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Abstract

Let q ≥ 1 be any integer and let ε ∈ [ 1
11 ,

1
2 ) be a given real number. We prove that for all primes p satisfying

p ≡ 1 (mod q), log log p >
2 log 6.83

1 − 2ε
and

φ(p − 1)
p − 1

≤
1
2
− ε,

there exists a quadratic nonresidue g which is not a primitive root modulo p such that gcd(g, (p − 1)/q) = 1.
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1. Introduction

Let p be an odd prime number. There are exactly (p − 1)/2 quadratic residues and the
same number of nonresidues modulo p. Moreover, the multiplicative group (Z/pZ)∗

is cyclic (see [1]). A generator of this cyclic group is called a primitive root modulo p.
The distribution of quadratic residues, nonresidues and primitive roots is a

fundamental area in number theory and has been of great interest to mathematicians for
centuries. In 2010, Levin et al. [4] proved the existence of a primitive root satisfying
a coprimality condition.

Theorem 1.1. For all prime numbers p ≥ 5, there exists a primitive root g modulo p
which satisfies the condition gcd(g, p − 1) = 1.

Levin et al. [4] used this theorem to solve the fixed point discrete log problem that,
for a given primitive root g in (Z/pZ)∗, there exists an integer t ∈ [1, p − 1] such that
gt ≡ t (mod p).

In this article, we deal with a similar problem for quadratic nonresidues which are
not primitive roots (for further references on this related problem, see [2, 3, 5]). For
notational convenience, we abbreviate ‘quadratic nonresidue which is not a primitive
root’ as QNRNP. More precisely, we prove the following result.
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Theorem 1.2. Let q ≥ 1 be an integer and ε ∈ [ 1
11 ,

1
2 ). Let p be a prime satisfying

p ≡ 1 (mod q), log log p >
2 log 6.83

1 − 2ε
and

φ(p − 1)
p − 1

≤
1
2
− ε.

Then there exists an integer g satisfying 1 < g < p − 1 and gcd(g, (p − 1)/q) = 1 such
that g is a QNRNP modulo p. In particular, when q = 1, there exists an integer g with
1 < g < p − 1 and gcd(g, p − 1) = 1 such that g is a QNRNP modulo p.

In the statement of Theorem 1.2, as usual, φ(n) is the Euler totient function.
The third condition on p is quite natural. If φ(p − 1) = 1

2 (p − 1), then one can
easily check that every nonresidue modulo p is a primitive root modulo p and if
φ(p − 1) < 1

2 (p − 1) then there are nonresidues which are not primitive roots. The
condition φ(p − 1) ≤ ( 1

2 − ε)(p − 1) makes sure that p − 1 has enough odd prime factors
so that there is an abundance of QNRNP residues modulo p.

We can apply Theorem 1.2 to solve the fixed point discrete log problem for the
cyclic subgroup generated by a QNRNP.

Corollary 1.3. Let ε ∈ [ 1
11 ,

1
2 ). Let p be a prime satisfying

log log p >
2 log 6.83

1 − 2ε
and

φ(p − 1)
p − 1

≤
1
2
− ε.

Then there are a QNRNP g and an integer x ∈ [1, p − 1] such that x is a QNRNP and
gx ≡ x (mod p).

In [4], Theorem 1.1 is proved first for all large primes and verified for small
primes by computation. However, such computations are cumbersome in the case
of Theorem 1.2 because of the extra parameters.

2. Preliminaries

Let µp−1 stand for the multiplicative group of (p − 1)th roots of unity. Let g ∈
{1, . . . , p − 1} be a primitive root modulo p and let χ : (Z/pZ)∗ → µp−1 be a character
modulo p such that χ is a generator of the dual group of (Z/pZ)∗. Let ` be an integer
with 0 ≤ ` ≤ p − 2. Then χ` = χ` is a character modulo p and χ0 is the principal
character.

Suppose that χ(g) = η. Since χ is a generator of the dual group of (Z/pZ)∗ and g is
a primitive root modulo p, it follows that η is a primitive (p − 1)th root of unity.

Following [2], we define β`(p − 1) and the Ramanujan sums α`(p − 1) by

β`(p − 1) =
∑

1≤i≤p−1
i odd, (i,p−1)>1

(ηi)` and α`(p − 1) =
∑

1≤i≤p−1
(i,p−1)=1

(ηi)`.

Now we list some basic results, which will be useful for the proof of Theorem 1.2.

Lemma 2.1 [2]. For all integers ` with 0 < ` < p − 1,

β`(p − 1) = −α`(p − 1).
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Lemma 2.2 ([2], characteristic function for QNRNP). For any x ∈ (Z/pZ)∗,
p−2∑
`=0

β`(p − 1)χ`(x) =

{
p − 1 if x is a QNRNP,
0 otherwise.

