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Abstract

Inspired by socio-political scenarios, like dictatorships, in which a minority of people exercise

control over a majority of weakly interconnected individuals, we propose vulnerability and

power measures defined on groups of actors of networks. We establish an unexpected

connection between network vulnerability and graph regularizability. We use the Shapley

value of coalition games to introduce fresh notions of vulnerability and power at node

level defined in terms of the corresponding measures at group level. We investigate the

computational complexity of computing the defined measures, both at group and node levels,

and provide effective methods to quantify them. Finally we test vulnerability and power on

both artificial and real networks.
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integer linear programming, coalitional games, Shapley value

1 Introduction

Our investigation moves from the observation that there exists a recurrent topology

in many real-life scenarios characterized by a majority of individuals (that we call

the victims), with rare connections among them, that are linked to a minority of

people (that we call executioners). It can be portrayed as a sparse periphery of

victims linked to a restricted core of executioners, a sort of generalization of the star

topology. In fact, as we will see, the nature of the relationship between victims and

executioners may have different semantics depending on the application domain, for

instance control or support.

In this paper we conduct a formal investigation of the described topology in

the context of network science. We define a vulnerability measure on groups of

nodes of an undirected network that quantifies the tendency of a set of actors to

be the victims with respect to some smaller group of executioners. We also define

a symmetric power measure that assesses the capacity of a group of actors to play

the role of executioners with respect to some larger pool of victims. We extend the

defined notions of vulnerability and power at the level of network, leading to a

characterization of vulnerable networks.

We discover an unexpected connection between the notion of network vulnerability

and that of graph regularizability, a seasoned concept in graph theory. Besides

building an interesting bridge between modern network science and traditional

graph theory, this result provides us with a method to decide the sign of the
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vulnerability of a network (positive, null, or negative). We then tackle the problem

of quantifying the exact vulnerability value of a network and finding the set of

nodes that determines such vulnerability score. It turns out that, for networks with

null or positive vulnerability, this problem can be solved by exploiting a reduction

to the minimum 2-vertex cover problem. We furthermore map the general problem

to an integer linear programming model and prove that, whenever the network

has non-negative vulnerability, a single continuous relaxation of the model can be

exploited to solve the problem. As for networks with negative vulnerability, we show

that the solution of the integer linear programming model can be reduced to the

solution of one linear programming problem for each node of the network.

We then make a detour through game theory. In accordance with a well-

established game-theoretic approach to define node centrality in networks, we define

a cooperative game over a network in which players are the nodes, coalitions are the

groups of nodes, and payoffs of coalitions are defined by the vulnerability (or power)

measures on groups of nodes. Hence, we interpret the Shapley value of each player

in such a game as a centrality measure at node level: the measure represents the

average marginal contribution made by each node to the vulnerability (or power)

of every coalition of nodes. This allows us to define sophisticated vulnerability and

power measures for nodes that take into consideration the corresponding measures

for sets of nodes. Notably, we provide closed-form expressions for the Shapley values

of both vulnerability and power that can be computed in linear time with respect

to the size of the network.

Finally, we test the proposed vulnerability and power measures, at the levels of

nodes, sets and network, over artificial networks (random and scale-free graphs) as

well as real networks (social and technological networks). We use artificial graphs

to investigate the relationship between vulnerability and robustness of networks

as defined by algebraic connectivity, as well as for estimating the probability of

being a vulnerable network. We use vulnerability and power measures on real

networks to reveal meaningful properties of the structure of these networks, as well

as to empirically study the correlation between node power and node degree in a

network.

The rest of the paper is organized as follows. In Section 2 we give two application

scenarios for the problems here investigated. Section 3 does the formal work, defining

and investigating vulnerability and power from various angles. The experimental

investigation on artificial and real networks is discussed in Section 4. We review the

related literature in Section 5 and draw our conclusions in Section 6.

2 Application domains

In this part, we explore two application domains of the notions of vulnerability

and power introduced in this paper. The first application domain interprets the

relationship between executioners and victims as control. Victims are larger in

number than executioners, are poorly connected among them, and are controlled

by executioners, meaning that there exists no link between a victim and an external

actor different from victims and executioners. The result is that executioners can

potentially exercise control over victims, since victims can hardly communicate

among them and cannot reach external sources.
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Fig. 1. Four different network topologies.

This topology is adopted, for instance, in dictatorships. Meetings and associations

among people (the victims) are prohibited. Links of victims to external sources

of information are hampered. This is accomplished, for instance, by imposing

limitations to the use of Internet and popular social networking services. On the

other hand, communication necessarily flows only between the dictator or a group

of few individuals (the executioners) and the isolated victims. The crucial role of

Internet and in particular of social networking services (Twitter in particular) during

the uprisings of the Arab Spring has been largely acknowledged. These media

have been used by insurgents to break isolation with the external world as well

as to organize the internal revolution. These communication links decreased the

vulnerability of victims with respect to the executioners.

Further instances of a similar topological exploitation are described in Kets et al.

(2011); we quote a couple of historical examples in the following: “Plantation owners

in Hawaii a century ago expressly hired workers who spoke different native languages

to ensure that communication among them would be limited, thus discouraging labor

action. And the extraordinary longevity of the Ottoman Empire (1300–1918) and its

remarkable integration and taxation of diverse ethnic and religious communities was

based on a network structure that made peripheral elites dependent on the center,

communicating only with the center rather than with one another.”

Consider the topologies depicted in Figure 1. The archetypal power-vulnerability

topology is the star shown in the top-left network: the black node exercises control

over a large set of independent white nodes. The set of peripheral victims is

vulnerable, and the central executioner is powerful. The central black node loses

much of its control in the top-right configuration: although all white nodes are still

connected to it, each white node is also linked to at least another white node. Hence

the central black node does not control any white node anymore. The situation

depicted in the bottom-left network is intermediate with respect to the previous

cases: although the number of bonds between white nodes is the same as in the

previous case (three connections), the distribution of the links penalize the white

nodes. Indeed, two of them are still isolated from their white mates and connected
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only to the black center, which maintains some of its power. Finally, in the bottom-

right network, although white nodes are independent, as in the star graph, they are

connected to the black node as well as to many other grey nodes. Hence, white

nodes are not vulnerable and the black node is not powerful.

The second broad application domain is about the influence of social networks

on health (Berkman & Glass, 2000). A social network is a natural mean to

capture and represent social relationships. These relationships are classified in five

categories: social capital, social influence, social undermining, companionship, and

social support (Heaney & Israel, 2008). We are interested in particular in the social

support that expresses the reciprocal assistance between actors of the social network.

Social support is always intended to be helpful, is consciously provided, and if it

tries to influence the receiver it is provided in an interpersonal context of caring,

trust, and respect (Heaney & Israel, 2008). The influence of social support on

health have been thoroughly studied; however, few is known on the influence of

the topological properties of social networks, such as diameter, clustering coefficient,

degree distribution, and centrality, on social support (Cobb et al., 2010).

Our view is that vulnerability is a meaningful structural property of a network

in relation to social support. More specifically, we argue that networks that are

not vulnerable, are good models for the exchange of reciprocal assistance. In non-

vulnerable networks, each actor can count on the reciprocal help of some neighbor,1

a simple idea that is in fact employed by the buddy systems of the Unites States

Armed Forces and of the Boy Scouts of America. On the other hand, vulnerable

networks contain fragments in which a group of independent actors are connected

only to a few central actors; in case of need, most of the independent actors will

remain without support. The central actors are good spots for the establishment of

a public or professional assistance service.

Consider again the topologies of Figure 1. The star topology (top-left) is the worst

assistance model: all white actors can receive assistance from only one supporter,

the black central actor. Hence, all white actors but one are not going to receive

any help. This topology identifies, however, the central actor as a perfect spot for

a public or professional support server. The bottom-left structure is a somewhat

better model of assistance: all white nodes but one can receive support. Indeed,

out of the six white actors, four of them can help each other, while a fifth one can

receive assistance from the black central actor. On the other hand, the models on the

right hand of the picture are good structures for social support. In the bottom-right

network, five white actors can receive support from the same number of grey actors,

and the last white actor can be assisted from the central black actor. In the top-right

topology, all white actors can assist each other, even without the help of the central

black actor.

3 Vulnerability and power on networks

We start by formally defining the notion of vulnerability. Let G = (V , E) be an

undirected connected graph. For every subset T ⊆ V , we denote by N(T ) = {j ∈
V : there is i ∈ T such that ij ∈ E} the set of the neighbors of the nodes in T and

1 A property that we formally show in Proposition 2 of Section 3.
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by S(G) the collection of the independent sets of G, i.e., those subsets S ⊆ V such

that N(S) ∩ S = ∅. Hence, an independent set is a set such that no two vertices in

the set are linked by an edge.

