A note on B^* -algebras

By G. R. ALLAN

Sidney Sussex College, Cambridge

(Received 4 June 1964)

A normed algebra A is a pre- B^* -algebra if its norm satisfies $||x^*x|| = ||x||^2$ for all elements $x \in A$; if A is also complete in its norm, then A is a B^* -algebra (see (1), page 180). In the study of certain locally convex algebras, the problem arose of expressing the condition that an algebra be a pre- B^* -algebra in terms of its properties as a locally convex algebra, rather than in terms of the norm. A solution to this problem is presented in this note; the application to the theory of locally convex algebras will appear elsewhere.

Let A be a complex normed algebra with an involution $x \to x^*$ ((1), page 178). For simplicity, it will also be assumed that A contains an identity element e; this restriction may easily be removed. The algebra A is said to be *symmetric* if $e + x^*x$ has an inverse for every $x \in A$. Let \mathfrak{B} be the collection of all subsets B of A such that (i) B is absolutely convex, (ii) $B^2 \subset B$, (iii) $B^* = B$, and (iv) B is bounded and closed. The following two theorems will be proved.

THEOREM 1. If A is a complex normed algebra with identity e and a continuous involution $x \to x^*$, then A is a pre-B*-algebra (in some norm equivalent to the given one) if and only if:

- (i) the collection B has a greatest member; and
- (ii) for each $x \in A$, there are sequences (u_n) , (v_n) in A such that

$$u_n(e+x^*x) \to e, \quad (e+x^*x)v_n \to e.$$

THEOREM 2. If A is a complex Banach algebra with identity e and involution $x \to x^*$, then A is a B*-algebra (in some norm equivalent to the given one) if and only if:

- (i) the collection B has a greatest member; and
- (ii) A is symmetric.

First, it is remarked that, if A is a pre- B^* -algebra, then it is not difficult to show that the unit ball of A is the greatest member of \mathfrak{B} . Also, it is well known that any B^* -algebra is symmetric ((1), page 243). If A is a pre- B^* -algebra, then its completion \widehat{A} is a B^* -algebra; thus, in Theorem 1(ii) both (u_n) and (v_n) may be taken as any sequence in A that tends to $(e+x^*x)^{-1} \in \widehat{A}$. Thus one half of each of the above theorems is fairly trivial and we shall merely give the detailed proofs of the non-trivial halves. It is convenient to break the proof into a number of lemmas.

LEMMA 1. Let A be a complex normed algebra with identity e and involution $x \to x^*$. Let A_1 be a *-subalgebra of A that contains e and is such that, for each $x \in A_1$, the element $(e+x^*x)^{-1}$ exists in A. Then:

(i) if
$$h = h^* \in A_1$$
, $Sp_A(h)$ is real;

(ii) if $x \in A_1$, $Sp_A(x^*x)$ is real and non-negative. (For any $x \in A$, $Sp_A(x)$ denotes the spectrum of x in A.)

The proof of this lemma is very straightforward and we shall omit it. (It is similar to (1) $(4\cdot1\cdot7)$, page 184 and $(4\cdot7\cdot6)$, page 233.)

In Lemmas 2-6, A will be a complex normed algebra with identity e and continuous involution $x \to x^*$ and we shall suppose that A satisfies the conditions (i) and (ii) of Theorem 1. Since the involution is continuous it may be assumed that $||x|| = ||x^*||$ so that the unit ball U belongs to \mathfrak{B} . Thus, if B is the greatest member of \mathfrak{B} ,

$$U \subseteq B \subseteq \alpha U$$
,

for some $\alpha>0$. It follows that the Minkowski functional of B defines a norm on A that is equivalent to the given one. Thus, without loss of generality, it may be supposed that B is the unit sphere of A; this will be done henceforth. Let \widehat{A} be the completion of A; since the map $x\to x^*$, of A into itself, is continuous, it has a unique extension to a map of \widehat{A} into itself, which will also be denoted by $x\to x^*$. This map is clearly an involution on \widehat{A} .

