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Abstract

Crop residue can intercept and adsorb residual herbicides, leading to reduced efficacy.
However, adsorption can sometimes be reversed by rainfall or irrigation. Greenhouse
experiments were conducted to evaluate the effect of differential overhead irrigation level on
barnyardgrass response to acetochlor, pyroxasulfone, and pendimethalin applied to bare soil
or wheat straw—covered soil. Acetochlor applied to wheat straw—covered soil resulted in
25% to 40% reduced control, 30 to 50 more plants 213 cm~2, and greater biomass than bare
soil applications, regardless of irrigation amount. Barnyardgrass suppression by pyroxasulfone
applications to wheat straw-covered soil improved with increased irrigation; however, weed
control levels similar to bare soil applications were not observed after any irrigation amount.
Barnyardgrass densities from pyroxasulfone applications to bare soil decreased with irrigation
but did not change in applications to wheat straw—covered soil. Aboveground barnyardgrass
biomass from pyroxasulfone decreased with greater irrigation amounts in both bare soil and
wheat straw—covered soil applications; however, decreased efficacy in wheat straw-covered soil
applications was not alleviated with irrigation. Pendimethalin was the only herbicide tested that
displayed reduced efficacy when irrigation amounts increased in applications to both bare soil
and wheat straw—covered soil. Barnyardgrass control from pendimethalin applied to wheat
straw—covered soil was similar to bare soil applications when approximately 0.3 to 1.2 cm
of irrigation was applied; however, irrigation amounts greater than 1.2 cm resulted in greater
barnyardgrass control in bare soil applications. No differences between wheat straw-covered
soil and bare soil applications of pendimethalin were observed for barnyardgrass densities.
These data indicate that increased irrigation or rainfall level can increase efficacy of acetochlor
and pyroxasulfone. Optimal rainfall or irrigation amounts required for efficacy similar to bare
soil applications are herbicide specific, and some herbicides, such as pendimethalin, may be
adversely affected by increased rainfall or irrigation.

Introduction

In recent years, adoption of conservation tillage practices, including cover crops, has increased
substantially in the southern United States for benefits related to increased soil organic matter
(OM) and improved soil health properties, such as retained soil moisture, increased nutrient
holding capacity, reduced erosion potential, increased soil microbial diversity, and potentially
lower crop production inputs (Gallaher 1977; Gianessi 2005; Keeling et al. 1989; Liebl et al. 1992;
Reeves 1997; Sainju and Singh 1997). Aside from soil health benefits, plant residues left undis-
turbed on soil surfaces from species like cereal rye (Secale cereale L.) can suppress emergence of
certain weedy species, particularly those within the genus Amaranthus, such as Palmer ama-
ranth (Amaranthus palmeri S. Watson) (Barnes et al. 1987; Barnes and Putnam 1983; Chou
and Patrick 1976; Creamer et al. 1996; Liebl et al. 1992; Putnam 1988; Webster et al. 2016;
Wiggins et al. 2015, 2016, 2017). Otherwise, crop residues commonly provide only 3 to 5 wk
of weed suppression, and that suppression is highly dependent on residue species and residue
breakdown degradation rates (Mohler and Callaway 1995; Moore et al. 1994; Teasdale 1996;
Williams et al. 1998; Khalil et al. 2018).
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Despite the utility of Amaranthus suppression with crop
residues, this cultural method of weed control alone does not pro-
vide broad-spectrum control of velvetleaf (Abutilon theophrasti
Medik.), barnyardgrass, giant foxtail (Setaria faberi Herrm.), and
large crabgrass [Digitaria sanguinalis (L.) Scop.] (Buhler and
Daniel 1988; Reddy et al. 2003; Steinsiek et al. 1982; Teasdale
et al. 1991; Teasdale and Mohler 2000). Additionally, crop residue
efficacy is dependent on weed density. For example, redroot pig-
weed (Amaranthus retroflexus L.) and common lambsquarters
(Chenopodium album L.) at low densities (20 to 40 weeds m™2)
were suppressed with cereal rye residue; however, at high densities
(150 to 170 weeds m~2), little to no suppression was observed
(Zasada et al. 1997). Therefore herbicides are still needed for suf-
ficient weed control.