We introduce a vulnerability function vG : 2V → � defined by

vG(T ) = |T | − |N(T )| T ⊆ V . (1)

Since for every set T ⊆ V each node in T ∩ N(T ) gives a null contribution to

vG(T ), the vulnerability function vG(T ) can be equivalently expressed as

vG(T ) = |I(T )| − |N(T ) \ T | (2)

where I(T ) = T \ N(T ) denotes the independent set containing all the nodes of T

that have no neighbor in T . One might divide vG(T ) by the maximum value it takes

(which is n−2 on a connected graph), so that the resulting vulnerability lies between

−1 (minimum vulnerability, corresponding to the vulnerability of the central node

of a star network with n nodes) and 1 (maximum vulnerability, corresponding

to the vulnerability of the set of peripheral nodes of a star network with n

nodes).

The definition of vulnerability, which is central in this work, claims that a set is

vulnerable when it is large and it is connected to few neighbors. Equivalently, a set

is vulnerable when it contains a large independent set with few neighbors outside

the set. Consider again examples in Figure 1. The set W1 of white nodes in the

top-left graph G1 is vulnerable: it contains 6 nodes with only 1 neighbor, hence

vG1
(W1) = 6 − 1 = 5. Notice that W1 is an independent set, hence I(W1) = W1.

The vulnerability of the white node set W2 in the bottom-left network G2 is largely

reduced: the set W2 has 6 members, as before, but the neighbor set N(W2) contains

now 5 nodes, hence vG2
(W2) = 6 − 5 = 1. Notice that I(W2) is different from W2

and contains 2 nodes, while N(W2) \ W2 contains 1 node. The set W3 of white

nodes in the top-right graph G3 in not vulnerable: vG3
(W3) = 6 − 7 = −1. We have

moreover that I(W3) = ∅. Finally, the set W4 of white nodes in the bottom-right

graph G4 in also not vulnerable, but for a different reason. Indeed, W4 = I(W4)

is independent and contains 6 nodes, the same number of nodes of N(W4), hence

vG4
(W4) = 6 − 6 = 0.

The vulnerability ν̄G of the network G is the maximum vulnerability of a non-empty

independent set of nodes in G as follows:

ν̄G = max
∅�=S∈S(G)

vG(S). (3)

We say that G is vulnerable if ν̄G > 0, i.e., there exists an independent set S such that

|S | > |N(S)|. On the contrary, in non-vulnerable networks, |S | � |N(S)| for every

independent set.

A weaker notion of vulnerability can be defined by maximizing the function vG(T )

over all the subsets of V , not only the independent ones, that is by setting

ν̂G = max
T⊆V

vG(T ). (4)

We define ν̂G as weak vulnerability of the network G. Clearly ν̄G � ν̂G and, since

∅ ⊆ V and vG(∅) = 0, then ν̂G � 0 for each graph G. Moreover, the following

proposition holds.

https://doi.org/10.1017/nws.2015.8 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.8


Vulnerability and power on networks 201

Proposition 1

It holds ν̄G �= ν̂G if and only if ν̄G < 0.

Proof

Assuming ν̄G < ν̂G and, by contradiction, 0 � ν̄G < ν̂G, let T̄ be a subset of V

such that vG(T̄ ) = ν̂G. Then vG(T̄ ) = |I(T̄ )| − |N(T̄ ) \ T̄ | > 0 and this implies

that the independent set I(T̄ ) is not empty. From N(I(T̄ )) ⊆ N(T̄ ) \ T̄ we obtain

vG(I(T̄ )) � vG(T̄ ) and thus ν̄G � ν̂G, a contradiction. The opposite implication

follows from the fact that ν̂G � 0. �

From the proof of the above proposition it follows that if ν̂G > 0 and T̄ is an

optimal solution of problem (4), then also the independent set I(T̄ ) is optimal.

Moreover, if ν̂G = 0, then, since vG(∅) = 0, the empty set, which is an independent

set, is an optimal solution of Equation (4). It follows that we can write:

ν̂G = max
S∈S(G)

vG(S). (5)

3.1 Determining if a network is vulnerable

As a first aspect, we consider the problem of determining if a network G is vulnerable

or not. In graph theory, the networks G with ν̄G � 0 and ν̄G < 0 have been

characterized from several perspectives. A first characterization arises from the

study of quasi-regularizable and regularizable graphs. We recall that a graph G

is quasi-regularizable if it is possible to assign non-negative integer weights to the

edges of the graph in such a way that the sum of the weights over the edges incident

in any node is the same non-null value. The graph is called regularizable if these

weights can be chosen strictly positive. An alternative characterization, useful from

a computational point of view, involves the notion of 2-matching. A 2-matching is

an assignment of weights 0, 1, or 2 to the edges of the graph with the property that

the sum of weights of the edges incident in any node is at most 2. If this sum is

exactly 2 for each node, the 2-matching is called perfect. The notion of 2-matching

someway generalizes the notion of matching. We remind that a matching M is a

subset of edges with the property that different edges of M cannot have a common

endpoint. A matching M is called perfect if every node of the graph is the endpoint

of (exactly) one edge of M. In the following we will exploit the fact that 2-matchings

are strictly related to 2-vertex covers, where a 2-vertex cover is an assignment of

weights 0, 1, and 2 to the nodes such that for each edge the sum of the weights of

its endpoints is at least 2. In turn, the notion of 2-vertex cover someway generalizes

the notion of vertex cover. We remind that a vertex cover A is a subset of nodes

with the property that each edge of the graph has at least one endpoint in A.

We summarize the main relations between the above concepts and the properties

ν̄G � 0 and ν̄G < 0 in the following two theorems.

Theorem 1

Let G = (V , E) be a connected undirected graph. Then the following conditions are

equivalent:

1. |S | � |N(S)| for every independent set S ⊆ V , i.e., ν̄G � 0;

2. G is quasi-regularizable (Berge, 1981);

3. G admits a perfect 2-matching (Tutte, 1953).
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Theorem 2

Let G = (V , E) be a connected undirected graph. Then the following conditions are

equivalent:

1. |S | < |N(S)| for every independent set ∅ �= S ⊆ V , i.e., ν̄G < 0;

2. G is a regularizable graph that is not elementary bipartite, where a bipartite

graph is elementary if every edge is contained in a perfect matching (Berge,

1978);

3. G is a 2-bicritical graph, i.e., for each node i ∈ V the graph G(V \ {i}) admits

a perfect 2-matching (Pulleyblank, 1979).

We will see in Section 3.2 how the problem of determining if a graph ad-

mits a perfect 2-matching can be solved in polynomial time by finding a max-

imum matching on a bipartite graph. Therefore, Theorems 1 and 2 imply that

one can determine in polynomial time the sign of the vulnerability ν̄G of a

graph.

The following proposition, that follows from Hall’s Theorem (Lovász & Plummer,

1986), points out an interesting property of non-vulnerable networks: each node of

any independent set can be matched with a different neighbor.

Proposition 2

Let G be a network with ν̄G � 0. Then for each S ∈ S(G), S �= ∅, there exists an

injective map φ : S → N(S) such that φ(i) ∈ N({i}) for each i ∈ S .

3.2 Computing the vulnerability of a network

In this section, we present two polynomial methods to compute the vulnerability

of a network. The first method is a strongly polynomial algorithm and works for

non-regularizable networks. The second method, valid for the general case, is based

on an integer linear programming model of the problem. We show that the solution

of this model can actually be reduced to the solution of |V | linear programming

problems, one for each node of the network.

A polynomial method to compute the vulnerability of non-regularizable graphs,

i.e., graphs G with ν̄G � 0, is provided by the theory of the 2-matchings and 2-vertex

covers. For the sake of completeness, we report here the main results that justify the

method and refer the reader to Lovász & Plummer (1986) for a complete exposition

of the subject.

In the following, the sum of the components of a vector z is called the size of z

and is denoted by |z|. In graph theory, the minimum size of a 2-vertex cover of a

graph G is denoted by τ2(G) and the maximum size of a 2-matching is denoted by

ν2(G). It is well known that the maximum possible size of a 2-matching is |V | and

that a 2-matching is perfect if and only if it has size |V |.
The following two results state an important relationship between the weak

vulnerability ν̂G of a graph, the maximum size of a 2-matching and the minimum

size of a 2-vertex cover.
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Theorem 3

If G = (V , E) is an undirected graph, then

ν2(G) = τ2(G) = min
S∈S(G)

|V | − |S | + |N(S)| = |V | − ν̂G. (6)

Proof

For the two relevant equalities ν2(G) = τ2(G) = minS∈S(G) |V | − |S | + |N(S)| we

refer to Lovász & Plummer (1986). The last equality directly follows from identity

(5). �

Given a 2-vertex cover ū of minimum size, an independent set S̄ with vG(S̄) = ν̂G
is given by

S̄ = {i ∈ V : ūi = 0}. (7)

Note that, since ūi + ūj � 2 for each ij ∈ E, the set S̄ is in fact an independent set

of G and ūj = 2 for each j ∈ N(S̄). Moreover, the optimality of ū implies ūk = 1 for

each k ∈ V \ (S̄ ∪N(S̄)), so that |ū| = 2|N(S̄ )|+ |V | − |S̄ | − |N(S̄)| = |V | − |S̄ |+ |N(S̄)|.
In particular, S̄ = ∅ if and only if ūi = 1 for each i ∈ V and thus |ū| = |V | and

ν̂G = 0. As a consequence S̄ can be the empty set only if ν̄G � 0 and it is necessarily

the empty set if ν̄G < 0.