LEMMA 2. If $h = h^* \in \widehat{A}$ then $||h|| = r_{\widehat{A}}(h)$. $(r_{\widehat{A}}(h) \text{ denotes the spectral radius of } h \text{ in } \widehat{A}.)$ Proof. Suppose first that $h = h^* \in A$. Then clearly $h^2 \in B$ if $h \in B$.

Now let $h^2 \in B$ and choose real $\alpha > 1$ such that $h \in \alpha B$. Then, for $n = 1, 2, ..., h^{2n} \in B^n \subseteq B \subseteq \alpha B$ and $h^{2n+1} \in \alpha BB \subseteq \alpha B$. Thus if $C = \{e, h, h^2, ...\}$, C is bounded and clearly $C^2 \subseteq C$. It is now simple to show that the closed absolutely convex hull of C belongs to \mathfrak{B} and thus $C \subseteq B$. In particular, $h \in B$.

Thus $h \in B$ if and only if $h^2 \in B$, so that $||h^2|| = ||h||^2$.

Suppose now that $h = h^* \in \widehat{A}$. Let (x_n) be some sequence in A such that $x_n \to h$. Then if $h_n = \frac{1}{2}(x_n + x_n^*)$, it follows that $h_n = h_n^* \in A$ and $h_n \to h$. Thus

$$||h^2|| = \lim_n ||h_n^2|| = \lim_n ||h_n||^2 = ||h||^2.$$

The result of the lemma now follows from the formula for spectral radius in a Banach algebra: $r(x) = \lim_{n \to \infty} ||x^n||^{1/n}$.

LEMMA 3. If $x \in A$ then $(e + x^*x)^{-1}$ exists in \widehat{A} .

Proof. Let $y=e+x^*x$. By hypothesis (ii) of Theorem 1, there is a sequence (u_n) in A such that $u_ny\to e$. Hence there is some integer N such that $\|u_Ny-e\|<1$ and hence such that u_Ny is invertible in \widehat{A} . Thus there is some $u\in\widehat{A}$ such that $(uu_N)y=e$; similarly there is some N' and some $v\in\widehat{A}$ such that $y(v_N,v)=e$. Thus y is invertible in \widehat{A} .

Lemma 4. \hat{A} is a symmetric Banach algebra.

Proof. Let $x \in \widehat{A}$; it must be shown that $e + x^*x$ is invertible in \widehat{A} .

Choose a sequence (x_n) in A such that $x_n \to x$. Put $y = e + x^*x$, $y_n = e + x_n^*x_n$; then $y_n \in A$, $y_n \to y$. By Lemma 3, y_n^{-1} exists in \widehat{A} for each n and so, by Lemma 1 (with \widehat{A} for A and A for A_1), $Sp_{\widehat{A}}(x_n^*x_n)$ is real and non-negative for each n. Thus

$$Sp_{\widehat{A}}(y_n) \subset [1, \infty)$$
 and so $Sp_{\widehat{A}}(y_n^{-1}) \subset (0, 1]$

for each n.

31

Thus, by Lemma 2 (since y_n^{-1} is clearly Hermitian),

Hence

$$\begin{split} \|y_n^{-1}\| &= r_{\widehat{A}}(y_n^{-1}) \leqslant 1 \quad (n = 1, 2, \ldots). \\ \|y_n^{-1} - y_m^{-1}\| &= \|y_m^{-1}(y_m - y_n)y_n^{-1}\| \\ &\leq \|y_m^{-1}\| \, \|y_m - y_n\| \, \|y_n^{-1}\| \\ &\leq \|y_m - y_n\|. \end{split}$$

Since $y_n \to y$ it follows that (y_n^{-1}) is Cauchy and so has a limit $z \in \widehat{A}$. Clearly

$$yz = zy = e$$
.

This concludes the proof.

Lemma 5. Any maximal commutative *-subalgebra of A is a B*-algebra.