The combination of conservation tillage practices and poste-
mergence herbicide applications is not only insufficient for season-
long weed control but also results in high selection pressure
to postemergence herbicides, of which few options exist due to
widespread resistance (Norsworthy et al. 2012; Wiggins et al.
2015, 2017). Consequently, residual herbicides must be integrated
with conservation tillage and postemergence herbicides to provide
sufficient, season-long weed control while reducing selection pres-
sure on postemergence herbicides (Norsworthy et al. 2012).
Residual herbicides have traditionally been applied directly to bare
soil surfaces in conventional tillage systems. However, residual
herbicides applied to crop residue-covered soil surfaces can result
in reduced herbicide entry into soil due to spray interception and
herbicide adsorption to crop residue (Alletto et al. 2013; Brown
etal. 1994; Schmitz et al. 2001). For example, applications to straw
mulch reduced oryzalin amounts in soil by 15% to 43% compared
to applications to bare soil (Banks and Robinson 1984). Banks and
Robinson (1982, 1986) also reported that no more than 45% of
metribuzin or 20% of acetochlor, alachlor, or metolachlor applied
to soil covered with wheat straw reached the soil surface.
However, Crutchfield et al. (1985) reported that despite signifi-
cant reductions in metolachlor soil concentrations after
applications to wheat straw-covered soil, acceptable levels of
control of witchgrass (Panicum capillare L.), tumble pigweed
(Amaranthus albus L.), and wild-proso millet (Panicum milia-
ceum L.) were achieved. As such, although application of
residual herbicides to crop residue-covered soil surfaces often
results in reduced herbicide soil concentrations, reduced effi-
cacy is not always observed.

To provide sufficient weed control and protection from photo-
degradation, residual herbicides must be moved into the top few
centimeters of soil, where germinating weed seeds reside (Knake
et al. 1967; Savage and Barrentine 1969; Weise and Hudspeth
1968). Increasing the carrier volume of residual herbicide applica-
tion to crop residue-covered soil has been shown to increase
efficacy; however, greater carrier volumes require increased appli-
cation costs and time (Borger et al. 2013, 2015). Soil incorporation
of residual herbicides in conservation tillage systems primarily
relies on rainfall or overhead irrigation. Consequently, a potential
alternative method for increasing residual herbicide efficacy from
applications to crop residue-covered soils could be to apply a
greater amount of overhead irrigation. According to Smith et al.
(2016), 1.3 cm is considered the standard rainfall amount to incor-
porate most residual herbicides. In the aforementioned studies
with metribuzin and acetochlor, alachlor, or metolachlor, Banks
and Robinson (1982, 1986) included various amounts of overhead
irrigation in their treatments; however, no more than 1.3 cm was
applied. Therefore the objective of this study is to determine if
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Table 1. Regression parameters from experiments investigating the effect of
differential simulated overhead irrigation amounts on barnyardgrass control,
density, and biomass 28 d after treatment from acetochlor, pyroxasulfone,
and pendimethalin applied to bare soil or wheat straw-covered soil under
greenhouse conditions in Mississippi in 2018.2

