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THE p-ADIC GENERALIZATION OF THE THUE-SIEGEL-ROTH
THEOREM

D. Ripour

1. It was proved recently by Roth} that if « is any real algebraic
number, and « > 2, then the inequality

a—£'<—1—
q q-

has only a finite number of solutions in integers & and ¢, where ¢ > 0 and
(h, 9) =1. This remarkable result answered finally a question which
had been only partially answered by the work of Thue and Siegel.

The question of approximating by the same rational number %/¢ to a
real root { of an algebraic equation and to p-adic roots {;, ..., {, of the same
equation, corresponding to different primes p,, ..., p, was investigated
by Mahler}, and the object of the present paper is to obtain a result for
this problem which bears the same relation to Roth’s theorem as Mahler’s
result bears to the earlier Thue-Siegel theorem.

We recall§ that for any prime p the p-adic field R, is the extension
of the rational field R effected by means of the p-adic valuation of R,
the p-adic valuation |z |, of x = a/b in R being defined by

|afbl, = PP (ab 0),

where 0(a), 8(b) are the exact poweré of p dividing the integers a, 5. The
p-adic valuation extends to apply to the elements of R,,.
We shall prove:

TrEOREM 1. Suppose the equation
a2 +a 214 +a, =0, (1)

where n =2, has rational integral coefficients, and has a root { in the real
field, a root { in the py-adic field, ..., a root {, in the pradic field, where
Prs ---, Dy are distinct primes. Then, if k > 2, the inequality

] —K
min(1, [{—hjq]) I min(L, |h—gL|p,) <(max(k|, |q)) (2)
has at most a finite number of solutions in rational integers h, q with
(h,q)=1,g>0.

It will be noted that the p-adic valuations relate to ¢, —h|, and not
to | {,—h/q|p, so that the p-adic valuations are not on quite the same

t Mathematika, 2 (1955), 1-20. This paper will be referred to as R.
t Math. Annalen, 107 (1933), 691-730.
§ See, for example, van der Waerden, Moderne Algebra 1 (New York, 1953), 235-243.
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footing as the real valuation. The theorem would assert less with
|L,—haly., since |gjp, <1.

The following theorem, which is expressed entirely in rational terms,
follows from Theorem 1 as in the work of Mahlerf, and is almost
equivalent to it:

TaEOREM 2. Let F(x, y) be an irreducible binary form of degree n =3
with rational integral coefficients. Let py, ..., p, be distinct primes, and let
G(h, q) denote the greatest power-product of py, ..., p; which divides
F(h, q). Then, if «> 2, the inequality

| F(h, 9)| o
Gk, q) <(maX(|h|’ |QI)) (3)

has at most a finite number of solutions in rational integers h, q with
(h, q) =1.

In a further paper}, Mahler made a number of deductions concerning
binary forms from the work of the first paper. But for these deductions
the value of the exponent obtained in the first paper was unimportant, and
it appears that we are unable to make any improvements in these results.

2. We first remark that, in proving Theorem 1, we can suppose that
ay=11in (1). For if f(x) denotes the polynomial on the left of (1), we
have

fl@) = ag™*g(a,2),

where g(y) is a polynomial with rational integral coefficients and highest
coefficient 1. The roots of g(y) =0 corresponding to ¢, ¢, ..., {; are
agl, agly, o @l If

’

%k g
r q, (’q) E

=

o]

then
min(1, |{—h/q|) =|a,|™ min(1, |ae{—2'[q’]),

min(L ch‘r—h[p-r) > min(la [ql 0 C'r_k, ll’-,-)’
max(|k], [g]) 2 |ao [ max([k'], |¢"])-

Hence, if « >«’> 2, the inequality (2) implies a similar inequality for
k', q¢' and the roots of g(y) = 0, with exponent «’ in place of «, provided
max(|%|, |q|) is sufficiently large. Thus it suffices if the latter inequality
has at most a finite number of solutions.

t Loc. cit., Hilfsatz 5 and §18.
1 Math. Annalen, 108 (1933), 37-55.
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3. We follow the work of R without change up to the beginning of §5.
At this point we change slightly the definition of 6,,; we define