Theorem 3 and Proposition 1 immediately imply the following corollary.

Corollary 1

If ν̄G � 0, then ν̄G = |V | − ν2(G) = |V | − τ2(G).

Based on the previous results, the following theorem gives the complexity of

solving problem (3) for non-regularizable graphs.

Theorem 4

Let G = (V , E) be an undirected connected graph. The problem of determining

a non-empty independent set of maximum vulnerability ν̄G can be solved in time

O(|V | 1
2 |E|) if ν̄G > 0, and in time O(|V | 3

2 |E|) if ν̄G = 0. In particular, the sign of ν̄G
can be determined in time O(|V | 3

2 |E|).
Proof

As it follows from Theorem 3 and Corollary 1, if ν̄G � 0 then ν̄G = |V | − |ū| where

ū is any 2-vertex cover of minimum size of G. As shown in Lovász & Plummer

(1986), the problem of finding a 2-vertex cover ū of minimum size reduces to that

of finding a minimum vertex cover on a bipartite graph with 2|V | nodes and 2|E|
edges. Now, as reported in Schrijver (2003), the minimum vertex cover problem

on bipartite graphs can be solved in O(|n| 1
2 |m|) where n is the number of nodes

of the graph and m the number of edges. Given a 2-vertex cover ū of minimum

size, let S̄ be the independent set defined in Equation (7). If S̄ �= ∅, as it always

happens when ν̄G > 0, then S̄ is an optimal solution of problem (3). Otherwise, if

S̄ = ∅, then ν̂G = 0 and G is quasi-regularizable. In this case, by item 3 of Theorem

2, G is non-regularizable if and only if for at least one node k ∈ V the graph

G(V \ {k}) does not admit a perfect 2-matching. By Theorem 3, this is equivalent

to both ν2(G(V \ {k})) = τ2(G(V \ {k})) < |V | − 1 and ν̄G(V\{k})) > 0. Therefore, if

ν̄G = 0, such a node k can be found by solving at most |V | instances of the 2-vertex

cover problem of minimum size, one for each node of the graph, with a global time
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requirement O(|V | 3
2 |E|). If S̄ is an independent set of maximum vulnerability in the

graph G(V \ {k}), then it must be vG(V\{k})(S̄) = 1, k ∈ NG(S̄) and vG(S̄) = 0. So S̄

is an optimal solution of problem (3). On the contrary, when ν̄G < 0, the procedure

returns ν̂G(V\{k}) = 0 for each k ∈ V . �

We remark that the problem of computing the sign of the vulnerability ν̄G of

a graph (without finding an independent set of maximum vulnerability) can be

tackled by solving a maximum size 2-matching problem (at most |V | maximum size

2-matching problems if ν̂G = 0) instead of a minimum size 2-vertex cover problem.

This does not change the complexity of the procedure since the last two problems

have not only the same optimal value, as stated in Theorem 3, but their solving

algorithms share a common main part (Lovász & Plummer, 1986).

The computation of ν̄G further simplifies when G is a bipartite graph.

Corollary 2

If G = (V1 ∪ V2, E) is a bipartite graph, then a non-empty independent set of

maximum vulnerability ν̄G can be found in O(|V | 1
2 |E|) by solving a maximum

matching problem on G.

Proof

Being V1 and V2 independent sets of G and N(V1) = V2, N(V2) = V1, then either

vG(V1) � 0 or vG(V2) � 0. Thus v̄G � 0 and Corollary 1 applies. Now, as shown in

Lovász & Plummer (1986), a 2-matching of maximum size in a bipartite graph can

be obtained by simply assigning weight 2 to the edges of a maximum matching.

The statement follows from the fact that a maximum matching in G can be found

in O(|V | 1
2 |E|) (Schrijver, 2003). In particular, if ν̄G = 0, then both V1 and V2 are

independent sets of maximum vulnerability. �

When ν̄G < 0 the equivalence between the problems of maximizing the vulnerabil-

ity function over the non-empty sets of S(G) and that of finding a 2-vertex cover of

minimum size does not hold anymore. In order to solve problem (3) in the general

case we adopt an integer linear programming approach. A 0-1 linear programming

model of the problem can be defined by introducing two binary variables xi and

yi for each i ∈ V with the meaning that xi = 1 if i ∈ S , 0 otherwise, and yi = 1 if

i ∈ N(S), 0 otherwise. The model is

PG : max
∑
i∈V

(xi − yi)

xi + xj � 1 ij ∈ E (8)

yj � xi ij ∈ E (9)

yi � xj ij ∈ E (10)∑
i∈V

xi � 1 (11)

xi, yi � 0 i ∈ V (12)

xi ∈ � i ∈ V . (13)

Constraints (8) assure that the set S of the nodes i with xi = 1 is an independent

set, constraints (9) and (10) force to 1 all the variables yj associated with nodes in

N(S), while constraint (11) excludes the solution corresponding to S = ∅. Note that
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Fig. 2. Inclusions among the sets X0, X1, Y0, Y1 and N(X1) used in the proof of Theorem 5.

we have omitted the constraints xi, yi � 1 and the integrality constraints on the y

variables since they are anyway satisfied in every optimal solution.

Our next task is that to show that problem PG can actually be solved by solving |V |
linear programming problems. To this aim for each node k ∈ V consider the integer

linear programming problem PG(k) obtained from problem PG by substituting

constraint (11) with the constraint xk = 1, that is by forcing node k to belong to an

optimal solution, and denote by ν̄G(k) its optimal value. Moreover, denote by PR
G(k)

the continuous relaxation of problem PG(k) and by ν̄RG (k) its optimal value. The

next result states that every problem PG(k) can be solved by solving its relaxation

PR
G(k).

Theorem 5

Let G = (V , E) be an undirected graph. Then for each k ∈ V it holds ν̄G(k) = ν̄RG (k)

and an optimal solution of problem PG(k) can be derived by any optimal solution

of problem PR
G(k).

Proof

Let (x̄, ȳ) be an optimal solution of problem PR
G(k). For r ∈ {0, 1} define Xr = {i ∈

V : x̄i = r} and Yr = {i ∈ V : ȳi = r}. Consider the sets X1 and N(X1). The set

X1, containing node k, is not empty. Moreover, by constraints (8), (9), and (10) for

each j ∈ N(X1) it holds x̄j = 0 and ȳj = 1, thus N(X1) ⊆ X0 ∩ Y1. Moreover, the

optimality of (x̄, ȳ) implies ȳi = maxj∈N({i}) x̄j for each j ∈ V and thus, in particular,

X1 ⊆ Y0 and Y1 = N(X1). The relations among the sets X0, X1, Y0, Y1 and N(X1)

are shown in Figure 2. By the above considerations x̄i − ȳi = 1 for each i ∈ X1 and

the set X1 is contained in the set S̄ = {i ∈ V : x̄i > ȳi}. From the constraints (9) and

(10) it also follows that

ȳj � x̄i > ȳi � x̄j for every i ∈ S̄ , j ∈ N({i}). (14)

In particular, S̄ is an independent set of G and, since x̄j − ȳj � 0 for each j ∈ V \ S̄ ,

it holds

ν̄RG (k) =
∑
i∈V

(x̄i − ȳi) �
∑
i∈S̄

(x̄i − ȳi) +
∑

j∈N(S̄ )

(x̄j − ȳj). (15)

In order to prove the statement it is now sufficient to show that the right-hand

side of (15) is not greater than |X1| − |N(X1)|, since this implies that the integer

solution corresponding to the independent set X1 defines an optimal solution of

problem PR
G(k) and thus an optimal solution of problem PG(k). The thesis holds

when S̄ = X1 since in this case the right-hand side of (15) is equal to |X1| − |N(X1)|.
Let us assume, on the contrary, that the set Sfrac = S̄ \ X1 is not empty and rewrite
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Fig. 3. Relations among the sets S̄ , Sfrac, X1, N(X1) and sets T̄ and R used in the proof of

Theorem 5.

Equation (15) as

ν̄RG (k) =
∑
i∈V

(x̄i − ȳi) � |X1| − |N(X1)| +
∑
i∈Sfrac

(x̄i − ȳi) +
∑

j∈N(Sfrac)\N(X1)

(x̄i − ȳi). (16)

In order to prove that
∑

i∈Sfrac(x̄i − ȳi)+
∑

j∈N(Sfrac)\N(X1)
(x̄i − ȳi) � 0, let us first show

that it holds |T | � |N(T ) \ N(X1)| for every T ⊆ Sfrac. Assume by contradiction

that there exists T̄ ⊆ Sfrac such that |T̄ | > |N(T̄ ) \ N(X1)| and choose such a set T̄

of minimum cardinality. Define R = N(T̄ ) \ N(X1). By the above considerations, it

holds R = N(T̄ ) \Y1. The relations among the sets S̄ , Sfrac, X1 and Y1 = N(X1) and

the sets T̄ and R are shown in Figure 3. For δ > 0 sufficiently small the solution

(x′, y′) defined by

x′
i = x̄i + δ i ∈ T̄ and y′

i = ȳi − δ j ∈ T̄ \ Y0 (17)

x′
j = x̄j − δ j ∈ R \ X0 and y′

j = ȳj + δ j ∈ R (18)

x′
k = x̄k and y′

k = ȳk otherwise (19)

is feasible for PR
G(k) and its value differs from ν̄RG (k) by the amount

Δ = δ
(|T̄ | + |T̄ \ Y0| − |R \ X0| − |R \ Y1| ) � δ

(
2|T̄ | − |T̄ ∩ Y0| − 2|R| + |R ∩ X0|).