Regression parameters

Soil Intercept Slope
Response  Herbicide surface (SE) (SE) R?
Control Acetochlor Bare 77.0 (1.8) 2.9 (0.7) 0.31
Covered 41.7 (1.7) 2.3 (0.7) 0.23
Pyroxasulfone Bare 85.4 (1.0) 0.2 (0.4) 0.01
Covered 71.4 (1.7) 1.4 (0.6) 0.11
Pendimethalin  Bare 82.6 (1.7) -2.1(0.6) 0.23
Covered 76.2 (4.7) —4.6 (1.8) 0.15
Density Acetochlor Bare 31.7 (3.3) -4.0(1.3) 0.21
Covered 66.5 (2.7) —0.4 (1.0) 0.01
Pyroxasulfone Bare 25.6 (1.9) -1.9 (0.7) 0.15
Covered 37.0 (2.4) 0.4 (0.9) 0.01
Pendimethalin Bare 28.3 (2.8) 3.2(1.1) 0.19
Covered 29.3 (3.9) 2.9 (1.5) 0.09
Biomass Acetochlor Bare 12.3 (0.2) —0.6 (0.1) 0.67
Covered 15.9 (0.5) —0.4 (0.2) 0.13
Pyroxasulfone Bare 8.5(0.3) —0.6 (0.1) 0.43
Covered 14.8 (0.7) —0.8 (0.3) 0.21
Pendimethalin Bare 10.2 (0.2) 0.7 (0.1) 0.60
Covered 12.5 (0.2) 0.2 (0.1) 0.13

2Regression model: Y = Bx + C, where Y is the response, x is the explanatory variable
(simulated rainfall expressed in centimeters), C is the intercept, and B is the slope.

increased levels of simulated overhead irrigation can improve
residual herbicide efficacy when applied to wheat straw-
covered soil.

Materials and Methods

Greenhouse experiments were conducted in October and
December 2018 at Mississippi State University in Starkville to
evaluate the effect of differential levels of overhead irrigation
on the efficacy of acetochlor, pyroxasulfone, and pendimethalin
on barnyardgrass applied to soil covered with wheat residue.
Greenhouse trays (25 X 51 cm) were filled to approximately 6
cm depth with a locally sourced silt loam consisting of 3% clay,
55% silt, and 43% sand with a pH of 5.7, cation exchange capac-
ity (CEC) of 8.3, and 1.7% OM, then transferred to a greenhouse
maintained at 30/24 C day/night temperatures and a 14-h
photoperiod with supplemental lighting. Seven days prior to
herbicide application, volumetrically measured barnyardgrass
seeds (Azlin Seed Services, Leland, MS, USA) roughly equivalent
t0 3,000 seeds tray~! were shallowly planted by hand in the trays.
This constant seeding rate was chosen to ensure that barnyard-
grass densities were uniform and high enough to collect meas-
urable amounts of biomass in the study. Barnyardgrass was
chosen as a representative weed species because it is commonly
ranked among the top ten most common and troublesome weeds
in cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.)
Merr.] systems in the mid-southern United States and has been
shown to be tolerant of crop residue suppression (Steinsiek et al.
1982; Webster 2013). After planting, the soil surfaces of half the
trays in each experimental run were covered with locally sourced
wheat straw, which had been oven-dried at 50 C for 3 d prior to use,
ata constant rate of 3,000 kg ha™!. This wheat straw rate was based
on the average dry weight of wheat residue found in local fields
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Figure 1. Regression of barnyardgrass control 28 DAT as affected by acetochlor (A), pyroxasulfone (B), or pendimethalin (C) applied to bare soil or wheat straw-covered soil and
simulated overhead irrigation amount in greenhouse experiments conducted in Mississippi in 2018. (A) Gray bands represent 95% confidence intervals. (B) Horizontal black lines
represent the lower limit of the 95% confidence interval for the maximum of bare soil applications. (C) Mean barnyardgrass control of the bare and wheat residue-covered soil

nontreated control was 0% and 16%, respectively.

after wheat harvest. Furthermore, the wheat straw used in these
studies was a homogenous mixture of pieces ranging from ~0.2
to 25 cm in length that had been dried, baled, and shaken loose
prior to weighing and implementing in the study. Trays were then
adequately watered and left to drain for 48 hr (5 d after planting) to
reach field capacity, at which time, herbicides were applied. After
watering, wheat residue was approximately 2 to 5 cm deep, which
covered the soil surface 90% to 100%.