O (B hyfa1s coos Bpf@ms T1r -oes T (4)

to be the upper bound of the index #(R) of a polynomial R(zy, ..., %,,)
at the point (h,/qy, ..., h,/q,), for all polynomials in the set

R (B 71 ooy )

Thus 0,, as now defined depends on A,, ..., %,,, whereas the corresponding
definition in R involved taking the upper bound over Ay, ..., &,

The necessity for this change arises from the fact that the degree of
precision of a rational approximation A/q in the present work is related
to max(|%|, |¢]) and not just to ¢. The main effect is that the choice of
Ty, ...y Ty 86 & later stage is now made to ensure that the numbers
{max(|h,|, | ¢;])}7 are of about the same magnitude, these numbers playing
the part previously played by g,~.

We continue to follow the work of R, up to Lemma 9, with some
changes of notation consequent upon the modified definition. The
changes are slight, for the operation of taking the upper bound over

hq, ..., b, in R was a matter of convenience and not of principle. None
of the arguments involved the consideration of more than one point at a
time.

It is convenient to write
|k, ¢| = max(| k|, | q]|).
The assertion of Lemma 5 of R now takes the form:

log B
ryloglhy, ¢
the proof being the same except for the further inequality |A,|%: < B,
obtained by considering the coefficient of the lowest term in R{z;) as well
as the coefficient of the highest term.

Lemma 6 of R requires only a change of notation, in that ©,, ©,, ©,_,
now have reference respectively to %,/qy, ..., ky/q,, to h,lg, and to
hy/qs, --vs hp_1/3p—1- The proof is unchanged, since these are the points
at which the indices are taken for the polynomials in p variables, 1
variable and p—1 variables, respectively.

Lemma 7 of R requires only a similar change of notation, except that
the condition r; logq; > r, logg, in (22) of R is now replaced by

0,(B; hylg; my) < (5)

r;1og|hy, q;| =1y log| by, g4. (6)
The condition on ¢, in (21) of R remains unchanged.

Lemma 8 of R has no reference to polynomials and requires no
modification.
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4. We come now to Lemma 9, the principal lemma of R, and this will
be restated, with the necessary modifications, as Lemma 1 below. Let
f(z) be the polynomial in (1), with a5=1. Let

A =max(l, |a,], ..., |a,]). (N
We shall be concerned with one set of values of
m, 8, gy, Py ooy Qs P 715 <oor T

which will be chosen later in the order just indicated. The choice Will be
made to satisfv the conditions:

0<d<m™, (8)

10m §AI2” 4 2(1+38) mml2 < 1m, (9)
P> 10871, r; 4 [r; > 81 (j=2, ..., m), (10)
6%log g, > 2m+1+42m log (2-+4), (1)
r;log|ky, q;| =, logl|hy, q4]. (12)

These conditions are (29)-(33) of R, with slight changes in the last two.
Define A, y, , By as in R by

A= 4(1438)nm1?, (13)
y =(m—2A), (14)

5 = 10m W™, (15)
B, = [¢in]. (16)

We note, as in R, that (9) is equivalent to
1 <7, (7)
that B, is large, and that ¢i’"1 < B,.

Lemma 1. Let (h;, q;)=1 for j=1, ..., m, and suppose that the
conditions (8)—-(12) are satisfied. Then there exists a polynomial Q(z,, ..., x,,)
with integral coefficients, of degree at most r; in x; for j=1, ..., m, such that

(i) Qi,..in(®@, .., @) is divisible by f(x) for all non-negative integers
L1y ooes by SQtISfyIng

% [ .
71"—{‘---‘{*;” <y—1; (18)

(iii) for any non-negative integers ¢y, ...,1,, the coefficients of the
polynomial Q; . (%, ..., x,) have absolute values at most Bi+%,
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Proof. We follow the proof of Lemma 9 of R with slight modifications.
We consider the same class of polynomials W(z,, ..., z,,) as there, and
deduce the existence of a polynomial W#* = W’'—W"' such that

Wj*l;-v-,fm(x, veey x)

is divisible by f(z) for all j,, ..., j,, satisfying

0y <y vy 0K <Py %+...+’;'ﬂ-<y- | (19)
m
The coefficients in W#* are rational integers, not all 0, having absolute
values at most B,.

