c with respect to S1 is justB−S1
(¬c) = ∅ (by Definition 8.2(b)).

5.3 Shortcomings of BABAS justifications

A BABAS Justification is a flat structure which loses some information as compared

to the underlying Attack Trees. Attack Trees label arguments with respect to a stable

extension, expressing whether or not an argument is part of the stable extension.

However, a BABAS Justification does not provide any information about whether

or not a literal is contained in the answer set in question. Whether or not a literal

is part of an answer set is important to know, since attacks and supports by literals

contained in the answer set “succeed”, whereas attacks and supports by literals not

in the answer set do not “succeed”. This additional information is not captured

by BABAS Justifications, even though it is provided by the underlying Attack

Trees.

Example 14

Consider the Negative BABAS Justification justB−S2
(a) from Example 12, depicted

as a graph in Figure 10. justB−S2
(a) does not express whether or not the “attacking”

literal ¬a is part of S2, neither in set notation nor in the graphical representation.

In contrast, the underlying Attack Tree attT ree−E2
(A9) in Figure 3 specifies that the

argument A11 for ¬a is in the corresponding stable extension E2 by labelling A11 as

'+'. It would be useful to capture this kind of information not only in the Attack

Tree but also in the justification in terms of literals, so justB−S2
(a) should express

that a is not in S2 because the support by not e does not “succeed” as not e /∈ S2NAF

because the attack by e on not e “succeeds” as e ∈ S2.

The next example illustrates another shortcoming of BABAS Justifications, which

arises if the underlying Attack Tree contains different arguments which have the

same conclusion and occur as child nodes of the same parent node.

Example 15

Consider the two logic programs P3 (left) and P4 (right):

p← not a

p← not b

q ← not p

a←
b←

p← not a, not b

q ← not p

a←
b←

Both logic programs have only one answer set, SP3
= SP4

= {a, b, q}. The translated

ABA frameworks ABAP3
(left) and ABAP4

(right) have the following arguments:

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 93

A1 : ({not a}, ∅) � not a

A2 : ({not ¬a}, ∅) � not ¬a
A3 : ({not b}, ∅) � not b

A4 : ({not ¬b}, ∅) � not ¬b
A5 : ({not p}, ∅) � not p

A6 : ({not ¬p}, ∅) � not ¬p
A7 : ({not q}, ∅) � not q

A8 : ({not ¬q}, ∅) � not ¬q
A9 : ({not p}, ∅) � q

A10 : (∅, {a}) � a

A11 : (∅, {b}) � b

A12 : ({not a}, ∅) � p

A13 : ({not b}, ∅) � p

A1 : ({not a}, ∅) � not a

A2 : ({not ¬a}, ∅) � not ¬a
A3 : ({not b}, ∅) � not b

A4 : ({not ¬b}, ∅) � not ¬b
A5 : ({not p}, ∅) � not p

A6 : ({not ¬p}, ∅) � not ¬p
A7 : ({not q}, ∅) � not q

A8 : ({not ¬q}, ∅) � not ¬q
A9 : ({not p}, ∅) � q

A10 : (∅, {a}) � a

A11 : (∅, {b}) � b

A14 : ({not a, not b}, ∅) � p

ABAP3
and ABAP4

share arguments A1 to A11. In addition, ABAP3
has arguments

A12 and A13, whereas ABAP4
has only one additional argument A14. Both ABA

frameworks have a unique stable extension, EP3
= EP4

= {A2, A4, A5, A6, A8, A9,

A10, A11}. EP3
is the corresponding stable extension of SP3

and EP4
the corresponding

stable extension of SP4
. We now examine the BABAS Justifications of q with respect

to SP3
and SP4

by constructing Attack Trees of the corresponding arguments of

q with respect to EP3
and EP4

, respectively. In both ABAP3
and ABAP4

, the only

corresponding argument of q is A9 which has a unique positive Attack Tree with

respect to EP3
(attT ree+

EP3
(A9)), depicted in Figure 11, and two positive Attack Trees

with respect to EP4
(attT ree+

EP4
(A9)1 and attT ree+

EP4
(A9)2), depicted in Figure 12.

The unique Positive BABAS Justification of q with respect to SP3
constructed from

attT ree+
EP3

(A9) and the two possible Positive BABAS Justifications of q with respect

to SP4
constructed from attT ree+

EP4
(A9)1 and attT ree+

EP4
(A9)2, respectively, are:

justB+
SP3

(q) = {q, supp rel(not p, q), att rel(p, not p), supp rel(not a, p),

att rel(a, not a), supp rel(not b, p), att rel(b, not b)}

justB+
SP4

(q) = {q, supp rel(not p, q), att rel(p, not p), supp rel(not a, p),

supp rel(not b, p), att rel(a, not a)}

justB+
SP4

(q) = {q, supp rel(not p, q), att rel(p, not p), supp rel(not a, p),

supp rel(not b, p), att rel(b, not b)}

The graphical representations of these BABAS Justifications are depicted in Fig-

ure 13. All of them give the impression that p is supported by not a and not b

together, which is only correct in the case of P4. In P3, there are two different ways

of concluding p, one supported by the NAF literal not a, and the other one by not b,

which is not clear from justB+
SP3

(q).

Example 15 suggests that if a node in an Attack Tree has various children holding

arguments with the same conclusion, these child nodes should be distinguished in

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

94 C. Schulz and F. Toni

A+
9 : ({not p}, ∅) � q

A−
12 : ({not a}, ∅) � p A−

13 : ({not b}, ∅) � p

A+
10 : (∅, {a}) � a A+

11 : (∅, {b}) � b

Fig. 11. The unique positive Attack Tree attT ree+
EP3

(A9) of A9 with respect to EP3
(see

Example 15).

A+
9 : ({not p}, ∅) � q

A−
14 : ({not a, not b}, ∅) � p

A+
10 : (∅, {a}) � a

A+
9 : ({not p}, ∅) � q

A−
14 : ({not a, not b}, ∅) � p

A+
11 : (∅, {b}) � b

Fig. 12. The two positive Attack Trees attT ree+
EP4

(A9)1 (left) and attT ree+
EP4

(A9)2 (right) of

A9 with respect to EP4
(see Example 15).

a justification. We address this problem in the next section by defining a more

elaborate version of ABAS Justifications.

