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A normed algebra A is a pre-B*-algebra if its norm satisfies \\x*x\\ = ||x||2 for all ele-
ments ze A; if A is also complete in its norm, then A is a B*-algebra (see (l), page 180).
In the study of certain locally convex algebras, the problem arose of expressing the
condition that an algebra be a pre--B*-algebra in terms of its properties as a locally
convex algebra, rather than in terms of the norm. A solution to this problem is pre-
sented in this note; the application to the theory of locally convex algebras will appear
elsewhere.

Let A be a complex normed algebra with an involution x^-x* ((l), page 178).
For simplicity, it will also be assumed that A contains an identity element e; this
restriction may easily be removed. The algebra A is said to be symmetric if e + x*x
has an inverse for every x e A. Let S3 be the collection of all subsets B of A such that
(i) B is absolutely convex, (ii) B2 <= B, (iii) B* = B, and (iv) B is bounded and closed.
The following two theorems will be proved.

THEOREM 1. If A is a complex normed algebra with identity e and a continuous in-
volution x -> x*, then A is a pre-B*-algebra (in some norm equivalent to the given one)
if and only if:

(i) the collection $ has a greatest member; and
(ii) for each xeA, there are sequences (un), (vn) in A such that

un(e + x*x) -> e, (e + x*x)vn -*• e.

THEOREM 2. If A is a complex Banach algebra with identity e and involution x -> x*,
then A is a B* -algebra (in some norm equivalent to the given one) if and only if:

(i) the collection 93 has a greatest member; and
(ii) A is symmetric.
First, it is remarked that, if A is a pre-jS*-algebra, then it is not difficult to show

that the unit ball of A is the greatest member of 93. Also, it is well known that any
i?*-algebra is symmetric ((l), page 243). If A is a pre-£*-algebra, then its completion
A is a -B*-algebra; thus, in Theorem 1 (ii) both (un) and (vn) may be taken as any
sequence in A that tends to (e + x*x)-1 e A. Thus one half of each of the above theorems
is fairly trivial and we shall merely give the detailed proofs of the non-trivial halves.
It is convenient to break the proof into a number of lemmas.

LEMMA 1. Let A be a complex normed algebra with identity e and involution x -> x*.
Let Ax be a *-subalgebra of A that contains e and is such that, for each xeAvthe element
(e + x*x)~1 exists in A. Then:

(i) ifh = h*e Alt SpA(h) is real;
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(ii) t / x e i j , SpA(x*x) is real and non-negative.
(For any xeA, SpA(x) denotes the spectrum of a; in A.)

The proof of this lemma is very straightforward and we shall omit it. (It is similar
to (l) (4-1-7), page 184 and (4-7-6), page 233.)

In Lemmas 2-6, A will be a complex normed algebra with identity e and continuous
involution x->x* and we shall suppose that A satisfies the conditions (i) and (ii) of
Theorem 1. Since the involution is continuous it may be assumed that ||a;|| = ||a;*[|
so that the unit ball U belongs to 93. Thus, if B is the greatest member of 93,

for some a > 0. It follows that the Minkowski functional of B defines a norm on A
that is equivalent to the given one. Thus, without loss of generality, it may be sup-
posed that B is the unit sphere of A; this will be done henceforth. Let A be the comple-
tion of A; since the map x -> x*, of A into itself, is continuous, it has a unique extension
to a map of A into itself, which will also be denoted by x ->• x*. This map is clearly an
involution on A.

LEMMA 2. Ifh = h*eA then\\h\\ = r£(h). (r£(h) denotes the spectral radius of hin A.)
Proof. Suppose first that h = h*eA. Then clearly JiPeBifheB.
Now let h2eB and choose real a> 1 such that heaB. Then, for n = 1,2,...,

h2neBnc:Bcz aB and ft?n+1 e aBB <= ocB. Thus if C = {e, h, h2,...},C is bounded and
clearly C2 c C. It is now simple to show that the closed absolutely convex hull of C
belongs to 33 and thus C c B. In particular, heB.

Thus heB if and only if h2eB, so that \\h2\\ = \\hf.
Suppose now that h = h*eA. Let (xn) be some sequence in A such that xn ->• h.

Then if hn = %(xn + x%), it follows that hn = h*eA and hn^ h. Thus

The result of the lemma now follows from the formula for spectral radius in a Banach
algebra: r(x) = ]im||a;n||1'B-.

n

LEMMA 3. IfxeA then (e+x*x)~1 exists in A.
Proof. Let y = e + x*x. By hypothesis (ii) of Theorem 1, there is a sequence (un)

in A such that uny ->• e. Hence there is some integer N such that \uNy—e|| < 1 and
hence such that uNy is invertible in A. Thus there is some we A such that (uuN)y = e;
similarly there is some N' and some veA such that y(vN-v) = e. Thus y is invertible
in A.