The polynomial W#(x,, ..., ,,) belongs to the class R,,(¢{"1; 1, ..os 7,0),
and therefore by Lemma 7 of R its index at the point (% /qy, ..., pu/dy)
relative to ry, ..., 7, is less than 7, defined in (15). Hence W* possesses
some derivative

: N 1 d \ ¥ 0 km *
with ch+...+Ii'ﬂ<q7, (21)
71 "

such that Q(k,/q,, ..., k,/q,) #O.

Suppose 1y, ..., 1y, satisfy (18). Then @, ;. is a constant multiple
of Wik .. where j, =144k, etec. By (21),js, ..., j, satisfy the last
condition of (19), and therefore W}k .= (z, ..., ) is divisible by f(),
being identically zero if j, >r, for any v. Hence the polynomial @
has the properties (i) and (ii). It is easily deduced, as in R, from the
fact that W* has coefficients of absolute value at most B,, that ¢ also has

the property (iii).

5. We can now prove the following lemma, from which Theorem 1
will be deduced.

Lemma 2. Let Ty, I'y, ..., I'y be non-negative real numbers satisfying
T+ T4 +Ty=1. (22)

Then, if « > 2, the t+ 1 simultancous inequalities
min(1, |{—h/q]) <k, g[~, (23)
min(1, (¢, —hlp,) <|h, q|™" (=1, ..., 1), (24)

have at most a finite number of solutions in integers h, q satisfying (h, ¢) = 1.

It will be observed that the inequalities (23), (24) are significant only
in so far as the corresponding exponent I' is positive. Thus the lemma
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covers three types of approximation: real approximation when
'N=..=I=0 (Roth’s result),
p-adic approximation when I'y= 0, and mixed approximation.

Proof. Suppose there are infinitely many solutions. First choose m
so that m > 4nm'? and
2m

m—4nmi2 <H

as is possible since « > 2. Next choose § > 0 so small that (8) and (9)
are satisfied, and

2m(1+58)
m—4(1+38)nml2—2y

<K.

This is equivalent to
m(14+58) < k(y—n), (25)
by (13) and (14).
Now choose a solution %, ¢; of the inequalities, with (&, ¢;)=1,
such that ¢, satisfies (11). Then choose further solutions A,, gy, ..., 2y, ¢ s
all with (h;, ¢;,) =1, to satisfy

logg; 2 .
— 084 - 2 =2 . m). 26
log|h; 4, ¢;-4] 7 8 U ) (26)
Take r; to be an integer satisfying
10 log |y, ¢
>0, (27)
and define 7,, ..., r,, by
ry log| by, g4 < ryloglhy, ¢4
<1 . 28
log| A, g,/ ST + log|h;, 4] (28)
Then (12) is satisfied. Also
L] log[hﬁga;l <1+ loglkf" QJ‘| < 1+T168 (29)

7y log| Ay, ¢4 ry log| by, ¢

by (27). The conditions (10) are satisfied, since

ry loglhy, ¢ r, logg _
7 > 1 1 1 > 1 1 > 108 1
™7 log | by m| = log|hm, ]

and

- L gy-1. 1081y 4,
o > (14-+59) log|h;_y, 454

> 26-1 (14108)~1 > &1,
for j=2,...,m. :
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Since the conditions (8)-(12) are all satisfied, Lemma 1 gives the
existence of a polynomial Q(x,, ..., z,,) with the properties (i), (ii), (iii).
We consider the rational integer @ defined by