6 Labelled ABA-based answer set justifications

We now introduce Labelled ABA-Based Answer Set (LABAS) Justifications, which

address the shortcomings of BABAS Justifications by labelling the relations and

literals in the justification as either '+' or '−', depending on the labels of arguments

in the underlying Attack Trees. In addition, literals can have an asm or fact tag,

indicating that they are used as assumptions or facts, respectively. Non-assumption

and non-fact literals are tagged with their argument’s name in order to distinguish

q

not p

p

not a not b

a b

q

not p

p

not a not b

a

q

not p

p

not a not b

b

Fig. 13. The unique Positive BABAS Justification justB+
SP3

(q) (left) and the two possible

Positive BABAS Justifications justB+
SP4

(q) (middle and right) from Example 15.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 95

between different arguments with the same conclusion occurring in an Attack Tree.

We refer to the structure of nodes in an Attack Tree as introduced in Notation 6.

Similarly to BABAS Justifications, LABAS Justifications are defined in terms of

Labelled Justifications, which are a flattened version of Attack Trees. In contrast to

Basic Justifications, Labelled Justifications label the literals and relations extracted

from an Attack Tree, and extract only relevant support relations.

6.1 Labelled justifications

A Labelled Justification assigns the label '+' to all facts and NAF literals occurring

as premises of an argument labelled '+' in the Attack Tree, as well as to this

argument’s conclusion. A Labelled Justification assigns the label '−' to the conclusion

of an argument labelled '−' in the Attack Tree as well as to some NAF literals

supporting this argument, namely to those NAF literals whose contrary is the

conclusion of a child node of this argument in the Attack Tree. Attack and support

relations are labelled '+' if the first literal in the relation is labelled '+', and labelled

'−' if the first literal in the relation is labelled '−'. Since the labels in a Labelled

Justification depend on the labels of arguments in an Attack Tree, the definition is

split into two cases: One for nodes holding arguments labelled '+' in the Attack

Tree, and the other for nodes holding arguments labelled '−' in the Attack Tree.

Definition 9 (Labelled justification)

Let P be a logic program and let X be a set of arguments in ABAP. Let A be an

argument in ABAP and Υ = attT reeX(A) an Attack Tree of A with respect to X.

The Labelled Justification of A with respect to Υ, denoted justLΥ(A), is obtained as

follows:

justLΥ(A) =
⋃

N in Υ, label(N)=+

{supp rel+(k+
asm, conc(N)+AN

) | k ∈ AP (N)\conc(N), name(N) = AN} ∪
{supp rel+(k+

fact, conc(N)+AN
) | k ∈ FP (N)\conc(N), name(N) = AN} ∪

{att rel−(conc(M)−AM
, k+

asm) |M ∈ children(N), conc(M) = k,

name(M) = AM} ∪
⋃

N in Υ, label(N)=−

{supp rel−(k−asm, conc(N)−AN
) | k ∈ AP (N)\conc(N), children(N) = {M},

conc(M) = k, name(N) = AN} ∪
{att rel+(conc(M)+fact, k

−
asm) | children(N) = {M}, conc(M) = k,

FP (M) = {conc(M)}, AP (M) = ∅} ∪
{att rel+(conc(M)+AM

, k−asm) | children(N) = {M}, conc(M) = k, AP (M) �= ∅
or FP (M) �= {conc(M)}, name(M) = AM}

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

96 C. Schulz and F. Toni

To illustrate Labelled Justifications and the differences with Basic Justification, we

construct the Labelled Justifications for some of the arguments we used for Basic

Justifications in Example 11.

Example 16

The Labelled Justification of A14 : (∅, {e}) � e with respect to the positive Attack

Tree Υ1 = attT ree+
E1

(A14) is the empty set, exactly as for the Basic Justification:

justLΥ1
(A14) = justBΥ1

(A14) = ∅. The reason is that A14 is labelled '+' in Υ1, but

none of the three conditions for nodes with label '+' in Definition 9 is satisfied.

Now consider the Labelled Justification of A10 with respect to the negative Attack

Tree Υ2 = attT ree−E2
(A10):

justLΥ2
(A10) = {supp rel−(not e−asm, a

−
A10

)} ∪ {att rel+(e+
fact, not e

−
asm)}

= {supp rel−(not e−asm, a
−
A10

), att rel+(e+
fact, not e

−
asm)}

This Labelled Justification contains fewer literal-pairs than the Basic Justification

of A10 with respect to Υ2 (see Example 11), which additionally comprises supports

of not c and not d for a. Since these two supports are not necessary to explain why

a is not in S2 (the explanation is that the supporting literal not e is attacked by the

fact e), they are omitted in the Labelled Justification.

The procedure of extracting attack and support relations from an Attack Tree

in the construction of a Labelled Justification is similar to the method of Basic

Justifications, where the relations are extracted step by step for every node in the

Attack Tree. The main difference of Labelled Justifications is that nodes holding

arguments labelled '+' and nodes holding arguments labelled '−' in an Attack Tree

are handled separately in order to obtain the correct labelling of literals and relations

in the justification. Furthermore, the extraction of the support relation is divided

into two cases: one for assumption-premises, and one for fact-premises. Similarly,

there are two cases for the extraction of the attack relation: the attacker can be a

fact or another (non-fact and non-assumption) literal. Note that not all supporting

literals of an argument with label '−' are extracted for a Labelled Justification, but

only “attacked” ones.

6.2 LABAS justifications

In this section, we define the Labelled ABA-Based Answer Set (LABAS) Justification

of a literal with respect to an answer set, which is based on the Labelled Justifications

of an argument for this literal with respect to an Attack Tree. We also prove that

a LABAS Justification provides an explanation for a literal using an admissible

fragment of the answer set in question.