Proof. Let C be any maximal commutative *-subalgebra of \widehat{A} . Since, by Lemma 4, \widehat{A} is symmetric, C is symmetric. Also $r_C(x) = r_{\widehat{A}}(x) \equiv r(x)$, say $(x \in C)$. If x = h + ik (h, k Hermitian) then $h, k \in C$, hk = kh and $r(x) \leq ||x|| \leq ||h|| + ||k|| = r(h) + r(k) \leq 2r(x)$, the last inequality following since, e.g. $h = \frac{1}{2}(x + x^*)$ (see (1), page 10).

But, restricted to the commutative algebra C, r is a seminorm and in fact, by what has just been shown, it is a norm that is equivalent (on C) to $\| . \|$.

Since C is symmetric, it is well known ((1), pages 189 and 233) that

$$r(x^*x) = r(x)^2 \quad (x \in C),$$

so that C is a B^* -algebra under the norm r, and r is equivalent to the given norm.

Lemma 6. \hat{A} is semi-simple.

Proof. Let R be the radical of \widehat{A} ; for $x \in R$ let x = h + ik (h, k Hermitian). Then $x^* \in R$ ((1), page 179) so $h, k \in R$ and thus r(h) = r(k) = 0 ((1), page 56). Thus, by Lemma 2, h = k = 0 and so x = 0. This proves the lemma.

Proof of Theorem 1. By Lemmas 4 and 6, \widehat{A} is a semi-simple symmetric Banach algebra. Hence ((1), pages 236–237) \widehat{A} has a faithful *-representation, $x \to T_x$, by an algebra of bounded operators on some Hilbert space H; let $\|\cdot\|_T$ denote the operator norm on \widehat{A} .

Let $h = h^* \in \widehat{A}$ and let C_h be a maximal commutative *-subalgebra of \widehat{A} that contains h. By Lemma 5, C_h is a B^* -algebra under the norm r; the restriction to C_h of the representation $x \to T_x$ is thus a *-isomorphism of one B^* -algebra into another (the algebra of bounded operators on H) and this map is therefore an isometry ((1), page 241). Hence, in particular $\|h\|_T = r(h) = \|h\|$,

for any Hermitian $h \in \widehat{A}$.

Thus for $x \in \widehat{A}$, x = h + ik(h, k Hermitian),

$$\begin{split} \|x\| & \leq \|h\| + \|k\| = \|h\|_T + \|k\|_T \leq 2\|x\|_T \leq 2(\|h\|_T + \|k\|_T) \\ & = 2(\|h\| + \|k\|) \\ & \leq 4\|x\|, \end{split}$$

so that $\|.\|$ and $\|.\|_T$ are equivalent norms on \widehat{A} . In fact these norms must be identical (on A and hence on \widehat{A}) since the unit sphere of A with respect to either of them is the set B. Hence $(A; \|.\|)$ is a pre- B^* -algebra and the proof is complete.

Proof of Theorem 2. Let A be a complex Banach algebra that satisfies conditions (i) and (ii) of Theorem 2, the involution in A not being given as continuous. If $\| \cdot \|$ is the given norm on A, a new norm is defined by

$$|x| = \max(||x||, ||x^*||) \quad (x \in A).$$

Then (A; |.|) is a normed algebra (not necessarily complete) and clearly

$$|x| = |x^*|, \quad ||x|| \le |x|, \quad ||x^*|| \le |x| \quad (x \in A).$$

Also if $D \subset A$ and $D = D^*$ then D is |.|-bounded if and only if it is ||.|-bounded and so in particular, the collection \mathfrak{B} is the same for the algebra A under either norm. The algebra (A; |.|) thus satisfies all the conditions of Theorem 1 and hence it is a pre- B^* -algebra under a norm equivalent to |.|.

Thus $(A; \|.\|)$ is an A^* -algebra ((1), page 181) with an auxiliary norm that is equivalent to |.|. Hence the involution on A must be continuous under the given norm ((1), page 187). Thus $\|.\|$ and |.| are equivalent norms so that A is a B^* -algebra under a norm equivalent to the given one. This concludes the proof.

It is simple to find examples that show that both the conditions (i) and (ii) of the theorems are necessary.

REFERENCE

(1) RICKART, C. E. The general theory of Banach algebras (Van Nostrand; 1960).