Q = Q? Q:;,,n Q(kI/QI’ AR hm/Qm)’ (30)

which is not 0 by (ii). By an obvious property of p-adic valuations,
we have ‘

QlijQl, >1. @

By the Taylor expansion of a polynomial, we have, for any «,
r Tm

1 . .
Q=qv ... gy % ... T @y 0.l s )/ —a)s ... (bp/qpm—a)ir. (32)

i1=0 Tm=0

We first use this to obtain an upper bound for |Q|. Taking «={, we
observe that by (i) of Lemma 1, the terms for which ., ..., 1, satisfy (18)
all vanish. In every other term we have, assuming I'y>0 and
|hyy 3] > 1,

l kl/Ql—glil e Ikm/Qm_gllm < (| hla fhlil v !hm’ leim)—’(ro
< by, gy [T=DRTo,

by (12). By (iii) of Lemma 1 and the well-known inequality | {| <144,
we have

| @iy, in (s oo D) K 2%m7s BIFR (L[ {])rattrm < 22mrs BI420 (24 A)mny
< B+,
by (11). Hence
|Q < gt g (ry 1) . (1 +1) BEF® |y, gy [7ralr=eTo
< |y, qy|rmA+D—ray—1KTy B1H+4,
on using (29). By the definition of B,, this implies
| 1@l <|hy, ",
where E=r{m(1+8)+8(1+40)— (y—n)xlo}.

This estimate for | Q| remains valid if I'y=10, For, taking « =0 in
(32), we have

Ty m ) . . .
| Q| <22 BIH® 5 ... T |kl ki gih L giping

i=0  Gw=0
< 22mry Bi+28 (Tl‘i‘ l)ml hls 51 lrl l hm’ lerm

< Byt by, gy |Tama o,

‘whence the same result as before.
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We now estimate | @], in a similar manner, supposing first I", >0
and |k, ¢ > 1, taking «={, in (32), and calculating in the field R, .
The terms for which iy, ..., ,, satisfy (18) again vanish by (i) of Lemma 1.
In every other term we have

[By—q1 &t e =@ i < ((Pogs @[3 [Py @ o)

Kby, gy @0
We also have

lgp e gpinlp, <1,

since the product is a non-zero rational integer. Since @, . ;. (%, ..., &)
is a polynomial with rational integral coefficients, of degree not exceeding
mry, we have

J Qil;-.., ’im(ZT’ M g‘r) lp-r < {ma’x(l’ ] CT }pf)}mrl’
by the maximum rule for p-adic valuations. Hence
| @lo, <[Py, a1 {max (1, |, ]p, )},

This remains true if I', = 0, since ¢ is a rational integer and the right-hand
side is then at least 1.
Using the estimates in (31), and noting that

3
I max(1, |{,|»,) < 4,
7==1

we obtain .
1 <A™ by, 1|7,
where
B =r;{m(148)+8(14-48)— (y—n)«},

by (22). Since A™ <|hy, ¢;|** by (11), we obtain
m(146)+8(1+58) > (y—n)x,

contrary to (25). This contradiction proves the lemma.

6. Proof of Theorem 1. Suppose the inequality (2) has infinitely
many solutions in integers %, ¢ with (%, ¢) =1, ¢ > 0. For any solution,
we can write

min(l, Iz_h/gj) :]h’ g|*o,
min(l, |gl,—hlp ) =k, ¢~ (r=1, ..., 1),

where y,, yy, ..., y, are non-negative and

Yotyit--- v =1

t Mahler, loc. cit., 701.
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Choose " so that 2 <«’ <«x. Choose a positive integer N to satisly

N(—:T—l)>t+1.

Then
r T ]
LN%VO:'—}—[:N—S,—)/I:|+...+[N ;KT'yt] > N% —(t+1)>N.
Hence there exist, for each solution %, ¢, non-negative integers f, fi, ..., /,
such that
< [N;"ﬂ/,] (r=0, ..., t)
and fotfit =N,
We have min(l, | {—h/q|) <[k, gl FlN,

min(l, |g{,—hlp,) <|h, q|< N

tor r=1, ..., L.

There are only a bounded number (depending on N) of possibilities
for f,, ..., f Hence some set of these integers must occur for an infinity
of solutions h/g of (2). For this set, supposing | %, ¢; > 1, the hypotheses
of Lemma 2 are satisfied when « is replaced by «' and when we take

L,=f/N (r=0,1,..,1).
Thus we have a contradiction, and this proves Theorem 1.
Department of Mathematics,

University College,

London.
( Recetved 1st October, 1951.)
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