LEMMA 4. A is a symmetric Banach algebra.
Proof. Let x e A; it must be shown that e + x*x is invertible in A.
Choose a sequence (xn) in A such that xn->x. Put y = e + x*x, yn = e + x%xn;

then yniA,yn->y. By Lemma 3, y~1 exists in A for each n and so, by Lemma 1 (with
A for A and A for .4J, Sp^ (xja;n) is real and non-negative for each n. Thus

SPA (yn)
 c [1, a>) and so Spg (y~x) c (0,1]

for each w.
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Thus, by Lemma 2 (since y'1 is clearly Hermitian),

bnl = r^dfn1) ^ I ( n = l , 2 , . . . ) .

Hence Wy^-y^W = \\ym\ym-yn)ynx\\

< l|2/m1||||2/m-2/JI|2/»1||

^ \\ym-yn\\-

Since yn -> y it follows that (y^1) is Cauchy and so has a limit ze A. Clearly

yz = zy = e.
This concludes the proof.

LEMMA 5. Any maximal commutative *-subalgebra of A is a B*-algebra.
Proof. Let C be any maximal commutative *-subalgebra of A. Since, by Lemma 4,

A is symmetric, C is symmetric. Also rc(x) = r£(x) = r(x), say (xeO). If a; = A + i&
(h,kHermitian)thenh,keC,hk = kha,ndr(x) s£ ||x|| ^ ||*|| + ||*|| = r(h) + r{k) ^ 2r(x),
the last inequality following since, e.g. h = §(x + x*) (see (l),page 10).

But, restricted to the commutative algebra C, r is a seminorm and in fact, by what
has just been shown, it is a norm that is equivalent (on C) to ||. ||.

Since C is symmetric, it is well known ((l), pages 189 and 233) that

r(x*x) = r(x)2 (xeC),

so that C is a l?*-algebra under the norm r, and r is equivalent to the given norm.

LEMMA 6. A is semi-simple.

Proof. Let R be the radical of A; for xeB let x = h + ik (h,k Hermitian). Then
x*eB((l), page 179)soA, & e .R and thus r(A) = r(k) = 0((l),page56). Thus, by Lemma
2, h = k = 0 and so x = 0. This proves the lemma.

Proof of Theorem 1. By Lemmas 4 and 6, A is a semi-simple symmetric Banach
algebra. Hence ((l), pages 236-237) A has a faithful *-representation, x^-Tx, by an
algebra of bounded operators on some Hilbert space H; let ||. Ĥ  denote the operator
norm onX

Let h = h*eA and let Ch be a maximal commutative *-subalgebra of A that con-
tains h. By Lemma 5, Ch is a i?*-algebra under the norm r; the restriction to Ch of the
representation x -> Tx is thus a *-isomorphism of one i?*-algebra into another (the
algebra of bounded operators on H) and this map is therefore an isometry ((1), page
241). Hence, in particular .,.., . , . MJ|I

^ W r = r(h) = \\h\\,
for any Hermitian he A.

Thus for xeA, x = h + ik(h,k Hermitian),

so that ||. || and ||. || T are equivalent norms on A. In fact these norms must be identical
(on A and hence on A) since the unit sphere of A with respect to either of them is the
set B. Hence {A; ||. ||) is a pre-5*-algebra and the proof is complete.
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Proof of Theorem 2. Let A be a complex Banach algebra that satisfies conditions (i)
and (ii) of Theorem 2, the involution in A not being given as continuous. If ||. || is the
given norm on A, a new norm is defined by

|~| _ -may MITII ll'r*lh (r(=A\\x\ — max (\\x\\, \\x \\) \xz.A).

Then (A; | . |) is a normed algebra (not necessarily complete) and clearly

Also if D <= A and D = D* then D is |. | -bounded if and only if it is ||. || -bounded and
so in particular, the collection !Q is the same for the algebra A under either norm. The
algebra (A; | . |) thus satisfies all the conditions of Theorem 1 and hence it is a pre-5*-
algebra under a norm equivalent to |. |.

Thus {A; || .||) is an^4*-algebra ((i),page 181) with an auxiliary norm that is equiva-
lent to |. |. Hence the involution on A must be continuous under the given norm
((1), page 187). Thus ||. || and |. | are equivalent norms so that A is a ,B*-algebra under
a norm equivalent to the given one. This concludes the proof.

I t is simple to find examples that show that both the conditions (i) and (ii) of the
theorems are necessary.
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