Just as for BABAS Justifications, if a literal k is contained in an answer set, its

LABAS Justification is constructed from one Labelled Justification of one of the

corresponding arguments of k. Conversely, if k is not in an answer set, its LABAS

Justification is constructed from all Labelled Justifications of all arguments with

conclusion k. The only difference in the construction is that the literal being justified

is labelled before it is added to the justification.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 97

Definition 10 (Labelled ABA-based answer set justification)

Let P be a logic program and S an answer set of P. Let E be the corresponding

stable extension of S in ABAP = 〈LP,RP,AP, ¯〉.

(1) Let k ∈ SNAF, A ∈ E a corresponding argument of k, and Υ = attT ree+
E (A)

some positive Attack Tree of A with respect to E. Let lab(k) = k+
asm if k ∈ AP,

lab(k) = k+
fact if k ← ∈ RP, and lab(k) = k+

A else. A Positive LABAS Justification

of k with respect to S is:

justL+
S (k) = {lab(k)} ∪ justLΥ(A).

(2) Let k /∈ SNAF, A1, . . . , An (n � 0) all arguments with conclusion k in ABAP,

and Υ11, . . . ,Υ1m1
, . . . ,Υn1, . . . ,Υnmn

(m1, . . . , mn � 0) all negative Attack Trees of

A1, . . . , An with respect to E.

(a) If n = 0, then the Negative LABAS Justification of k with respect to S is:

justL−S (k) = ∅
(b) If n > 0, then let lab(k1) = . . . = lab(kn) = k−asm if k ∈ AP and lab(k1) =

k−A1
, . . . , lab(kn) = k−An

else. The Negative LABAS Justification of k with respect

to S is:

justL−S (k) = {{lab(k1)} ∪ justLΥ11
(A1), . . . , {lab(kn)} ∪ justLΥnmn

(An)}.

Example 17

We illustrate the advantages of LABAS Justifications as compared to BABAS

Justifications by justifying the same literal as in Example 15, i.e. q ∈ SP3
and q ∈ SP4

of the logic programs P3 and P4. The LABAS Justifications are constructed from

the same Attack Trees as the BABAS Justifications (see Figs 11 and 12). The unique

Positive LABAS Justification of q with respect to SP3
and the two possible Positive

LABAS Justifications of q with respect to SP4
are:

justL+
SP3

(q) = {q+
A9
, supp rel+(not p+

asm, q
+
A9

), att rel−(p−A12
, not p+

asm),

att rel−(p−A13
, not p+

asm), supp rel−(not a−asm, p
−
A12

),

att rel+(a+
fact, not a

−
asm), supp rel−(not b−asm, p

−
A13

),

att rel+(b+
fact, not b

−
asm)}

justL+
SP4

(q) = {q+
A9
, supp rel+(not p+

asm, q
+
A9

), att rel−(p−A14
, not p+

asm),

supp rel−(not a−asm, p
−
A14

), att rel+(a+
fact, not a

−
asm)}

justL+
SP4

(q) = {q+
A9
, supp rel+(not p+

asm, q
+
A9

), att rel−(p−A14
, not p+

asm),

supp rel−(not b−asm, p
−
A14

), att rel+(b+
fact, not b

−
asm)}

The graphical representations of these LABAS Justifications are depicted in Fig-

ure 14. The differences between BABAS and LABAS Justifications can be easily

spotted when comparing the BABAS Justification graphs in Figure 13 with the

LABAS Justification graphs in Figure 14, both of which explain why q is part of

SP3
and SP4

. In contrast to the BABAS Justifications, the LABAS Justifications

express that in P3 there are two different ways of deriving p, one supported by not a

(yielding A12) and the other one by not b (yielding A13), but in P4 there is only one

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

98 C. Schulz and F. Toni

q+
A9

not p+
asm

+

p−
A12

p−
A13

− −

not a−
asm not b−asm

− −

a+
fact b+

fact

+ +

q+
A9

not p+
asm

+

p−
A14

−

not a−
asm

−

a+
fact

+

q+
A9

not p+
asm

+

p−
A14

−

not b−asm

−

b+
fact

+

Fig. 14. The unique Positive LABAS Justification justL+
SP3

(q) (left) and the two Positive

LABAS Justifications justL+
SP4

(q) (middle and right) from Example 17. See Figure 13 for the

respective BABAS Justifications of q.

way of deriving p, supported by both not a and not b (yielding A14). The reason

that neither of the two LABAS Justifications of q with respect to SP4
comprises

both of these supporting NAF literals is that LABAS Justifications only contain the

supporting NAF literals which are “attacked”; in the first case not a is attacked by

a, in the second case not b is attacked by b.

As illustrated by Example 17, LABAS Justifications solve the shortcomings of

BABAS Justifications: They indicate whether or not support and attack relations

“succeed”, as well as which literals are facts or assumptions. Furthermore, tagging

literals with argument-names makes it possible to distinguish between different ways

of deriving the same literal. In addition, a LABAS Justification is sometimes shorter

than the respective BABAS Justification, only comprising relevant supporting literals

of a literal not in the answer set in question.

Example 18

Recall Dr. Smith who has to determine whether to follow his own decision to

treat the shortsightedness of his patient Peter with laser surgery or whether to act

according to the suggestion of his decision support system and treat Peter with

intraocular lenses (see Example 1). In Example 7, we illustrated how Attack Trees

can be used to explain the suggestion of the decision support system as well as

why Dr. Smith’s treatment decision is wrong. Here, we demonstrate the LABAS

Justifications explaining this.