Since constraints (9) and (10) imply N(Y0) ⊆ X0 we have that N(T̄ ∩ Y0) \ N(X1) ⊆
R ∩ X0. Thus in the case T̄ ⊆ Y0 it holds R ⊆ X0 and we obtain Δ � δ(|T̄ | − |R|).
Otherwise the minimality of |T̄ | implies |T̄ ∩ Y0| � |N(T̄ ∩ Y0) \ N(X1)| � |R ∩ X0|
and we obtain Δ � 2δ(|T̄ | − |R|). Being |T̄ | > |R| by assumption, in both cases

we get Δ > 0 in contradiction with the optimality of (x̄, ȳ). So we can assume

|T | � |N(T ) \ N(X1)| for every T ⊆ Sfrac. By Hall’s Theorem (Lovász & Plummer,

1986), this implies that there exists an injective map φ : Sfrac → N(Sfrac)\N(X1) such

that φ(i) ∈ N({i}) for each i ∈ Sfrac. Since property (14) implies ȳφ(i) − x̄φ(i) � x̄i − ȳi
for each i ∈ Sfrac, from Equation (16) we finally obtain, as required,

ν̄RG (k) =
∑
i∈V

(x̄i − ȳi) � |X1| − |N(X1)| +
∑
i∈Sfrac

(x̄i − ȳi + x̄φ(i) − ȳφ(i)) � |X1| − |N(X1)|.

�

We remark that an argument similar to that used in the proof of Theorem 5 allows

to prove that when ν̄G > 0 an optimal solution of problem PG can be obtained

simply by solving its continuous relaxation.

https://doi.org/10.1017/nws.2015.8 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.8


Vulnerability and power on networks 207

Corollary 3

The vulnerability ν̄G of every undirected network G = (V , E) can be computed in

polynomial time.

Proof

Since linear programming problems are polynomial (Khachiyan, 1980), the statement

follows from Theorem 5 and the fact that ν̄G = maxk∈V ν̄G(k). �

It is worth noticing that for every maximal independent set S of a graph G it holds

N(S) = V \S and hence vG(S) = |S |−|V \S | = 2|S |−|V |. It follows that the problem

of finding a maximal independent set of maximum vulnerability corresponds to the

problem of finding an independent set of maximum cardinality, which is known to

be NP-hard.

We conclude this section by showing some topological properties of the vul-

nerability function νG(T ). We first show that the vulnerability function νG(T ) is

non-monotonic. Recall that a real function f defined on the collection 2V of all the

subsets of V is monotonically increasing (respectively, decreasing) if for all S, T ⊆ V

with S ⊆ T , it holds that f(S) � f(T ) (respectively, f(S) � f(T )). Indeed, consider

a set T ⊆ V and a node i /∈ T . Suppose there are k � 0 neighbors of i not belonging

to the neighbors of T , that is, |N({i}) \ N(T )| = k. Then

νG(T ∪ {i}) = |T ∪ {i}| − |N(T ∪ {i})| = |T | + 1 − |N(T )| − k = νG(T ) + 1 − k.

Hence, if k = 0, then νG(T ∪ {i}) > νG(T ); if k = 1, then νG(T ∪ {i}) = νG(T ); and

if k � 2, then νG(T ∪ {i}) < νG(T ).

On the other hand, the vulnerability function νG(T ) is supermodular. A real

function f defined on 2V is supermodular if for all S, T ⊆ V it holds that f(S ∪T )+

f(S ∩T ) � f(S)+f(T ). Moreover, f is called submodular if g = −f is supermodular

and f is called modular if f is both supermodular and submodular.

Theorem 6

The vulnerability function vG(T ) is supermodular.

Proof

Since |T | is a modular function it is sufficient to show that |N(T )| is a submodular

function. This immediately follows from the fact that for each pair of subsets

S, T ⊆ V it holds |N(S ∪ T )| = |N(S)| + |N(T )| − |N(S) ∩ N(T )| and N(S ∩ T ) ⊆
N(S) ∩ N(T ). �

We remark that the problem of maximizing an integer-valued supermodular

function f, i.e., to find a subset T ⊆ V of maximum value f(T ), can be solved in

strongly polynomial time if f is given by a value giving oracle and the function is

bounded (Grötschel et al., 1988). So every polynomial algorithm for the maximization

of a supermodular function offers, according to Proposition 1, an alternative way to

compute the vulnerability ν̄G of a vulnerable network. The complexity of these

methods (Iwata, 2008) is, however, largely dominated by the above described

approach based on 2-vertex covers and 2-matchings.

3.3 A symmetric perspective: power

Assuming a symmetric perspective, in this section we study two power functions

that measure the capacity of a set of nodes to completely control a set of other
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nodes. To this aim for every T ⊆ V we denote by B(T ) = {i ∈ V : N({i}) ⊆ T }
the subset of nodes whose neighbors are contained in T . By definition, the subset

S(T ) = B(T ) \ T is an independent set.

We define two power functions pG, qG : 2V → � by setting, for each T ⊆ V :

pG(T ) = |B(T )| − |T | (20)

and

qG(T ) = |S(T )| − |T |. (21)

Hence, a set T is powerful if it is small and controls a large set B(T ). Notice

that nodes in B(T ) do not have connections outside T , hence are potentially at

the mercy of nodes in T . Moreover, nodes in S(T ) are controlled nodes that

are not themselves controllers. Let us consider again Figure 1. The black node

i1 in the top-left graph G1 is powerful: it controls all six white nodes. We have

that pG1
({i1}) = qG1

({i1}) = 6 − 1 = 5. The power of the black node i2 in the

bottom-left graph G2 is severely reduced: it now controls only two nodes, hence

pG2
({i2}) = qG2

({i2}) = 2 − 1 = 1. Graph G2 is useful to distinguish the two power

functions. Consider the set T containing the four connected white nodes plus the

black node. We have that B(T ) is the set of all white nodes, while S(T ) = B(T ) \T
contains only the two white nodes that are not connected among themselves. Hence

pG2
(T ) = |B(T )| − |T | = 6 − 5 = 1 and qG2

(T ) = |S(T )| − |T | = 2 − 5 = −3. The

black node i3 in the top-right graph G3 has completely lost its power: it does not

control any node, hence pG3
({i3}) = qG3

({i3}) = 0 − 1 = −1. Notice that, for all

graphs analyzed so far, the power of the black node corresponds to the vulnerability

of the complementary set of white nodes (that we computed above), a property that

we formally show in the first item of the next Proposition 3. Finally, the black node

of the bottom-right graph does not control any node, hence its power is −1. In this

case, because of the grey vertices, the set of white nodes is not the complement of

the set containing the only black node.

Power at the graph level is defined as follows:

p̄G = max
T⊆V

pG(T ) (22)

and

q̄G = max
T⊆V : S (T )�=∅

qG(T ). (23)

Since S(T ) ⊆ B(T ) for each T ⊆ V , it holds q̄G � p̄G. The next proposition points

out the strong relationship between p̄G and q̄G and the vulnerability notions ν̄G and

ν̂G introduced in the previous section.

Proposition 3
For every network G it holds that:

1. pG(T ) = vG(V \ T ) for each T ⊆ V ;
2. p̄G = ν̂G and q̄G = ν̄G.

Proof
Item 1 follows from the fact that for each T ⊆ V it holds that B(T ) = V \N(V \T )

and thus

pG(T ) = |V \N(V \T )|−|T | = |V |−|N(V \T )|−|T | = |V \T |−|N(V \T )| = vG(V \T ).
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We now show item 2 of the proposition. The first identity immediately follows from

item 1. About the second identity, we note that for every non-empty independent

set U, it holds that U ⊆ S(N(U)). So we obtain

vG(U) = |U| − |N(U)| � |S(N(U))| − |N(U)| = qG(N(U))

that implies v̄G � q̄G. On the other hand for each T ⊆ V with S(T ) �= ∅ it holds

N(S(T )) ⊆ T and this implies vG(S(T )) � qG(T ). As a consequence ν̄G � q̄G. �

As a consequence of the above result, the problems (4) and (22) are equivalent.

In particular, T̄ is an optimal solution of problem (4) if and only if V \ T̄ is an

optimal solution of problem (22). In the same way, the problems (3) and (23) are

equivalent. In particular, if S̄ is an optimal solution of problem (3) then N(S̄) is an

optimal solution of problem (23); conversely, if T̄ is an optimal solution of problem

(23) then S(T̄ ) is an optimal solution of problem (3). Moreover, by Proposition

1, if G has a non-negative vulnerability ν̄G then q̄G = ν̄G = ν̂G = p̄G � 0 and by

Theorem 4 a set of maximum power can be found in polynomial time. Also, item 1

of Proposition 3 implies that the power function pG(T ), as the vulnerability function

vG(T ), is non-monotonic and supermodular. Differently, the power function q̄G(T )

is not supermodular. For instance, for every graph G and each non-isolated node i

it holds qG(V \ {i}) + qG({i}) = 1 − (|V | − 1) + |S({i})| − 1 > −|V | = qG(V ).

