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THE p-ADIC GENERALIZATION OF THE THUE-SIEGEL-ROTH
THEOREM

D . RlDOTTT

1. It was proved recently by Roth")" that if a is any real algebraic
number, and K > 2, then the inequality

_ A
9.

has only a finite number of solutions in integers h and q, where q > 0 and
(h, q) = 1. This remarkable result answered finally a question which
had been only partially answered by the work of Thue and Siegel.

The question of approximating by the same rational number hjq to a
real root £ of an algebraic equation and to p-a,dic roots £x, ..., £, of the same
equation, corresponding to different primes px, ...,pt, was investigated
by MahlerJ, and the object of the present paper is to obtain a result for
this problem which bears the same relation to Roth's theorem as Mahler's
result bears to the earlier Thue-Siegel theorem.

We recall§ that for any prime p the p-adic field Rp is the extension
of the rational field R effected by means of the p-Sidic valuation of R,
the p-adic valuation \x\p of x = ajb in R being defined by

where 6(a), 6(b) are the exact powers of p dividing the integers a, b. The
p-adic valuation extends to apply to the elements of Rp.

We shall prove:

THEOREM 1. Suppose the equation
1 + . . .+O n = 0, (1)

where n ^ 2, has rational integral coefficients, and has a root t, in the real
field, a root t,x in the px-adic field, ..., a root £( in the pt-adic field, where
pv ..., pt are distinct primes. Then, if K > 2, the inequality

m i n ( l , | £ - A / g | ) II m i n ( l , l A - g ^ l , , ) ^ ( m a x ( | A | , \q\))~K (2)

has at most a finite number of solutions in rational integers h, q with
(h, q) = l,q>0.

It will be noted that the p-adic valuations relate to \qt,T—h\Vr and not
to | t,T~hjq\p^, so that the ^p-adic valuations are not on quite the same

| Mathematika, 2 (1955), 1—20. This paper will be referred to as R.
% Math. Annalen, 107 (1933), 691-730.
§ See, for example, van der Waerden, Moderne Algebra I (New York, 1953), 235-243.
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THE THTTE-SIEGEL-ROTH THEOREM. 41

footing as the real valuation. The theorem would assert less with
| £ r - % k > since | g | , T < l .

The following theorem, which is expressed entirely in rational terms,
follows from Theorem 1 as in the work of Mahlerf, and is almost
equivalent to it:

THEOREM 2. Let F(x, y) be an irreducible binary form of degree n ^ 3
with rational integral coefficients. Let px, ...,pt be distinct primes, and let
O(h, q) denote the greatest power-product of plt ...,pt which divides
F(h, q). Then, if K > 2, the inequality

has at most a finite number of solutions in rational integers h, q with

(h,q)=l.

In a further paper J, Mahler made a number of deductions concerning
binary forms from the work of the first paper. But for these deductions
the value of the exponent obtained in the first paper was unimportant, and
it appears that we are unable to make any improvements in these results.

2. We first remark that, in proving Theorem 1, we can suppose that
a0 = 1 in (1). For if f(x) denotes the polynomial on the left of (1), we
have

f(x)=a^+1g(aox),

where g(y) is a polynomial with rational integral coefficients and highest
coefficient 1. The roots of g(y) — O corresponding to £, £x, ..., £, are

h' aoh

then
, \ao£—h'lq'\),

, \q'ao£T—h'\PT),

mux(\h\, iqD^la^maxdh'l, \q'\).

Hence, if K > K ' > 2 , the inequality (2) implies a similar inequality for
h', q' and the roots of g(y) = 0, with exponent K in place of K, provided
max(|/i|, \q\) is sufficiently large. Thus it suffices if the latter inequality
has at most a finite number of solutions.

f Loc. cit., Hilfsatz 5 and §18.
X Math. Annalen, 108 (1933), 37-55.
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42 D. RIDOXJT

3. We follow the work of R without change up to the beginning of §5.
At this point we change slightly the definition of 0 m ; we define

to l)e the upper bound of the index 6{R) of a polynomial R(xlt ..., xm)
at the point (hjq^ ..., hm/qm), for all polynomials in the set

Rm(B; ri,...,rm).

Thus ®m as now denned depends on hlt ..., hm, whereas the corresponding
definition in R involved taking the upper bound over hv ..., hm.

The necessity for this change arises from the fact that the degree of
precision of a rational approximation h/q in the present work is related
to max(|A|, \q\) and not just to q. The main effect is that the choice of
rv ..., rm at a later stage is now made to ensure that the numbers
{max(|hj\, 19V|)}'•> are of about the same magnitude, these numbers playing
the part previously played by qp.