Figure 15 displays the Negative LABAS Justification of the literal laserSurgery

which is not contained in the answer set Sdoctor of the logic program Pdoctor (see

Example 1). This LABAS Justification is constructed from all Labelled Justifica-

tions of all arguments with conclusion laserSurgery, i.e. from all Attack Trees

for arguments with conclusion laserSurgery. There is only one argument with

conclusion laserSurgery, but there are two different negative Attack Trees for this

argument (see Example 7). The negative Attack Tree underlying the left part of

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 99

laserSurgery−
A1

not tightOnMoney−
asm

−

tightOnMoney+
A2

+

student+fact not richParents+
asm

+ +

laserSurgery−
A1

not correctiveLens−asm

−

correctiveLens+
A8

+

shortSighted+
fact not laserSurgery+

asm

+ +

−

Fig. 15. The Negative LABAS Justification of laserSurgery with respect to Sdoctor of the

logic program Pdoctor (see Example 1) as explained in Example 18.

the LABAS Justification in Figure 15 was illustrated in Figure 4. The Negative

LABAS Justification of laserSurgery expresses that Peter should not have laser

surgery for two reasons: first (left part), because laser surgery should only be used

if the patient is not tight on money, but Peter is tight on money as he is a student

and as there is no evidence that his parents are rich; second (right part), because

laser surgery should only be used if it has not been decided that the patient should

have corrective lenses, but there is evidence that Peter should have corrective lenses

since he is shortsighted and since there is evidence against having laser surgery (and

assuming that the patient does not have laser surgery is a prerequisite for having

corrective lenses).

A Positive LABAS Justification explaining why Peter should get intraocular lenses

is displayed in Figure 16. This LABAS Justification expresses that all supporting

assumptions needed to draw the conclusion that Peter should have intraocular

lenses are satisfied, namely Peter is shortsighted, he should not have laser surgery,

he should not have glasses, and he should not have contact lenses. The explanation

also illustrates why these other treatments are not applicable.

Using the LABAS Justifications, Dr. Smith can now understand why the decision

support system suggested intraocular lenses as the best treatment for Peter and why

Peter should not have laser surgery. Dr. Smith can therefore easily revise his original

decision that Peter should have laser surgery, realizing that he forgot to consider

that Peter is a student and that consequently Peter has not enough money to pay

for laser surgery.

In the following we show that LABAS Justifications explain a literal with respect

to an answer set in terms of an admissible fragment of this answer set. We first

introduce some terminology to refer to the literals in a LABAS Justification.

Notation 7

Let justL+
S (k) be a Positive LABAS Justification. We say that a literal k1 occurs in

justL+
S (k) if and only if k1 = k or k1 is one of the literals in a support- or attack-pair

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

100 C. Schulz and F. Toni

intraocularLens+
A3

shortSighted+
fact

not laserSurgery+
asm not glasses+

asm

not contactLens+
asm

+

+ +

+

laserSurgery−
A1

−

not tightOnMoney−
asm

−

tightOnMoney+
A2

+

student+fact not richParents+
asm

+ +

glasses−A6

−

not caresAboutPracticality−
asm

−

caresAboutPracticality+
A7

+

likesSports+
fact

+

contactLens−A4

−

not afraidToTouchEyes−asm

−

afraidToTouchEyes+fact

+

Fig. 16. A Positive LABAS Explanation of intraocularLens with respect to Sdoctor of the logic

program Pdoctor (see Example 1) as explained in Example 18.

in justL+
S (k). We say that k1 occurs positively in justL+

S (k) if and only if it occurs as

k+
1asm

, k+
1fact

, or k+
1A

(where A is some argument with conclusion k1).

We use the same terminology for Negative LABAS Justifications.

The following theorem characterizes the explanations given by Positive LABAS

Justifications.

Theorem 8

Let P be a logic program and let justL+
S (k1) be a Positive LABAS Justifica-

tion of some literal k1 with respect to an answer set S of P. Let NAF+ =

{k | k+
asm occurs in justL+

S (k1)} be the set of all NAF literals occurring positively

in justL+
S (k1). Then

• P ∪ NAF+ is an admissible scenario of P in the sense of Dung and

Ruamviboonsuk (1991);

• NAF+ ⊆ SNAF .

Proof

By Definitions 9 and 10 and Notation 7, NAF+ is the union of all assumptions

supporting arguments labelled '+' in the Attack Tree attT ree+
E (A) used for the

construction of justL+
S (k1), where E is the corresponding stable extension of S

and A ∈ E is a corresponding argument of k1. So NAF+ = Asms as defined in

Theorem 7. �

This result expresses that LABAS Justifications explain that a literal is contained

in an answer set because this literal is supported and defended by the answer set.

However, LABAS Justifications do not simply provide the whole answer set as an

explanation, but instead use an admissible fragment of it. A similar result can be

formulated for Negative LABAS Justifications:

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 101

Theorem 9

Let P be a logic program and let justL−S (k1) be a Negative LABAS Justification of

a literal k1 with respect to an answer set S of P. Let NAF+
11, . . . , NAF

+
1m1

, . . . , NAF+
n1,

. . . , NAF+
nmn

be the sets of all NAF literals occurring positively in the subsets of

justL−S (k1), i.e. NAF+
ij = {k | k+

asm occurs in lab(k1i) ∪ justLΥij
(Ai)} where 0 � i � n

and 0 � j � mn. Then for each NAF+
ij

• P ∪ NAF+
ij is an admissible scenario of P in the sense of Dung and

Ruamviboonsuk (1991);

• NAF+
ij ⊆ SNAF .

Proof

Analogous to the proof of Theorem 8. �

This means that the LABAS Justification of a literal which is not part of an answer

set explains all different ways in which this literal is “attacked” by an admissible

fragment of the answer set.

In summary, LABAS Justifications use the same information for an explanation

as Attack Trees, namely an admissible fragment of an answer set, but expressing

these information in terms of literals and the support and “attack” relations between

them rather than in terms of arguments and attacks. Thus, LABAS Justifications

are more suitable explanations if logic programming concepts are desired.

In the following, we will use the term ABAS Justification as shorthand for both

BABAS and LABAS Justifications.

7 Discussion and related work

So far, the problem of justifying answer sets has not received much attention,

even though the need for justifications has been expressed (Brain and De Vos

2008). According to Pontelli et al. (2009), a justification should “provide only

the information that are relevant to the item being explained”, making it easier

understandable. We incorporate this in ABAS Justifications by not using the whole

derivation of a literal, but only the underlying facts and NAF literals necessary to

derive the literal in question.