The setup for each experimental run was a completely random-
ized design with a factorial arrangement of wheat residue (present
or absent) X herbicide (acetochlor, pyroxasulfone, or pendimetha-
lin) X simulated irrigation amount (0.3, 0.6, 1.3, 2.5, or 5.1 cm) plus
a bare soil nontreated control (NTC) and a wheat residue—covered
NTC. Acetochlor (Warrant®, Bayer CropScience, Research
Triangle Park, NC, USA), pyroxasulfone (Zidua®, BASF Corp.,
Research Triangle Park, NC, USA), and pendimethalin (Prowl®
H20, BASF Corp.) were applied at 1,260, 119, and 1,120 g ai ha™!,
respectively, with a compressed air-pressurized dual-nozzle track
sprayer (Generation IV Spray Booth, Devries Manufacturing,
Hollandale, MN, USA) calibrated to deliver 94 L ha™! at 276
kPa with AIXR 110015 nozzles (TeeJet® Technologies,
Spraying Systems Co., Wheaton, IL, USA). The track sprayer
was also equipped with an overhead irrigation simulator fitted
with two DR11010 nozzles (Wilger Inc., Lexington, TN, USA)
on a water-only boom calibrated to deliver 28,234 L ha™! at
172 kPa to achieve the desired amount. The nozzles produced
ultra-coarse spray quality (volume median diameter > 665
pm) (ASABE 2009). All simulated overhead irrigation treatment
amounts greater than 0.6 cm were made in increments of 0.6 cm
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to allow sufficient time for water to soak into soil and minimize
puddling. After the simulated overhead irrigation applications,
no further overhead water was applied to trays, and trays were
subsurface irrigated as needed (daily) to ensure sufficient soil
moisture for barnyardgrass emergence and growth. Weed spe-
cies other than barnyardgrass that emerged during the experi-
ment were clipped weekly to ensure that the soil or wheat
straw surface was not disturbed.

Data Collection and Analysis

At 28 d after treatment (DAT), experimental units were visually
evaluated for barnyardgrass control on a scale from 0 to 100, 0
being similar to the bare soil NTC and 100 being no plants present.
Additionally, at 28 DAT, all barnyardgrass plants in the center 213
cm? of each tray were counted and cut at the soil surface level, dried
at 50 C for 5 d, and weighed to determine density and aboveground
biomass.

All data were first subjected to analysis of variance (ANOVA) to
test for main effects and interactions under the AGRICOLAE package
in R (version 0.98.1091, RStudio Inc., Boston, MA, USA). All
assumptions of ANOVA were met; therefore no data transforma-
tions were necessary. Significant interactions between main effects
and experimental runs were not detected (P > 0.13); therefore data
were pooled across two runs. Based on R? values and lack-of-fit
tests, a simple linear regression model in the R STATS package best
explained the data. Data were then grouped by herbicide and wheat
residue type (present or absent) and regressed against simulated
overhead irrigation level using a linear quadratic regression model:
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Figure 2. Regression of barnyardgrass densities (plants 213 cm~2) 28 DAT as affected by acetochlor (A), pyroxasulfone (B), or pendimethalin (C) applied to bare soil or wheat

straw-covered soil and simulated overhead irrigation amount in greenhouse experiments conducted in Mississippi in 2018.

)
A) Gray bands represent 95% confidence intervals. (B)

(
Horizontal black lines represent the upper limit of the 95% confidence interval for the maximum of bare soil applications. (C) Mean density of bare and wheat residue-covered soil

nontreated controls was 88 and 81 plants 213 cm™2, respectively.

Y=Bx+C (1]

where Yis the response (barnyardgrass control, density, or biomass
28 DAT), x is the level of simulated overhead irrigation (expressed
in centimeters), C is the intercept, and B is the slope. Data were
then plotted graphically under the GGPLOT2 package in R and fitted
with a 95% confidence band.