We continue to follow the work of R, up to Lemma 9, with some
changes of notation consequent upon the modified definition. The
changes are slight, for the operation of taking the upper bound over
hv ..., hm in R was a matter of convenience and not of principle. None
of the arguments involved the consideration of more than one point at a
time.

It is convenient to write

\h, q\ = m&x(\h\,\q\).

The assertion of Lemma 5 of R now takes the form:

the proof being the same except for the further inequality | hx |
Ori ^ B,

obtained by considering the coefficient of the lowest term in B(x-j) as well
as the coefficient of the highest term.

Lemma 6 of R requires only a change of notation, in that @p, Qv 0J)_1

now have reference respectively to hx\qx, ..., hp/qp, to hp/qp, and to
h1/q1, ..., hp-ilqp-\- The proof is unchanged, since these are the points
at which the indices are taken for the polynomials in p variables, 1
variable and p—1 variables, respectively.

Lemma 7 of R requires only a similar change of notation, except that
the condition r} log^ ~^r1 \ogqx in (22) of R is now replaced by

r, log | A,, qt\>r ilogW, qx\. (6)

The condition on qr in (21) of R remains unchanged.
Lemma 8 of R has no reference to polynomials and requires no

modification.
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4. We come now to Lemma 9, the principal lemma of R, and this will
be restated, with the necessary modifications, as Lemma 1 below. Let
f(x) be the polynomial in (1), with a o = 1. Let

\an\). (7)

We shall be concerned with one set of values of

m, 8, qx, hx, ..., qm, hm, rx, ..., rm,

which will be chosen later in the order just indicated. The choice will be
made to satisfy the conditions:

0 < S < m~x, (8)

10">SW' + 2(l + 3S) nm1'2 < \m, (9)

rm > lOS-i, r^Jr, > 8"* (j=2,...,m), (10)

(2+A), (11)

, q±\. (12)

These conditions are (29)-(33) of R, with slight changes in the last two.
Define A, y, tj, Bx as in R by

, (13)

(14)

B^lqfq. (16)

We note, as in R, that (9) is equivalent to

that Bx is large, and that q\Sri < Bx.

LEMMA 1. Let (hj,qj) = l for j =1, ..., m, and suppose that the
conditions (8)-(12) are satisfied. Then there exists a polynomial Q(xv ..., xm)
with integral coefficients, of degree at most rt in xt for j=l, ..., m, such that

(i) Qiu..,$im(x, ..., x) is divisible by f{x) for all non-negative integers
iv ...,im satisfying

(ii)

(iii) for any non-negative integers ix im, the coefficients of the
polynomial Qtlimim(xv ..., xm) have absolute values at most B\+2i.
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Proof. We follow the proof of Lemma 9 of R with slight modifications.
We consider the same class of polynomials W(xv ..., xm) as there, and
deduce the existence of a polynomial W* = W'—W" such that

is divisible by f(x) for all j v ...,jm satisfying

0 <jx < » ! , . . . , O^jm^rm, 2 L + . . . + i a < y . (19)

The coefficients in W* are rational integers, not all 0, having absolute
values at most Bv

The polynomial W*(xlt ..., xm) belongs to the class Rm(q(ri; rv ..., rm),
and therefore by Lemma 7 of R its index at the point (hjq^ ..., hmjqm)
relative to rlt ..., rm is less than -q, defined in (15). Hence W* possesses
some derivative

^&klAidt' (20)

with h + ..m+!?m<f]f (21)
r r

such that Q(V?i> •••. Klfm)
Suppose iv ...,im satisfy (18). Then Qt im is a constant multiple

of Wf 3m, where j 1 = t1+fe1, etc. By (21),^, ..., j m satisfy the last
condition of (19), and therefore Wf >m>jm (x, ..., x) is divisible by f(x),
being identically zero if jv > rv for any v. Hence the polynomial Q
has the properties (i) and (ii). It is easily deduced, as in R, from the
fact that W* has coefficients of absolute value at most Bv that Q also has
the property (iii).

5. We can now prove the following lemma, from which Theorem 1
will be deduced.

LEMMA 2. Let ro, Fv ..., Tt be non-negative real numbers satisfying

r o +r 1 + . . .+r ( = i. (22)

Then, if K > 2, the t-\-l simultaneous inequalities

\h,q\-^o, (23)

\ - ^ ( r = l , . . . , « ) , (24)

have at most a finite number of solutions in integers h, q satisfying (h, q) = 1.

It will be observed that the inequalities (23), (24) are significant only
in so far as the corresponding exponent F is positive. Thus the lemma
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covers three types of approximation: real approximation when

r \ = ... = r ( = 0 (Roth's result),

^-adic approximation when Fo = 0, and mixed approximation.