The two approaches for justifying why a literal is or is not part of an answer

set which are most related to ABAS Justifications are Argumentation-Based An-

swer Set Justifications and off-line justifications. Argumentation-Based Answer Set

Justifications (Schulz et al. 2013) are a “predecessor” of ABAS Justifications using

the ASPIC+ argumentation framework (Prakken 2010) instead of ABA. Off-line

justifications (Pontelli et al. 2009) explain why a literal is or is not part of an answer

set by making use of the well-founded model semantics for logic programs. In the

following Sections 7.1 and 7.2, we look at these two related approaches in more

detail and compare them to ABAS Justifications. In Section 7.3, we look at a number

of other, less closely related explanation approaches.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

102 C. Schulz and F. Toni

7.1 Off-line justifications

The off-line justification for a classical literal l is a graph of classical literals with

root node l. The child nodes of l are the relevant literals which l directly depends on.

In other words, the justified literal l has the relevant body literals of an applicable

clause in the logic program as its child nodes, and the justifications of these body

literals as subgraphs.

Example 19

Consider the following logic program Pabc (taken from Pontelli et al. (2009)), which

has two answer sets S1 = {b, e, f} and S2 = {a, e, f}:

a← f, not b

b← e, not a

f ← e

d← c, e

c← d, f

e←

The off-line justification for b ∈ S1 is depicted on the top right of Figure 17. It is

constructed using the second clause in Pabc, yielding a positive dependency of b on

e, and a negative dependency of b on a. This expresses that b is in the answer set

because it depends on e being part of the answer set and on a not being part of it.

Whether or not a classical literal l occurring in the off-line justification is part of

the answer set in question is indicated by the labels '+' (if l is in the answer set)

or '−' (if l is not in the answer set). The dependency conditions of b on e and a

are satisfied, since e is labelled '+' and a is labelled '−'. The off-line justification

graph also expresses that e is known to be true since it is a fact (indicated by �
in the graph) and that a is assumed to be false (indicated by assume in the graph).

It is important to note that NAF literals are represented indirectly in an off-line

justification by means of their corresponding classical literal. For example in the

off-line justification of b (top right of Fig. 17), the classical literal a is used to

represent the dependency of b on the NAF literal not a.

Off-line justifications treat the relationship between literals in a proof-oriented

way, that is as top-down dependencies, whereas ABAS Justifications (and Attack

Trees) provide explanations in a bottom-up manner in terms of assumptions and

underlying knowledge supporting the conclusion. We argue that our bottom-up

approach might be clearer for non-experts, as human decision making seems to

involve starting from what is known along with some kind of assumptions, and then

drawing conclusions from that. Instead of saying that b is dependent on e in Pabc

as done by an off-line justification, an ABAS Justification expresses that e supports

b, as shown on the top left of Figure 17. Especially with respect to NAF literals,

we believe that a bottom-up support relation is more intuitive than a top-down

dependency relation: instead of saying that b negatively depends on a not being in

the answer set as done by an off-line justification, the ABAS Justification states that

not a supports b (compare the two graphs at the top of Fig. 17).

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 103

b+
A1

not a+
asm e+

fact

+ +

a−
A2

−

not b−asm

−

+

a−
A2

not b−asm

−

b+
A1

+

not a+
asm e+

fact

+ +

−

Fig. 17. The two graphs at the top illustrate the LABAS Justification (left) and the Off-

line Justification (right) of b ∈ S1 of Pabc, whereas the graphs at the bottom represent the

justifications of a /∈ S1 of Pabc.

The well-founded model semantics is used in the construction of off-line justifica-

tions to determine literals which are “assumed” to be false with respect to an answer

set, as opposed to literals which are always false. These assumed literals are not

further justified, i.e. they are leaf nodes in an off-line justification graph. In contrast,

ABAS Justifications further justify these “assumed” literals. They are usually true

NAF literals which are part of a dependency cycle. An example is the literal a in

the logic program Pabc, which is assumed to be false in the off-line justification of

b with respect to S1 (bottom right of Fig. 17). In contrast, the ABAS Justification

further explains that a is not in the answer set because the support by not b does

not “succeed” since the attack by b on not b “succeeds” (bottom left of Fig. 17).

An off-line justification graph includes all intermediate literals in the derivation of

the literal in question. However, following (Brain and De Vos 2008) we argue that

for a justification it is sufficient to include the most basic relevant literals, without

considering intermediate steps. Especially in the case of large logic programs, where

derivations include many steps, an off-line justification will be a large graph with

many positive and negative dependency relations, which is hard to understand for

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

104 C. Schulz and F. Toni

humans. In contrast, an ABAS Justification only contains the basic underlying

literals, i.e. facts and NAF literals necessary to derive the literal in question, making

the justification clearer. However, if the intermediate steps were required, they could

be easily extracted from the arguments in the Attack Trees underlying an ABAS

Justification.

In contrast to off-line justifications, where in addition to answer sets the well-

founded model has to be computed, for the construction of ABAS Justifications

the computation of answer sets is sufficient. Even though the definitions of ABAS

Justifications refer to the corresponding stable extensions of the translated ABA

framework, it is not necessary to compute these stable extensions. Whether or

not the arguments needed for an ABAS Justification are contained in the respective

corresponding stable extension can be directly deduced from the answer set due to the

correspondence between answer sets and stable extensions as stated in Theorems 1–3.

7.2 Argumentation-based answer set justification

Argumentation-Based Answer Set Justification (Schulz et al. 2013) is the first work

that applies argumentation theory to answer set programming, and in particular

for the justification of answer sets. There, the ASPIC+ argumentation framework

(Prakken 2010) is used instead of ABA.

Similarly to ABAS Justifications, in Argumentation-Based Answer Set Justifi-

cations literals are justified with respect to an answer set by means of ASPIC+

arguments with respect to the stable extension corresponding to the answer set in

question. For the translation of a logic program into an ASPIC+ framework only

a fraction of ASPIC+ features are needed; defeasible rules, issues, and preference

orders are redundant. This is to say that the ASPIC+ framework is too complex for

the purpose of a justification and a more lightweight framework like ABA is more

suitable.