3.4 A game-theoretic definition of power and vulnerability

Both the power and the vulnerability functions introduced above associate values

with subset of nodes, and not with single nodes as it is common for the centrality

measures proposed in network theory. In this respect they are, according to the

terminology introduced in Everett & Borgatti (1999), group centrality measures. In

this section, we show how to derive vulnerability and power at node level using a

game-theoretic approach. This can be done by using the power and vulnerability

functions to define suitable coalitional games on the node set of the network and

by considering a classical game solution, the Shapley value. For the game theory

notions in this section the reader is referred, among others, to Osborne & Rubinstein

(1994).

In game theory, a characteristic function is commonly used to assign to each

coalition of players a value corresponding to the power of the coalition, i.e., how

much these players can globally get if they decide to play together, independently

on the other players’ actions. A common task in game theory is that of deriving,

on the basis of the characteristic function, an assignment of scores to the players as

an index of the power of the single players in the game. Probably the most popular

and used solution proposed for coalitional games is the Shapley value. This solution

associates with each game G = (N,w), where N is the set of players and w : 2N → �
is the characteristic function, a vector φ ∈ �|N| whose components are given by

φi =
1

|N|!
∑
L∈Π

(w(TL(i) ∪ {i}) − w(TL(i))) i ∈ N (24)

where Π denotes the set of all the orders (permutations) of the players and TL(i),

L ∈ Π, denotes the coalition formed by the players that precede i in L. In other

words TL(i) = {k ∈ N : L(k) < L(i)} where L(k) is the position of node k in the

https://doi.org/10.1017/nws.2015.8 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.8


210 E. Bozzo et al.

order L. According to this definition, the score assigned to each player i is the

average over all the orders L of the player set N of the contribution that player

i gives when it reaches the coalition TL(i). Alternatively, the Shapley value can be

expressed in the more compact form

φi =
∑

T⊆N:i/∈T

|T |!(|N| − |T | − 1)!

|N|! (w(T ∪ {i}) − w(T )) i ∈ N. (25)

The computation of the Shapley value for coalitional games requires, in general,

exponential time. As a consequence, despite its interest, this value can be computed

using formula (24) or (25) only for games with a number of players relatively

small. Nevertheless, in some cases the particular structure of the characteristic

function allows for an explicit formula of the Shapley value of the game. This

favorable situation actually occurs for the power and vulnerability functions we

have considered.

The next theorem gives an explicit expression of the Shapley value for the games

defined by the power functions pG(T ) and qG(T ). The argument used in the proof is

similar to the one used in Michalak et al. (2013) for other group centrality measures.

Theorem 7

Given a graph G, the Shapley values φp and φq of the coalitional games (V , pG(T ))

and (V , qG(T )) have the expression

φ
p
i = −1 +

∑
j∈N({i})

1

dj
i ∈ V (26)

φ
q
i = −1 − 1

1 + di
+

∑
j∈N({i})

1

(1 + dj)dj
i ∈ V (27)

where di is the degree of node i.

Proof

Let i be a node of G. Given an order L ∈ Π, the marginal contributions of i to

the set T = TL(i) with respect to the characteristic functions pG(T ) and qG(T ),

respectively, are

pG(T ∪ {i}) − pG(T ) = |B(T ∪ {i}) \ B(T )| − 1 (28)

qG(T ∪ {i}) − qG(T ) = |S(T ∪ {i}) \ S(T )| − |S(T ) ∩ {i}| − 1. (29)

It holds that

B(T ∪ {i}) \ B(T ) = {j ∈ N({i}) : N(j) \ {i} ⊆ T }
S(T ∪ {i}) \ S(T ) = {j ∈ N({i} \ T : N(j) \ {i} ⊆ T }.

As a consequence, the only nodes that can give a non-trivial contribution to

Equations (28) and (29) are those in N({i}) and possibly, in the case of Equation (29),

the node i. Moreover, a node j ∈ N({i}) gives a contribution to |B(T ∪ {i}) \ B(T )|
in expression (28) only for those orders L where all the nodes in N({j}) \ {i} belong

to T , i.e., precede i in L. It is easy to verify that number of such orders is(|V |
dj

)
(dj − 1)!(|V | − dj)! =

|V |!
dj

.
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Similarly, a node j ∈ N({i}) gives a contribution to |S(T ∪ {i}) \ S(T )| in expression

(29) only for those orders L where all the nodes in N({j}) \ {i} precede i and

L(j) > L(i). It is easy to verify that the number of such orders is( |V |
dj + 1

)
(dj − 1)!(|V | − dj − 1)! =

|V |!
dj(1 + dj)

.

Finally, the orders in which node i gives a contribution to |S(T ) ∩ {i}| in (29) are

those in which N({i}) ⊆ T . The number of these orders is( |V |
di + 1

)
(di)!(|V | − di − 1)! =

|V |!
1 + di

.

Now the expressions (26) and (27) follow immediately from the definition (24) of

the Shapley value. �

We can justify the above result as follows. It states that power rewards actors

having a large number of low-degree neighbors. The difference between the two

power functions φp and φq is that the latter, because of the quadratic dependency

on the degree of neighbors, is less sensitive to neighbors of relatively high degree.

Now, consider a generic node set T and a node i not belonging to T . Theorem

7 states that the marginal contribution given by i to the power of T is high if i

has many neighbors with low degree. Indeed, if j is a low-degree neighbor of i, the

probability that all neighbors of j are in T ∪ {i}, hence that j is a new victim of

T ∪ {i}, is high. On the other hand, if j has many neighbors, then it is unlikely that

all of them belong to T ∪ {i}, hence that j is controllable by T ∪ {i}. It follows that

a node i that provides the highest increment to the power of a generic set T is a

node with many neighbors of unitary degree, that is, node i is the center of a star

subgraph. In this case, all the neighbors of i become, for sure, new victims of T ∪{i}.
On the other hand, a node i that provides the lowest increment to the power of T

is a node with no neighbors; in fact it decreases the power of one unity.

As an example, consider for the umpteenth time Figure 1. In all four networks, the

black node has the same number of neighbors (the six white nodes). However, these

neighbors have different degrees, and this determines different powers for the black

vertex. Let us consider, for the sake of simplicity, power φp. The maximum power,

equal to −1+6 = 5, is achieved by the black node of the star network in the top-left

part of the figure. The black node of the bottom-left network has a lower power

equal to −1+
(
1 + 1 + 1

2
+ 1

2
+ 1

3
+ 1

3

)
= −1+ 11

3
= 8

3
. The power of the black node

of the top-right network is still lower: −1 + 1
2

· 6 = 2, and the black node of the

bottom-right network has the lowest power equal to −1+
(

1
2

· 5 + 1
3

)
= −1+ 17

6
= 11

6
.

Notice that, if we call i the black node, it always holds that the Shapley-based power

φ
p
i of i is larger than or equal to the node set power pG({i}) of the singleton {i} (that

we computed above), a property that we formally show in Proposition 5.

The thesis that power is in the hands of those connected to powerless actors, might

be surprising at first sight. Classical recursive centrality measures, like eigenvector

and PageRank centrality (Franceschet, 2011), remunerate those actors that are

connected to powerful ones. Nevertheless, the notion has its logic, as sagaciously

observed by Bonacich (1987): “However, in bargaining situations, it is advantageous

to be connected to those who have few options; power comes from being connected to

those who are powerless. Being connected to powerful others who have many potential
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trading partners reduces one’s bargaining power.” Bonacich observes in a subsequent

footnote that this notion of power appears already in Caplow’s and Gamson’s well-

known theories of coalition formation of late sixties. A related notion of power in a

hierarchically structured population of economic agents has been proposed by van

den Brink & Gilles (1994).

Finally, it is worth pointing out that both power measures φp and φq can be

computed in linear time in the size of the graph, that is, in O(|V | + |E|).
Let us now consider the coalitional game G(V , vG) defined by the vulnerability

function vG(T ). The following proposition shows how the symmetry between the

vulnerability and power functions reflects in the symmetry of the Shapley values of

the corresponding games.

Proposition 4

For every network G = (V , E), the Shapley values φp and φv of the games G(V , pG)

and G(V , vG) are symmetric, i.e., φv = −φp.

Proof

By item 1 of Proposition 3, for each T ⊆ V and i /∈ T

vG(T ∪{i})−vG(T ) = pG(V \ (T ∪{i}))−pG(V \T ) = −(pG(V \T )−pG(V \ (T ∪{i}))).
Since the contributions of the node i with respect to the sets T and V \ (T ∪ {i}))
have the same coefficient in the expression (25) of the Shapley value the statement

holds. �

Games defined by supermodular characteristic functions, as the games defined

by the power function pG and the vulnerability function vG, are commonly called

convex games and exhibit some important properties (Shapley, 1971). One of these

properties is that the Shapley value of a convex game G = (N, v) always belongs to

the core of the game, i.e., the set of the payoffs a ∈ �|N| that satisfy the condition∑
i∈S ai � v(S) for each coalition S ⊆ N. Payoffs in the core are considered robust

solutions of the game, since they give to any coalition at least what the coalition

can get by itself. In particular, the core of every convex game is not empty.