Lemma 2.3. (1) [6] Let ω(n) denote the number of distinct prime divisors of n. For
all primes p ≥ 5,

ω(p − 1) ≤ 1.385
log p

log log p.
(2) [1] Let µ(n) denote the Möbius function. Then∑

d|n

µ(d) =

{
1 if n = 1,
0 if n > 1.

(3) [7] For any odd prime p and any divisor q of p − 1,∑
d|(p−1)/q

|µ(d)| = 2ω((p−1)/q).

Lemma 2.4 [7]. The Ramanujan sums satisfy

p−2∑
`=1

|α`(p − 1)| = 2ω(p−1)φ(p − 1).

Finally, the following result is a standard theorem to estimate a character sum over
an interval (see, for example, [1]).

Theorem 2.5 (Pólya–Vinogradov). Let p be any odd prime and χ be a nonprincipal
character modulo p. Then, for any integers M,N with 0 ≤ M < N ≤ p − 1,∣∣∣∣∣ N∑

m=M

χ(m)
∣∣∣∣∣ ≤ √p log p.

3. Proof of Theorem 1.2

Suppose that the integer q ≥ 1 and ε ∈ [ 1
11 ,

1
2 ) are given. We consider all primes

p ≡ 1 (mod q) with φ(p − 1) ≤ ( 1
2 − ε)(p − 1). By Dirichlet’s prime number theorem,

there are infinitely many such primes.
By Lemma 2.2, for any integer m,

f (m) :=
1

p − 1

p−2∑
`=0

β`(p − 1)χ`(m) =

{
1 if m is a QNRNP,
0 otherwise.

Set

Np :=
p−1∑
m=1

(m,(p−1)/q)=1

f (m).
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Then Np counts the number of QNRNPs in {1, . . . , p − 1} which are relatively prime to
(p − 1)/q. To prove Theorem 1.2, it suffices to prove that Np ≥ 1 for all the primes p
under consideration (that is, with p ≡ 1 (mod q) and φ(p − 1) ≤ ( 1

2 − ε)(p − 1)) which
satisfy log log p > 2 log 6.83/(1 − 2ε). Therefore, we consider

Np =

p−1∑
m=1

(m,(p−1)/q)=1

f (m) =
1

p − 1

p−1∑
m=1

(m,(p−1)/q)=1

p−2∑
`=0

β`(p − 1)χ`(m)

=
1

p − 1

p−2∑
`=0

β`(p − 1)
p−1∑
m=1

(m,(p−1)/q)=1

χ`(m)

=
1

p − 1

(
β0(p − 1)qφ

( p − 1
q

)
+

p−2∑
`=1

β`(p − 1)
p−1∑
m=1

(m,(p−1)/q)=1

χ`(m)
)
,

where we have used the fact that the number of integers m in {1, . . . , p − 1} such that
(m, (p − 1)/q) = 1 is qφ((p − 1)/q). Let us define

Ep := Np −
1

p − 1
β0(p − 1)qφ

( p − 1
q

)
=

1
p − 1

p−2∑
`=1

β`(p − 1)
p−1∑
m=1

(m,(p−1)/q)=1

χ`(m).

In order to prove that Np ≥ 1, we need to get an upper bound for Ep. We consider the
two sums in the expression for Ep separately. For a given integer ` with 1 ≤ ` ≤ p − 2,

p−1∑
m=1

(m,(p−1)/q)=1

χ`(m) =

p−1∑
m=1

χ`(m)
∑

d|(m,(p−1)/q)

µ(d) =
∑

d|(p−1)/q

µ(d)
(p−1)/d∑

t=1

χ`(d)χ`(t)

=
∑

d|(p−1)/q

µ(d)χ`(d)
(p−1)/d∑

t=1

χ`(t)

by Lemma 2.3(2). Hence, by Theorem 2.5 and Lemma 2.3(3),∣∣∣∣∣∣ p−1∑
m=1

(m,(p−1)/q)=1

χ`(m)

∣∣∣∣∣∣ ≤ ∑
d|(p−1)/q

|µ(d)|

∣∣∣∣∣∣ (p−1)/d∑
t=1

χ`(t)

∣∣∣∣∣∣ ≤ 2ω((p−1)/q) √p log p.