The method for constructing a justification in Argumentation-Based Answer Set

Justification is slightly different from the ABAS Justification approach. Instead

of extracting support- and attack-pairs from Attack Trees, Argumentation-Based

Answer Set Justifications are defined recursively: for an assumption-argument its

attackers are investigated, whereas for non-assumption- and non-fact-arguments

supports by assumption- and fact-arguments are examined. The recursion terminates

when fact-arguments or non-attacked assumption-arguments are encountered.

Argumentation-Based Answer Set Justifications have the same deficiencies as

BABAS Justifications; it is not clear which literals are facts or assumptions, and

whether or not support and attack relations “succeed”. The implementation of

Argumentation-Based Answer Set Justification colours the relations and literals

similarly to the labels '+' and '−' on relations and literals in LABAS Justifications,

where green corresponds to '+' and red to '−'. However, facts and assumptions

cannot be distinguished from other literals, as depicted in Figure 18.

In summary, ABAS Justifications are an improvement of Argumentation-Based

Answer Set Justifications, both with respect to the elegance of the justification

definition and the appropriateness of the argumentation framework used. LABAS

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 105

Fig. 18. Argumentation-based answer set justification of b ∈ S1 of Pabc from Example 19.

Justifications also solve the deficiencies of Argumentation-Based Answer Set Jus-

tifications by providing more information about the literals in the explanation as

well as about their relationship. Furthermore, Argumentation-Based Answer Set

Justifications were introduced without any characterization. In contrast, here we

prove that ABAS Justifications provide an explanation in terms of an admissible

fragment of the answer set in question, and show their relationship with abstract

dispute trees in ABA.

7.3 Other related explanation approaches

In addition to the two explanations approaches for answer sets discussed in the

previous sections, (Erdem and Oztok 2015) introduce a formalism for explaining

biomedical queries expressed in ASP. Similar to ABAS Justifications, they construct

trees for the explanation, but in contrast to our justifications these trees carry rules

in the nodes rather than literals. Another difference is that their explanation trees

comprise every step in the derivation of a literal (similar to the approach of Pontelli

et al. (2009) explained in Section 7.1) rather than abstracting away from intermediate

derivation steps between the literal in question and the underlying facts and NAF

literals.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

106 C. Schulz and F. Toni

Brain and Vos (2005) try to answer a similar question as the one we address with

ABAS Justifications, i.e. why a set of literals is or is not a subset of an answer.

Their explanations are presented in text form, but they point out that it might be

possible to use a tree representation instead. Just like (Erdem and Oztok 2015), all

intermediate steps in a derivation are considered in the explanation, thus differing

from ABAS Justifications.

Related to the explanation of ASP is the visualization of the structure of logic

programs in general. ASPIDE (Febbraro et al. 2011) is an Integrated Development

Environment for ASP which, among other features, displays the dependency graph

of a logic program, i.e. it visualizes the positive (negative) dependencies between

the rule heads and the atoms (NAF literals, respectively). It is thus similar to the

previously mentioned approaches in that it illustrates every step in a derivation.

The problem of constructing explanations has been addressed for logic programs

without NAF in Arora et al. (1993) and Ferrand et al. (2012). In the early work

by Arora et al. explanations of atoms in a logic program are constructed as simple

derivations of these atoms. Thus, this approach is closer to Erdem and Oztok (2015)

and Brain and Vos (2005) than to ABAS Justifications as it provides all intermediate

derivation steps. Similar to this, Ferrand et al. (2012) show how to use proof trees

as explanations for least fixpoint operators, such as the semantics of constraint logic

programs, where proof trees are derivations.

The comparison with these existing approaches demonstrates the novelty of ABAS

Justifications as they only provide the facts and NAF literals necessary for the

derivation of a literal in question rather than the whole derivation with all its

intermediate steps.

Explanations have also received attention in other areas in the field of knowledge

representation and reasoning, and it has been emphasized that any expert system

should provide explanations for its solutions (see Lacave and Diez (2004) for

an overview of explanations in heuristic expert systems). Furthermore, it has

been pointed out that even though argumentation and other knowledge-based

systems have been studied mostly separately in the past, argumentation could serve

as a useful tool for the explanation of other knowledge-based systems Moulin

et al. (2002). In fact, (Bench-Capon et al. 1991) provide an early account of

explanations for logic programs in terms of arguments, where Toulmin’s argument

scheme is applied. However, a meta-program encoding the argument scheme has

to be created by hand for any logic program that needs explanation, making it

infeasible for automatic computation. Related to argumentation as an explanation

method, (Garcı́a et al. 2013) introduce explanations in argumentative terms for

argumentation-based reasoning methods, such as Defeasible Logic Programming

(Garcı́a and Simari 2004), explaining why an argument with a certain conclusion

is or is not deemed to be “winning”. Similar to ABAS Justifications and Attack

Trees, the motivation behind their approach is to explain the solution of applying

argumentation semantics to an argumentation framework using the context of the

semantic analysis, i.e. the attacking and defending relations between arguments.

Explanations are given in terms of argument trees similar to Attack Trees, where

arguments held by child nodes in the tree attack the argument held by the parent

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 107

node. In contrast to Attack Trees, however, every node in the tree is extended with

all its attackers and the tree is labelled with respect to the grounded extension, a

different argumentation semantics, instead of stable extensions. Another difference

to our justifications is that Garcı́a et al. explain why a literal l is not a winning

conclusion in terms of an explanation why the contrary literal ¬l is a winning

conclusion. In contrast, ABAS Justifications explain why a literal l is not a winning

conclusion by pointing out why it cannot possibly be winning.

8 Conclusion and future work

We present two approaches for justifying why a literal is or is not contained in

an answer set of a consistent logic program by translating the logic program into

an Assumption-Based Argumentation (ABA) framework and using the structure

of arguments and attacks in this translated ABA framework for the explanation.