For completeness we report here a direct proof that the Shapley values φp and φv

belong to the core of the corresponding games.

Proposition 5

The Shapley values φp and φv of the games G(V , pG) and G(V , vG) belong to the

respective cores.

Proof

In order to show that φp belongs to the core of G(V , pG) it is sufficient to show

that for each coalition T ⊆ V it holds
∑

i∈T
∑

j∈N({i})
1
dj

� |B(T )|. Now each node

k ∈ B(T ) contributes with a term 1
dk

to exactly |N({k})| = dk terms of the left hand

side. As a consequence

∑
i∈T

∑
j∈N({i})

1

dj
�

∑
k∈B(T )

dk

dk
= |B(T )|.
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Consider the Shapley value φv of game G(V , vG). Propositions 3 and 4 and the just

proved item for φp imply that, for each T ⊆ V

vG(T ) = pG(V \ T ) �
∑
i∈V\T

φ
p
i = − ∑

i∈V\T
φv
i =

∑
i∈T

φv
i

where the last identity follows from the fact that, by the efficiency axiom of the

Shapley value,
∑

i∈V φv
i = vG(V ) = 0. �

4 Experimental analysis

In this section, we discuss the outcomes of the experiments that we conducted on

artificial as well as real networks. We mostly used the computing environment R,

and in particular the network analysis package igraph. We solved the integer linear

programming model for the computation of vulnerability ν̄G proposed in Section 3,

using the solver CPLEX 11.2.

4.1 Vulnerability and robustness

The goal of the first experiment is to assess the relationship among vulnerability

and robustness of a graph: are robust graphs less vulnerable? Do fragile networks

have high vulnerability? For this experiment we generate random graphs according

to the following two graph models: Barabási–Albert graphs (BA graphs, for short),

also known as scale-free graphs, and Erdős–Rényi graphs (ER graphs, for short).

We first generate a sample of 100 random BA graphs, varying the edge density.

In particular, we choose randomly the number of edges to add in each step of

the preferential attachment process in the interval from 1 to n/2, where n is the

number of graph nodes. Hence, both sparse and dense graphs are generated. Next,

we generate a sample of the same size of random ER graphs according to the model

G(n, m); we generated the ER graphs with the same edge densities of the BA graphs

previously sampled. On each graph of the sample, we compute the vulnerability

and the algebraic connectivity. The algebraic connectivity of a graph is the second-

smallest eigenvalue of the Laplacian matrix of the graph. This eigenvalue is greater

than 0 if and only if the graph is connected. The magnitude of this value reflects

how easily a network can be divided: it is small for networks that can be easily

partitioned in two groups of nodes, that is, the network divides by removing few

edges from it, and it is large for networks that can be hardly partitioned in two

fragments, that is, to divide the network a large number of edges must be removed.

Algebraic connectivity is hence a measure of the robustness of networks (Newman,

2010).

As shown in Figure 4, for both BA and ER graphs, vulnerability and algebraic

connectivity are negatively correlated as soon as vulnerability is lower than or equal

to the watershed score of 0 (recall that the same score of vulnerability determines

if the network is regularizable or not). This means that, regularizable networks with

low vulnerability have high algebraic connectivity, and hence are robust graphs.

On the other hand, for graphs with positive vulnerability, that is, networks that

are not regularizable, there is no association between vulnerability and algebraic

connectivity.
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Fig. 4. Scatter plots comparing vulnerability and algebraic connectivity over

Barabási–Albert graphs (left plot) and Erdős–Rényi graphs (right plot).

Given these experimental outcomes, we conjecture a partial mathematical rela-

tionship between vulnerability and algebraic connectivity of networks.2

A first step towards a precise formalization of this relationship is the following.

Let G = (V , E), with |V | = n and let S ⊂ V . The set of the edges connecting S

with the rest of the graph makes up the boundary of S , that we denote with ∂(S).

Formally

∂(S) = {ij ∈ E : |S ∩ {i, j}| = 1}.
Clearly, in the case where S is an independent set then

|∂(S)| =
∑
i∈S

|∂({i})|.

Actually, for every S ⊂ V it turns out that

|∂(S)|
|S | � λ2

(
1 − |S |

n

)

where λ2 is the second-smallest eigenvalue of the graph Laplacian, that is, the graph

algebraic connectivity (Godsil & Royle, 2001). If S is an independent set, then

|∂(S)|
|S | =

∑
i∈S |∂({i})|

|S |
is the mean degree of the nodes of S . For any node set S , we have that |N(S)| is

always greater than or equal to the maximum degree of the nodes in S , and hence,

it is also greater than or equal to the mean degree of the nodes in S . Summing up,

if S is an independent set, we have

λ2

(
1 − |S |

n

)
�

|∂(S)|
|S | � |N(S)|.

2 This intuition is corroborated by the known result that expanders (see Section 5) are graphs with large
algebraic connectivity.
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Fig. 5. Frequency of Erdős–Rényi graphs that are regularizable and quasi-regularizable by

increasing the mean node degree.

This inequality is weak and makes sense only for λ2 > 1; however it partially

explains the results of the experiments: if algebraic connectivity (λ2) is high, then,

any independent set S has a large set of neighbors N(S), and hence the vulnerability

of the graph cannot be large (see Figure 4).

Another simple observation helps us complementing the explanation of the

experimental results. If a graph G has two nodes of degree 1 connected to a

third node (of arbitrary degree), then 1 is an eigenvalue of the Laplacian matrix

(Godsil & Royle, 2001), so that λ2 � 1. But at the same time the graph vulnerability

ν̄G � 1, and, if the nodes of degree one connected to the same node are k, then

ν̄G � k − 1. This suggests that when algebraic connectivity is small (λ2 � 1) we

cannot expect any relationship between vulnerability and algebraic connectivity (see

again Figure 4).

4.2 The frequency of vulnerable networks

The aim of the second experiment is to estimate the probability of being a

regularizable or quasi-regularizable graph: how many graphs are regularizable?

How many graphs are quasi-regularizable? Notice that, because of Theorem 1, a

network is vulnerable if and only if it is not quasi-regularizable, hence the probability

of finding a vulnerable network is the complement to 1 of the probability of finding

a quasi-regularizable network.

For this experiment, we generate a sample of ER graphs, increasing the average

node degree from 1 to 10. We use the model G(n, p) of ER graphs, where n is

the number of nodes and p is the probability of edges between vertices. The mean

degree of a node in a G(n, p) graph is 〈k〉 = p(n − 1). We fix the number of nodes

n = 100 and increase p so that we obtain the mean degree sequence from 1 to

10. For each pair (n, p), we generate a sample of 100 graphs according to the
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model G(n, p) of ER graphs. For each graph in the sample, we check whether the

graph is regularizable and, if not, whether it is quasi-regularizable. As it is clear

from Figure 5, the frequency of quasi-regularizable graphs and that of regularizable

graphs increase as the mean node degree 〈k〉 grows. More precisely, when 〈k〉 is low,

both frequencies are negligible. As soon as 〈k〉 is sufficiently large, both frequencies

start growing very rapidly. By way of example, when n = 100, the frequency of

quasi-regularizable graphs is negligible as soon as 〈k〉 � 3, it is significantly above 0

(14%) when 〈k〉 = 4, when 〈k〉 = 5 almost half (48%) of the graphs in the sample

are quasi-regularizable, and as soon as 〈k〉 = 6 more than three-quarters (77%) of

the sampled random networks are quasi-regularizable. For higher values of the mean

node degree, the frequency of quasi-regularizable graphs is close to 100%. As for

regularizability, the frequency is negligible as soon as 〈k〉 � 5. Graphs with 〈k〉 = 6

have 21% probability of being regularizable, those with 〈k〉 = 7 have 50% chance of

being regularizable, while networks with 〈k〉 � 9 are almost certainly regularizable.

We notice, however, that these frequencies tend to become lower as soon as the

number of nodes increases.

We conjecture that there exists a transition phase of regularizability of networks

that depends predominantly on the mean degree of the network.3 This seems

reasonable with the benefit of hindsight. Recall that regularizability is the process

of assigning weights to edges so that the resulting graph is regular. When the

mean node degree is low, nodes have few incident edges, hence the process of

regularizability is hampered. However, as soon as node degrees grow, there are

many more possibilities of assigning weights to edges, significantly increasing the

probability of success of the regularizability process. Finally, when node degrees are

sufficiently large, there are so many possible weight assignments that the graph is

almost certainly regularizable.

4.3 Vulnerability and power on real networks

In our last experiment we apply the developed vulnerability and power measures

to real-world networks. The goal of this experiment is twofold: (i) show that

vulnerability and power measures might reveal meaningful properties of the structure

of a network; (ii) empirically study the correlation among Shapley-based node

power4 and node degree in a network. We analyzed four real networks, two social

networks and two technological networks. Table 1 summarizes some statistics we

have computed on these networks.