Proof. Suppose there are infinitely many solutions. First choose m
so that m > 471m1'2 and

2m

m—
2 '

as is possible since K > 2. Next choose 8 > 0 so small that (8) and (9)
are satisfied, and

2m(l + 58)

m—

This is equivalent to
m(l + 5S)<«(y-r?) , (25)

by (13) and (14).
Now choose a solution hlt qx of the inequalities, with {hx, qx) — 1,

such that qx satisfies (11). Then choose further solutions h2, q2, •••, hm, qm,
all with {hj, qj)=\, to satisfy

Take rx to be an integer satisfying

lOloglft,,,?,^

and define r2, ..., rmby

rxlog\hx, qx\ • < r < 1 | »i log 1*1, gi

Then (12) is satisfied. Also

Cl+JgS (29)
log j hx,

by (27). The conditions (10) are satisfied, since

„ ^.^logl^i .gi l > y i l Qggi
Tm^ log\hm,qm\ ^ 1

and

for j = 2, ..., m.
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46 D. RIDOUT

Since the conditions (8)-(12) are all satisfied, Lemma 1 gives the
existence of a polynomial Q(xv ..., xm) with the properties (i), (ii), (iii).
We consider the rational integer Q defined by

Q = <# • • • eQ{hlqv ..., hjqj, (30)

which is not 0 by (ii). By an obvious property of ^>-adic valuations,
we have

\Q\n\Q\p >i.
l

By the Taylor expansion of a polynomial, we have, for any a,

Q = qV...q% S ... S Qtl iK(*,...,*){hJq1-x)ii...(hJqm-OL)<: (32)
11 =O tm=0

We first use this to obtain an upper bound for \Q\. Taking a = £, we
observe that by (i) of Lemma 1, the terms for which ilt ...,im satisfy (18)
all vanish. In every other term we have, assuming Fo > 0 and

i A Z i - ^ -\hjqm-^ < (\hv gjH ... \hm, q

by (12). By (iii) of Lemma 1 and the well-known inequality | £|
we have

B\+ss,

by (11). Hence

K B\+iS,

on using (29). By the definition of Bv this implies

where i/ = 1 { ( y ? o }

This estimate for | Q \ remains valid if Fo = 0, For, taking a = 0 in
(32), we have

| Q| < 22^ \™ S
i'l=0 i,»=0

, g x | ' i . . . | hm, qn

whence the same result as before.
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We now estimate | Q \Pr in a similar manner, supposing first FT > 0
and \hv q1\>\, taking a = £T in (32), and calculating in the field RPr.
The terms for which iv ...,im satisfy (18) again vanish by (i) of Lemma 1.
In every other term we have

l. ?11'1 - I hv <7

We also have

since the product is a non-zero rational integer. Since Qili...)im{°L> •••> °0
is a polynomial with rational integral coefficients, of degree not exceeding
mrv we have

I Qh iJCr, ..., U k < {max(l, ] QPT)T*I,

by the maximum rule for £>-adic valuations. Hence

I Q\vr {max( l , I lT

This remains true if FT = 0, since Q is a rational integer and the right-hand
side is then at least 1.

Using the estimates in (31), and noting thatf

E'
we obtain

where

by (22). Since Am <\hv q^ by (11), we obtain

contrary to (25). This contradiction proves the lemma.

6. Proof of Theorem 1. Suppose the inequality (2) has infinitely
many solutions in integers h, q with (h, q) = 1, q > 0. For any solution,
we can write

min(l , \C-h/q\) = \h, q\-«r°,

,\qi;T-h\PT) = \h,q\-«rr ( T = l , . . . ,* ) ,

where y0, yv ..., yt are non-negative and

f Mahler, loo. cit., 701.
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48 THE THUE-SIEGEL-ROTH THEOREM.

Choose K so that 2 < « : ' < « . Choose a positive integer N to satisfy

Then

Hence there exist, for each solution h, q, non-negative integers f0, fv .,,, j t

such that

and /

We have min(l,

tor T = 1, ..., t.
There are only a bounded number (depending on JV) of possibihties

for fQ, ..., ft. Hence some set of these integers must occur for an infinity
of solutions hjq of (2). For this set, supposing | h, q\ > 1, the hypotheses
of Lemma 2 are satisfied when K is replaced by K and when we take

rT=fT/N (T = o, I , . . . ,« ) •
Thus we have a contradiction, and this proves Theorem 1.

Department of Mathematics,
University College,

London.
(Received lat October, 1957.)
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