Attack Trees, our first justification approach, provide an explanation for a literal

in argumentation-theoretic terms, i.e. in terms of arguments and attacks between

them. ABA-Based Answer Set Justifications, our second justification approach,

flatten the structure of Attack Trees, yielding a set of literal-pairs in a support

relation and literal-pairs in an attack relation. This justification approach is more

aligned with logic programming concepts as it uses literals rather than arguments

as an explanation. Both justification approaches are based on the correspondence

between answer sets of a logic program and stable extensions of the translated ABA

framework, namely for every answer set of a consistent logic program there is a

corresponding stable extension of the translated ABA framework and vice versa.

Nodes in an Attack Tree hold arguments, where the argument held by a parent

node is attacked by the arguments held by the parent’s child nodes. The root node of

an Attack Tree always holds an argument for the literal being justified. Importantly,

an Attack Tree is constructed with respect to the stable extension corresponding to

the answer set in question. If an argument in the Attack Tree is contained in the

corresponding stable extension, all arguments attacking it occur as its child nodes

in the Attack Tree. The intuition behind this is that an argument is contained in the

stable extension if all attacking arguments are not contained in this stable extension.

Thus, all attacking arguments are added as children in the Attack Tree and further

justified as to why they are not contained in the stable extension. In contrast, if an

argument in the Attack Tree is not contained in the corresponding stable extension,

only one attacking argument is picked as a child node, in particular one which is

part of the corresponding stable extension. The intuition behind picking only one

attacking argument is inspired by the idea of proof by counterexample, i.e. that one

counterexample is enough to disprove a claim. Thus, it is enough to show one way

in which an argument can be disproven by an attacking argument, even if there are

other ways. Importantly, the attacking argument has to be in the stable extension

to prove that the attacked argument is not in the stable extension. The resulting

structure of an Attack Tree is an alternation of arguments in the corresponding

stable extension attacked by arguments not in the corresponding stable extension

and so on.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

108 C. Schulz and F. Toni

An ABAS Justification is obtained from Attack Trees by extracting a support-

relation between literals from the structure of arguments occurring in the Attack

Trees, and an attack-relation between literals from the attacks between these

arguments. Thus, ABAS Justifications are the flattened version of Attack Trees,

expressing the same explanation, but in terms of literals and their relations rather

than in terms of arguments and attacks between them. We present two versions

of ABAS Justifications: The simpler BABAS Justifications are used to introduce

the flattening method; the more elaborate LABAS Justifications apply the same

flattening method but additionally use labels on literals and their relations in order

to overcome some deficiencies of BABAS Justifications. An ABAS Justification can

also be interpreted as a graph of literal-nodes connected via support and attack edges.

Importantly, both Attack Trees and ABAS Justifications explain why a literal is

or is not in an answer set in terms of an admissible fragment of this answer set.

The justification that a literal is in an answer set is that a derivation of this literal is

supported by an admissible fragment of this answer set. In contrast, the justification

that a literal is not contained in an answer set is that all derivations of this literal

are “attacked” by an admissible fragment of this answer set. In comparison to the

few existing explanation methods for logic programming, ABAS Justifications take

an argumentative premise-conclusion approach, i.e. a literal is explained in terms of

the facts and NAF literals necessary for its derivations, rather than in terms of the

whole derivation.

Future work includes to apply ABAS Justifications to real-world examples, with

focus on medical decision making and legal reasoning. Applying ABAS Justifications

to these domains will not only yield a plausible medical or legal decision but also

provide an easily accessible explanation for elements of the solution. A potential

legal rule base for the application of ABAS Justifications is the encoding of the

Japanese Civil Code as used in Satoh et al. (2010). With respect to applicability of

ABAS Justifications, we are planning to develop a user-friendly implementation of

ABAS Justification and conduct a survey both among experts in ASP and among

non-experts using ASP as a decision-making tool. Furthermore, we are working on

an extension of ABAS Justifications to explain inconsistencies in logic programs and

to help debugging these logic programs.

Acknowledgements

We would like to thank the anonymous reviewers and David Pearce for their

constructive feedback, as well as Abdallah Arioua for pointing out some related

work.

References

Arora, T., Ramakrishnan, R., Roth, W. G., Seshadri, P. and Srivastava, D. 1993. Explaining

program execution in deductive systems. In Proc. of the 3rd International Conference on

Deductive and Object-Oriented Databases (DOOD), S. Ceri, K. Tanaka, and S. Tsur, Eds.

Lecture Notes in Computer Science, vol. 760. Springer, Berlin Heidelberg, 101–119.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

Justifying answer sets using argumentation 109

Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A. M. and Berens, M. E. 2004.

A knowledge based approach for representing and reasoning about signaling networks.

Bioinformatics 20, supplement 1, 15–22.

Bench-Capon, T., Lowes, D. and McEnery, A. M. 1991. Argument-based explanation of

logic programs. Knowledge-Based Systems 4, 3, 177–183.

Boenn, G., Brain, M., Vos, M. D. and Fitch, J. 2011. Automatic music composition using

answer set programming. Theory and Practice of Logic Programming 11, 2–3, 397–427.

Bondarenko, A., Dung, P. M., Kowalski, R. A. and Toni, F. 1997. An abstract,

argumentation-theoretic approach to default reasoning. Artificial Intelligence 93, 1–2, 63–

101.

Brain, M. and De Vos, M. 2008. Answer set programming - a domain in need of

explanation: A position paper. In Proc. of the 3rd International Workshop on Explanation-

aware Computing (ExaCt), T. R. Roth-Berghofer, S. Schulz, D. Bahls and D. B. Leake,

Eds. CEUR Workshop Proceedings, vol. 391. CEUR-WS.org, 37–48.

Brain, M. and Vos, M. D. 2005. Debugging logic programs under the answer set semantics.

In Proc. of the 3rd International Workshop on Answer Set Programming (ASP), M. D.

Vos and A. Provetti, Eds. CEUR Workshop Proceedings, vol. 142. CEUR-WS.org,

141–152.

Dung, P. M. 1995a. An argumentation-theoretic foundation for logic programming. The

Journal of Logic Programming 22, 2, 151–177.