The first social network is the Madrid train bombing terrorist network. The

network depicts individuals involved in the bombing of commuter trains in Madrid

on March 11, 2004. Ties link the individuals involved in at least one of the following

relationships: (1) trust or friendship; (2) ties to Al Qaeda and to Osama Bin

Laden; (3) co-participation in training camps or wars; (4) co-participation in

previous terrorist attacks. The network was reconstructed by José A. Rodrı́guez

3 A similar transition phase has been noticed for the giant component of networks: as soon as the mean
degree of a node is higher than 1, a giant connected component including the majority of the graph
nodes emerges (Newman, 2010).

4 In this section we use power defined as φp in Theorem 7 of Section 3.4.
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Table 1. Statistics for the four analyzed networks. The meaning of columns is: Network: name

of the network; Nodes: number of nodes; Edges: number of edges; Vul: vulnerability; Maxdeg:

maximum degree of a node; Maxpow: maximum power of a node; Maxdiff: maximum difference

in power among nodes with the same degree divided by the maximum difference in power among

any two nodes (runs between 0 and 1); Cor: Pearson correlation coefficient between degree and

power (runs between −1 and 1).

Network Nodes Edges Vul Maxdeg Maxpow Maxdiff Cor

Madrid 64 243 1 29 2.89 0.54 0.84

Netsci 379 914 14 34 8.85 0.49 0.89

Powergrid 4,941 6,594 575 19 9.73 0.73 0.84

Internet 22,963 48,436 16,362 2,390 1,127.77 0.05 0.97

Fig. 6. Madrid train bombing terrorist network. Black circles are, among nodes having the

same degree, those having maximum power difference (54% of the size of the power range).

of the University of Barcelona using press accounts in the two major Spanish daily

newspapers (Hayes, 2006). It is depicted in Figure 6.

The vulnerability score of the terrorist network is very low. In fact, as soon as

one removes the nodes with degree equal to 1, the resulting network becomes

regularizable, with a negative vulnerability score equal to −1. Also, there are

no big differences among the power scores of nodes: the great majority of the

terrorists (84%) have power between −1 and 1, with a maximum power of 2.89.

If follows that the terrorist network contains no core-periphery, executioner-victims

fragment, in which an independent group of terrorists is connected to a unique

central control. On the contrary, the network is composed of few communities,

one of them quite prominent, of tightly connected individuals, with few links

among the different communities (Hayes, 2006). This flattened, non-hierarchical,

and decentralized layout, with no leader in control and defined ranks, is a form of

robustness against attacks: no individual is fundamental for the network, and when

some terrorist is removed (jailed, for instance), new substitutes immediately emerge.

The correlation among degree and power is depicted in the scatterplot of Figure 7.

Although there exists a positive correlation among the two measures (the Pearson

correlation coefficient is 0.84), degree alone cannot explain power. Indeed, there are
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Fig. 7. Scatterplot between power and degree of nodes of the Madrid train bombing terrorist

network. The extreme circles connected by the horizontal segment are, among nodes having

the same degree, those having maximum power difference (54% of the size of the power

range).

nodes with similar degree having quite different power, so that the points in the

plot do not follow a straight line but are dispersed in a fan-like shape. Both the

scatterplot and the network figures highlight the node pair with same degree and

maximum power divergence. Despite this two nodes have the same degree (11), it is

clear from the network visualization that they have different structural roles: the less

powerful individual is central to a big clique, and is surrounded by highly connected

neighbors (on average its neighbors have degree 16), while the other one is a broker

between scarcely connected neighbors (with an average degree of 6).

The next network we analyze is a collaboration network of scholars in the field of

network science. The nodes are scientists working on network theory and experiment,

as compiled by Mark Newman in May 2006 (Newman & Girvan, 2004), using the

bibliographies of two main review articles on networks. There is a link between

two authors if they have collaborated in at least one paper. The original version

contains all components of the network, for a total of 1589 scientists; here we study

the largest component of 379 scientists, which is depicted in Figure 8.

With respect to the terrorist network, the collaboration network has a higher

vulnerability (14 versus 1) and, although the largest degree of a node in the two

networks is comparable (34 versus 29), the power spans a much larger interval (8.85

versus 2.89). This means that the structure of the network is more star-like, with

core scholars that attract collaborators with a much fewer collaboration degree. For

instance, the most powerful scholar is Mark Newman (the bigger grey node on the

right in Figure 8), with power 8.85. He has 27 collaborators, who are much less

collaborative (their average degree is less than 5).

Again, we noticed a positive correlation between power and degree (Pearson

correlation coefficient 0.89), but important divergences exists. For instance, the two

scholars with the same degree and the maximum divergence in power are Hawoong

Jeong (degree: 27, power: 4.02), and Mark Newman (degree: 27, power: 8.85), with a

difference in power that accounts almost half of the power range. Their ego-centered
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Fig. 8. Network science collaboration network. Black nodes form an independent set of

maximum vulnerability (14): it contains 78 nodes and is dominated by the set of 64 grey

nodes. The two bigger grey nodes have the same degree (27) and, among nodes having the

same degree, they have the maximum power difference (49% of the size of the power range):

they are Hawoong Jeong (on the left), and Mark Newman (on the right). They are highlighted

in Figure 9.

Fig. 9. The ego-centered networks of Hawoong Jeong (on the left), and Mark Newman (on

the right). They depict the ego (black), their collaborators (grey), and the collaborators of

their collaborators (white).

sub-networks are depicted in Figure 9. Notice that Jeong has more collaborative

co-authors than Newman (the average collaboration degree is 8.4 for Jeong and 4.9

for Newman).

The last two graphs we investigate are two technological networks. The first is a

representation of the topology of the western states power grid of the United States,

compiled by Watts & Strogatz (1998). The nodes are the generating stations and

switching substations while the edges are the physical electric lines connecting them.

A fragment of the network, which is much larger than the previously analyzed social

networks, is depicted in Figure 10.

The nodes of the power network have a relatively low degree: the typical station

has two or three connections with other stations, while few hub stations have a

larger number of connections, with a maximum degree of 19. The distribution of

node power is similar, with the great majority of nodes with low power and a few

of them with moderately high power, with a maximum of 9.73. The histograms of

degree and power are depicted in the lower part of Figure 11. Degree and power are
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Fig. 10. A snapshot of the power grid network. It is the ego network of order 8 (containing all

nodes at a distance less than or equal to 8 from the ego) centered at the node with maximum

power (the bigger node).
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Fig. 11. Scatterplot between power and degree of nodes of the power grid network (above).

The extreme circles connected by the horizontal segment are, among nodes with the same

degree, those having maximum power difference (73% of the size of the power range).

Histograms of degree and power are shown below.

positively associated (Pearson 0.84), but, as clear from the scatterplot of the upper

part of Figure 11, there are nodes with similar power and quite different degrees and

nodes with similar degree and quite diverging power. This produces a scatterplot

with a wide and high cloud of points (as opposed to a straight thin line).

Nevertheless, the vulnerability of the power network is significantly high: 575,

more than 11% of the number of nodes. There exists, indeed, an independent set of

size 2,264 that is dominated by a set size 1,689. Such a high network vulnerability,
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with a relatively modest power at the level of nodes, reveals the particular network

topology of the power grid network. Nodes are mostly arranged along linear paths.

This is because edges represent physical lines, which, for economical reasons, typically

connect geographically close stations. Hence, it is likely that two far away stations

are connected through a chain of intermediated linked stations. Moreover, some

stations are more important than others, and are connected to a moderate number

of other independent stations, in a star-like structure. The resulting topology has

large tree-like fragments, although the overall network contains circuits, as evident

from the visualization offered in Figure 10.

The last network we observe is the technological network by definition: the

Internet. The representation we use contains a symmetrized snapshot of the structure

of the Internet at the level of autonomous systems, reconstructed from Border

Gateway Protocol tables posted at archive.routeviews.org. Nodes represent

autonomous systems—collections of computers and routers, usually under single

administrative control, within which data routing is handled independently of the

wider Internet. Edges are physical data connections between these systems. This

snapshot was created by Mark Newman from data for July 22, 2006.

It is immediately clear from the figures in Table 1 that this network is different

from the previous ones. The distributions of degree and power are severely skewed,

with relatively few hub systems that draw the majority of connections. For instance,

75% of the systems have one or two connections, 95% have less than 9 connections,

and 99% have less than 37 connections. There are 76 hubs with more than 100

connections, 6 of them have more than 1,000 connections, and the most linked node

has 2,390 connections, reaching 10% of the graph. The high asymmetry determines

a high Pearson correlation coefficient among degree and power (0.97) and a low

maximum power divergence among same-degree nodes (0.05). However, these figures

are artifacts of the huge skewness of the distributions of power and degree. Indeed,

the (non-parametric) Spearman’s rank correlation coefficient between degree and

power is much lower: 0.48. This means that, also for the Internet, degree only

partially explains power of a node.