Also, by Lemmas 2.1 and 2.4,

∣∣∣∣∣ p−2∑
`=1

β`(p − 1)
∣∣∣∣∣ ≤ p−2∑

`=1

| β`(p − 1)| ≤
p−2∑
`=0

|α`(p − 1)| = 2ω(p−1)φ(p − 1).
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Using the last two estimates,

|Ep| =

∣∣∣∣∣Np −
1

p − 1
β0(p − 1)qφ

( p − 1
q

)∣∣∣∣∣ ≤ 1
p − 1

p−2∑
`=1

| β`(p − 1)|

∣∣∣∣∣∣ p−1∑
m=1

(m,(p−1)/q)=1

χ`(m)

∣∣∣∣∣∣
≤ 2ω((p−1)/q)+ω(p−1)φ(p − 1)

p − 1
√

p log p. (3.1)

Observe that (3.1) implies that

−2ω((p−1)/q)+ω(p−1)φ(p − 1)
p − 1

√
p log p ≤ Np −

qφ((p − 1)/q)
(p − 1)

β0(p − 1),

which is equivalent to

Np ≥
φ((p − 1)/q)

(p − 1)/q
β0(p − 1) − 2ω((p−1)/q)+ω(p−1)φ(p − 1)

p − 1
√

p log p.

Thus, to establish Np > 0, it is enough to show that

φ((p − 1)/q)
(p − 1)/q

β0(p − 1) − 2ω((p−1)/q)+ω(p−1)φ(p − 1)
p − 1

√
p log p > 0,

which is equivalent to showing that

β0(p − 1) > 2ω((p−1)/q)+ω(p−1) φ(p − 1)
qφ((p − 1)/q)

√
p log p. (3.2)

Now it is clear that

φ(p − 1) ≤ qφ
( p − 1

q

)
⇐⇒

φ(p − 1)
qφ((p − 1)/q)

≤ 1. (3.3)

Since ω((p − 1)/q) ≤ ω(p − 1), by (3.2) and (3.3), it is enough to prove that

β0(p − 1) > 4ω(p−1) √p log p (3.4)

for primes p satisfying log log p > 2 log 6.83/(1 − 2ε) and φ(p − 1) ≤ ( 1
2 − ε)(p − 1).

Let p be such a prime. Then

p1−2ε > p2 log 6.83/log log p. (3.5)

By Lemma 2.3(1),

ω(p − 1) ≤ 1.385
log p

log log p
.

Therefore,

4ω(p−1) ≤ 41.385 log p/log log p ≤ 6.83log p/log log p = plog 6.83/log log p.

Hence, from (3.5),

p1−2ε > 42ω(p−1) ⇐⇒ p1−ε(log p) > 4ω(p−1) √p log p.
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In order to prove (3.4), it is enough to show that

β0(p − 1) > p1−ε log p (3.6)

for all primes p satisfying log log p > 2 log 6.83/(1 − 2ε) and φ(p − 1) ≤ ( 1
2 − ε)(p − 1).

Note that the condition

φ(p − 1)
p − 1

≤
1
2
− ε ⇐⇒ ε(p − 1) ≤

p − 1
2
− φ(p − 1) = β0(p − 1).

Therefore, to prove (3.6), it is enough to prove that ε(p − 1) ≥ p1−ε log p for all primes
p with log log p > 2 log 6.83/(1 − 2ε).

Write ε = 1/c. Since ε ∈ [ 1
11 ,

1
2 ), the real number c satisfies 2 < c ≤ 11. Now

log log p >
log 6.83

1
2 − ε

> 3.84 × 1.22 > 4.68 and log p > e4.68 > 107.7.

To achieve ε(p − 1) ≥ p1−ε log p for all primes p with log log p > 2 log 6.83/(1 − 2ε),
it is enough to prove that

p
1.1

>
1
ε

p1−ε log p ⇐⇒ p > (1.1c)c(log p)c ⇐⇒ log p > c log(1.1c) + c log log p.

Note that ex/x ≥ 22 for all x ≥ 4.68. By applying this with x = log log p, we see that
log p > 2c log log p for 2 < c ≤ 11. Hence, it is enough to prove that

log p > c log(1.1) + c log c +
log p

2
⇐⇒ log p > 2c log(1.1) + 2c log c.

Since c ≤ 11,

2c log(1.1) + 2c log c ≤ 22 log(1.1) + 22 log 11 ≤ 54.86 < 107.7 < log p.

Thus, the inequality in (3.6) is true. This completes the proof of the theorem.

4. Proof of Corollary 1.3

By Theorem 1.2, there is a QNRNP x modulo p satisfying x ∈ [1, p − 1] and
gcd(x, p − 1) = 1. Let y be the multiplicative inverse of x modulo p − 1. Put g = xy.
Then note that g is also a QNRNP modulo p and gx ≡ xxy ≡ x (mod p).
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