Results and Discussion

Barnyardgrass control from acetochlor applications to bare soil
increased with simulated overhead irrigation (B=2.9) (Table 1;
Figure 1). Despite this positive relationship with acetochlor, bar-
nyardgrass control was greater from pyroxasulfone and pendime-
thalin applied to bare soil compared to acetochlor, regardless of
irrigation level (Figure 1). Among the herbicides tested, pyroxasul-
fone provided the greatest barnyardgrass control when applied to

https://doi.org/10.1017/wet.2022.30 Published online by Cambridge University Press

bare soil and was not influenced by irrigation level, because the
slope was similar to zero (B=0.2; C=85.4) (Table 1; Figure 1).
Barnyardgrass control from pendimethalin applied to bare soil
was negatively influenced by increased irrigation (B = —2.1).
The solubilities of pyroxasulfone and pendimethalin are less than
that of acetochlor (Shaner 2014; Westra et al. 2014); therefore
increasing simulated overhead irrigation when pyroxasulfone
or pendimethalin was applied to bare soil most likely did not
increase the availability of either herbicide in the soil-water sol-
ution, whereas acetochlor availability did increase as irrigation
amount increased. When applied to wheat straw, all three herbi-
cides resulted in decreased barnyardgrass control (Figure 1).
Barnyardgrass control by both acetochlor and pyroxasulfone
increased with simulated overhead irrigation; in contrast, control
with pendimethalin applied to wheat straw—covered soil decreased
with increasing simulated overhead irrigation amounts (B = —4.6).
However, reduced barnyardgrass control with acetochlor and
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Figure 3. Regression of barnyardgrass biomass 28 DAT as affected by acetochlor (A), pyroxasulfone (B), or pendimethalin (C) applied to bare soil or wheat straw-covered soil and
simulated overhead irrigation amount in greenhouse experiments conducted in Mississippi in 2018. (A) Gray bands represent 95% confidence intervals. (B) Horizontal black lines
represent the upper limit of the 95% confidence interval for the maximum of bare soil applications. (C) Mean biomass of bare and wheat residue-covered soil nontreated control

was 23 and 19 g, respectively.

pyroxasulfone in applications to wheat straw-covered soil was not
alleviated to levels similar to bare soil applications by increasing
irrigation (Figure 1). Barnyardgrass response to pendimethalin
applied to wheat straw-covered soil was peculiar in that it was
the only herbicide that responded negatively to increased irriga-
tion. Consequently, barnyardgrass control by pendimethalin
applied to wheat straw-covered soil was similar to control by bare
soil applications followed by simulated overhead irrigation
amounts of 0.3 to 1.2 cm based on 95% confidence intervals
(Figure 1). Furthermore, barnyardgrass control by pendimethalin
applied to wheat straw—covered soil was more variable than bare
soil applications based on 95% confidence intervals.
Barnyardgrass densities resulting from acetochlor applications
to bare soil decreased by approximately 4 plants 213 cm™> for every
increase in 1 cm of simulated overhead irrigation (Table 1;
Figure 2). However, pyroxasulfone applied to bare soil resulted
in a decrease of only 1.9 plants 213 cm™ for every increase in 1
cm of simulated overhead irrigation. Similar to visually evaluated
control, the negative effect of increasing simulated overhead irri-
gation on pendimethalin was apparent for barnyardgrass densities,
as densities increased by 3.2 plants 213 cm™ for every increased in
1 cm of simulated overhead irrigation. When applied to wheat
straw—covered soil, neither acetochlor nor pyroxasulfone treat-
ment reduced barnyardgrass densities, similar to bare soil applica-
tions, and no effects of irrigation amount were detected, as the
slopes were similar to zero (Table 1; Figure 2). However, barnyard-
grass densities after applications of pendimethalin to wheat
straw-covered soil were similar to bare soil applications across
all simulated overhead irrigation levels. Smith et al. (2016) reported
no differences among Palmer amaranth densities from acetochlor
applications to bare sandy soil receiving 0 to 1.3 cm of irrigation.
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Increasing amounts of simulated overhead irrigation led to
decreased barnyardgrass biomass in acetochlor and pyroxasulfone
applications to both bare soil and wheat straw-covered soil
(Table 1; Figure 3). Conversely, biomass reductions by pendime-
thalin treatments was negatively influenced by increasing irriga-
tion levels (Table 1; Figure 3). However, greater biomass was
observed from pendimethalin in wheat straw-covered soil applica-
tions compared to bare soil applications until at least 3.2 cm of irri-
gation was applied where biomass levels were similar among the
two soil surface types. It is also important to note that in terms
of barnyardgrass biomass data, applications of acetochlor and
pyroxasulfone to wheat straw—covered soil resulted in more incon-
sistent responses than bare soil applications, as can be seen from
the width of the 95% confidence band of the fitted regression lines
(Figure 3).