The vulnerability of the network is extremely large: there exists an independent

set of cardinality 19,018 (notably, 83% of the network) that is dominated by a much

smaller set of 2,656 nodes, making the vulnerability of the network equal to the

whopping 16,362. These figures reveal a network dominated by few powerful hubs.

This core, made of high-performance routers and long-distance high-bandwidth

lines, is well known as the backbone of the Internet. It provides connection to a

plurality of Internet service providers, who in turn serve connectivity to a myriad of

end users, the ultimate consumers of the Internet bandwidth. This peculiar topology,

illustrated in Figure 12, is also responsible for the vulnerability of Internet to attacks.

Since there is so much control in relatively few hubs, a malicious individual can

take advantage of this topology flaw by attacking few crucial routers and causing

conspicuous effects.

5 Related literature

The notion of vulnerability we have proposed is somewhat related to that of

expander graph (Hoory et al., 2006). Informally, an expander graph is an undirected
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Fig. 12. A fragment of the Internet consisting of an ego network of order 4 centered at the

node of maximal power. For the sake of visualization, only nodes with maximum degree 100

are considered.

unweighted graph that is both sparse and robustly connected. Sparsity is achieved

by constraining all nodes of the graph to have the same small degree k, which is

constant with respect to the number of nodes n (hence expander graphs are k-regular

graphs). Robustness holds since every not too large subset of nodes of an expander

graph has a relatively large boundary, where the boundary ∂S of a node set S is

defined as the set of edges emanating from S to its complement. The expansion

parameter for a regular graph G is defined as

h(G) = min
S :|S |�n/2

|∂S |
|S |

and a regular graph is a good expander if its expansion parameter is well above 0.

Expanders can be defined and investigated in different languages including graph

theory, geometry, probability, and algebra. In graph theory, expanders are graphs

that are both sparse (hence economical) and robust (to failure or attacks): to

disconnect a large part of the graph, one has to remove many edges. Using the

geometric notion of isoperimetry, every set of vertices of an expander graph has a

relatively large boundary. From the probabilistic perspective, expanders are graphs

for which a natural random walk on the graph converges to its limiting distribution

very rapidly. Algebraically, expanders are graphs with a large eigengap between

the largest and second-largest eigenvalues of the adjacent matrix of the graph (this

property is related to the convergence speed of the above mentioned random walk

on the graph). Equivalently, expanders are graphs with a large second-smallest

eigenvalue of the Laplacian matrix of the graph (algebraic connectivity), and hence

are robust graphs.

Recall that we defined vulnerability of an arbitrary graph as

ν̄G = max
∅�=S∈S(G)

|S | − |N(S)|.

Our definition diverges from that of expander graph for the following reasons:
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1. expansion is a bound on the ratio between a number of edges and a number of

vertices, whereas vulnerability takes the difference between two sets of vertices.

This is a huge gap—for instance, the boundary of the set of leaves in the star

graph with n nodes has size n − 1, whereas the size of the neighbor set of the

leaves is 1;

2. vulnerability is defined on arbitrary graphs, while an expander is a k-regular

graph with small k;

3. finally, in the context of network science, graph expanders have been studied

with the goal of designing future communication networks with good topolog-

ical properties, while we propose graph vulnerability with the aim of analyzing

existing real networks.

The Shapley value-based node power introduced in this paper is also weakly

related to the sociological theory of structural holes (Burt, 2004). The author argues

very convincingly that “opinion and behavior are more homogeneous within than

between groups, so people connected across groups are more familiar with alternative

ways of thinking and behaving. Brokerage across the structural holes between

groups provides a vision of options otherwise unseen, which is the mechanism by

which brokerage becomes social capital. [. . . ] Compensation, positive performance

evaluations, promotions, and good ideas are disproportionately in the hands of

people whose networks span structural holes.” In short, these social brokers “see

bridges where others see holes.” A quantitative measure of the mentioned local

betweenness centrality is the local clustering coefficient (Watts & Strogatz, 1998;

Newman, 2010). For a given node i, the local clustering coefficient is the ratio of the

number of pairs of neighbors of i that are connected and the number of pairs of

neighbors of i. This coefficient is low if there are many structural holes among the

neighbors of node i, making the subgraph induced by the neighborhood of i loosely

connected. In such a case the broker i has power over information flow between

those friends that are not directly connected. The coefficient is high if the neighbors

of i are instead tightly connected, and information between these friends can flow

directly without passing through i, lowering the power of i. In fact, the inverse of

the local clustering coefficient might be regarded as a centrality measure of local

betweenness (Newman, 2010).

Now consider a powerful node. Since, by definition of power, the node has many

neighbors with low degree, we might expect that the node has low clustering

coefficient, hence high local betweenness. However, a node i with high local

betweenness is not necessarily a powerful node, since the set of neighbors of i

might be well connected to nodes different from neighbors of i, and hence i might

be powerless.

Standard node centrality measures, like degree, closeness and betweenness, have

been extended to sets of nodes (Everett & Borgatti, 1999). In particular the authors

define group degree centrality as the relative number of non-group nodes that are

connected to group members, that is, for a node set S in a graph with nodes in V ,

group degree centrality is

δ(S) =
|N(S) \ S |

|V \ S | .

https://doi.org/10.1017/nws.2015.8 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.8


224 E. Bozzo et al.

The coefficient runs from 0 to 1 and, assuming a connected graph, it is maximum

for dominating sets S such that every node not in S is adjacent to at least one

member of S . To be effective, it would be desirable for the group S to be as

small as possible without sacrificing centrality (Everett & Borgatti, 1999). Therefore,

the authors propose to search for the smallest set S with the maximum degree

centrality, that is, the smallest dominating set. In graph theory, the cardinality of the

smallest dominating set is known as domination number of the graph, and finding

the domination number of an arbitrary graph is a classical computationally hard

problem. Therefore, it is believed that there is no efficient algorithm that finds a

smallest dominating set for a given graph. The problem of finding the smallest

dominating set bears some analogy with that of finding the set of maximum power

in our setting. However, there are also significant differences: while the former

problem searches for a small set with a neighbor set that expands over the whole

graph, the latter seeks for a small set that controls a large (independent) set.

The first application of game theory to the topic of network centrality used the

Banzhaf power index instead of the Shapley value (Grofman & Owen, 1982). The

use of the Shapley value as a network centrality measure has been later investigated

(Suri & Narahari, 2010; Michalak et al., 2013; Szczepański et al., 2012). The authors

consider the node-set generalizations of the principal centrality measures, including

degree, closeness, and betweenness, and interpret them as characteristic functions of

coalitional games. Then, the Shapley value of these games is proposed as a more

involved centrality index at node level. Moreover, polynomial time solutions for

Shapley value-based degree, closeness, and betweenness centrality have been devised

(Michalak et al., 2013; Szczepański et al., 2012). We follow a similar technique

to introduce closed-form polynomial-time expressions for the Shapley value of

vulnerability and power measures.

6 Conclusion

We have defined a vulnerability measure on sets of nodes of a network that counts

the difference between the number of nodes in the set and the number of neighbors

of nodes in the set. The measure is seemingly simple, but has proved interesting

from a theoretical, computational and empirical point of view.

We have thoroughly investigated the problem of finding a non-empty independent

set of maximum vulnerability in a graph. The vulnerability of a graph, defined as

the optimal value for the problem, provides a partition of the class of networks into

regularizable graphs (those with negative vulnerability), quasi-regularizable graphs

that are not regularizable (those with null vulnerability), and graphs that are not

quasi-regularizable (those with positive vulnerability).

Computationally, the maximum vulnerability problem can be solved efficiently, by

reducing to the minimum 2-vertex cover problem, for the class of non-regularizable

graphs (those with null or positive vulnerability). The complexity is O(|V | 1
2 · E) for

graphs with positive vulnerability, and O(|V | 3
2 ·E) for graphs with null vulnerability.

These bounds boil down to O(|V | 3
2 ) and O(|V | 5

2 ) on sparse networks with m = O(n).

Furthermore, we have modeled the maximum vulnerability problem in integer linear

programming, showing that a single continuous relaxation of the model is sufficient

to solve the problem on non-regularizable graphs, while, for regularizable networks,
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the solution of |V | linear programming instances are necessary. Incidentally, this

demonstrates that the maximum vulnerability problem is polynomial and provides a

practical, highly efficient and optimized method (linear programming) to tackle the

problem.

We have interpreted the vulnerability measure (as well as its mirror image power

measure) as the characteristic function of a coalition game played on the graph

and have proposed the Shapley value of the game as a sophisticated measure of

vulnerability (and power) at the level of nodes. Interestingly, the emerging measure

of power pontificates that power is in the hands of those connected to powerless

ones, a thesis that was already suggested in the sociological literature of the late

60s. Moreover, the measure has a closed-form expression that can be computed in

linear time in the size of the graph.

We have experimentally shown on artificial graphs (using both random and scale-

free models) that a network is almost certainly non-regularizable when its mean node

degree is sufficiently small. Hence, sparse networks tend to be non-regularizable.

This is good news, since most real networks are sparse—we have analyzed two

social networks and two technological networks (including the Internet) and found

that they are, indeed, non-regularizable. This opens the possibility of applying the

developed measures, at both group level and node level, to large real networks.
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