Dung, P. M. 1995b. On the acceptability of arguments and its fundamental role

in nonmonotonic reasoning, logic programming and n-person games. Artificial

Intelligence 77, 2, 321–357.

Dung, P. M., Kowalski, R. A. and Toni, F. 2006. Dialectic proof procedures for assumption-

based, admissible argumentation. Artificial Intelligence 170, 2, 114–159.

Dung, P. M., Kowalski, R. A. and Toni, F. 2009. Assumption-based argumentation. In

Argumentation in Artificial Intelligence, G. R. Simari and I. Rahwan, Eds. Springer US,

New York, 199–218.

Dung, P. M., Mancarella, P. and Toni, F. 2007. Computing ideal sceptical argumentation.

Artificial Intelligence 171, 10–15, 642–674.

Dung, P. M. and Ruamviboonsuk, P. 1991. Well-founded reasoning with classical negation. In

Proc. of the 1st International Workshop on Logic Programming and Nonmonotonic Reasoning

(LPNMR), A. Nerode, V. W. Marek and V. S. Subrahmanian, Eds. The MIT Press,

Cambridge MA, 120–132.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G. and Scarcello, F. 1997. A deductive

system for non-monotonic reasoning. In Proc. of the 4th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR), J. Dix, U. Furbach, and A. Nerode,

Eds. Lecture Notes in Computer Science, vol. 1265. Springer, Berlin Heidelberg, 364–375.

Erdem, E. and Oztok, U. 2015. Generating explanations for biomedical queries. Theory and

Practice of Logic Programming 15, 1, 35–78.

Eshghi, K. and Kowalski, R. A. 1989. Abduction compared with negation by failure.

In Proc. of the 6th International Conference on Logic Programming (ICLP), G. Levi and

M. Martelli, Eds. The MIT Press, Cambridge, MA, 234–254.

Febbraro, O., Reale, K. and Ricca, F. 2011. ASPIDE: Integrated development environment

for answer set programming. In Proc. of the 11th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR), J. P. Delgrande and W. Faber,

Eds. Lecture Notes in Computer Science, vol. 6645. Springer, Berlin Heidelberg,

317–330.

Ferrand, G., Lesaint, W. and Tessier, A. 2012. Explanations and proof trees. Computing

and Informatics 25, 2–3, 105–125.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

110 C. Schulz and F. Toni

Garcı́a, A. J., Chesñevar, C. I., Rotstein, N. D. and Simari, G. R. 2013. Formalizing

dialectical explanation support for argument-based reasoning in knowledge-based systems.

Expert Systems with Applications 40, 8, 3233–3247.

Garcı́a, A. J. and Simari, G. R. 2004. Defeasible logic programming: An argumentative

approach. Theory and Practice of Logic Programming 4, 1–2, 95–138.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Schneider,

M. 2011. Potassco: The Potsdam answer set solving collection. AI Communications 24, 2,

107–124.

Gelfond, M. 2008. Answer sets. In Handbook of Knowledge Representation, F. van Harmelen,

V. Lifschitz, and B. Porter, Eds. Foundations of Artificial Intelligence, vol. 3. Elsevier, San

Diego, Chapter 7, 285–316.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Computing 9, 3-4, 365–385.

Governatori, G., Maher, M. J., Antoniou, G. and Billington, D. 2004. Argumentation

semantics for defeasible logic. Journal of Logic and Computation 14, 5, 675–702.

Lacave, C. and Diez, F. J. 2004. A review of explanation methods for heuristic expert systems.

The Knowledge Engineering Review 19, 2, 133–146.

Moulin, B., Irandoust, H., Bélanger, M., and Desbordes, G. 2002. Explanation and

argumentation capabilities: Towards the creation of more persuasive agents. Artificial

Intelligence Review 17, 3, 169–222.

Niemelä, I., Simons, P., and Syrjänen, T. 2000. Smodels: A system for answer set

programming. In Proc. of the 8th International Workshop on Non-Monotonic Reasoning

(NMR), C. Baral and M. Truszczynski, Eds. Vol. cs.AI/0003033. CoRR.

Pontelli, E., Son, T. C. and Elkhatib, O. 2009. Justifications for logic programs under

answer set semantics. Theory and Practice of Logic Programming 9, 1, 1–56.

Prakken, H. 2010. An abstract framework for argumentation with structured arguments.

Argument and Computation 1, 2, 93–124.

Satoh, K., Asai, K., Kogawa, T., Kubota, M., Nakamura, M., Nishigai, Y., Shirakawa, K.

and Takano, C. 2010. Proleg: An implementation of the presupposed ultimate fact theory

of Japanese civil code by prolog technology. In Proc. of the 2010 International Conference

on New Frontiers in Artificial Intelligence, T. Onada, D. Bekki and E. McCready, Eds.

Lecture Notes in Computer Science, vol. 6797. Springer, Berlin Heidelberg, 153–164.

Schulz, C., Sergot, M. and Toni, F. 2013. Argumentation-based answer set justification.

In Working Notes of the 11th International Symposium on Logical Formalizations of

Commonsense Reasoning (Commonsense).

Son, T. C., Pontelli, E. and Sakama, C. 2009. Logic programming for multiagent planning

with negotiation. In Proc. of the 25th International Conference on Logic Programming

(ICLP), P. M. Hill and D. S. Warren, Eds. Lecture Notes in Computer Science, vol.

5649. Springer, Berlin Heidelberg, 99–114.

Thimm, M. and Kern-Isberner, G. 2008. On the relationship of defeasible argumentation

and answer set programming. In Proc. of the 2nd International Conference on Computational

Models of Argument (COMMA), P. Besnard, S. Doutre and A. Hunter, Eds. vol. 172. IOS

Press, Amsterdam, 393–404.

Toni, F. and Sergot, M. 2011. Argumentation and answer set programming. In Logic

Programming, Knowledge Representation, and Nonmonotonic Reasoning, M. Balduccini and

T. C. Son, Eds. Lecture Notes in Computer Science, vol. 6565. Springer, Berlin Heidelberg,

164–180.

https://doi.org/10.1017/S1471068414000702 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000702