The negative relationship between pendimethalin efficacy and
increasing amounts of simulated overhead irrigation observed in
the current study is unusual, as the other tested herbicides exhib-
ited the inverse. High levels of rainfall or irrigation after applica-
tions of highly water-soluble herbicides, such as dicamba, have
been shown to cause herbicide leaching below the weed seed ger-
mination layer (Friesen 1965). Furthermore, Banks and Robinson
(1984) reported that applications of oryzalin, a dinitroaniline her-
bicide similar to pendimethalin, were more influenced by the
amount of rainfall after application than by the level of wheat res-
idue present, suggesting that herbicide release from wheat residue
was alleviated by rainfall. Pendimethalin adsorbs to plant residue
and organic matter much more strongly than acetochlor or pyrox-
asulfone and is highly water insoluble (0.275 mg L™!) compared to
acetochlor (223 mg L™!) and pyroxasulfone (3.49 mg L™!) (Shaner
2014). Consequently, based on pendimethalin’s water solubility
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and K, of 17,200 mL g7, it is highly unlikely that increased simu-
lated rainfall caused pendimethalin to leach in the soil, resulting in
reduced efficacy (Shaner 2014). However, acetochlor and pyroxa-
sulfone are nonvolatile, whereas pendimethalin is moderately vol-
atile, especially when exposed above the soil (Cooper et al. 1990;
Shaner 2014). In fact, the negative relationship between simulated
rainfall and pendimethalin in our study agrees with previous
research indicating that increased moisture conditions promote
dinitroaniline herbicide volatility losses (Bardsley et al. 1968;
Ketcherside et al. 1969; Parochetti et al. 1976; Parochetti and
Hein 1973). This phenomenon could also explain why trends
across simulated rainfall amounts between bare soil and wheat
straw-covered soil pendimethalin applications were so diverse
(Figure 1). In addition, pendimethalin applied to bare soil likely
moved deeper into the soil, avoiding further losses to volatility.
Findings suggest that improvement in weed control from appli-
cations of acetochlor or pyroxasulfone to wheat straw-covered soil
can be achieved with optimal levels of overhead irrigation; how-
ever, as Banks and Robinson (1982) also suggested, there is a limit
to how much herbicide can be released from wheat straw once it is
intercepted. Furthermore, some herbicides, such as pendimethalin,
may be adversely affected by increased amounts of irrigation (and
rainfall) due to the promotion of volatility or other means of her-
bicide loss. Residual herbicides are an important component of
integrated weed management in conservation tillage. Future
research should evaluate whether increased overhead irrigation
amounts impact weed control by other commonly used residual
herbicides with varying adsorption, solubility, and volatility char-
acteristics applied to crop residue-covered soil. Additionally, the
acetochlor formulation used in these studies is microencapsulated,
which may differ from the emulsifiable concentrate formulation.
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