
J. Fluid Mech. (2019), vol. 877, P1, doi:10.1017/jfm.2019.607

cambridge.org/jfmperspectives

Flow over natural or engineered surfaces: an
adjoint homogenization perspective

Alessandro Bottaro1,2,†

1Dipartimento di Ingegneria Civile, Chimica e Ambientale, Scuola Politecnica,
Università di Genova, Via Montallegro 1, Genova, 16145, Italy

2Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT,
UPS, Toulouse, 31400, France

Natural and engineered surfaces are never smooth, but irregular, rough at different
scales, compliant, possibly porous, liquid impregnated or superhydrophobic. The
correct numerical modelling of fluid flowing through and around them is important
but poses problems. For media characterized by a periodic or quasi-periodic
microstructure of characteristic dimensions smaller than the relevant scales of
the flow, multiscale homogenization can be used to study the effect of the
surface, avoiding the numerical resolution of small details. Here, we revisit the
homogenization strategy using adjoint variables to model the interaction between
a fluid in motion and regularly micro-textured, permeable or impermeable walls.
The approach described allows for the easy derivation of auxiliary/adjoint systems
of equations which, after averaging, yield macroscopic tensorial properties, such as
permeability, elasticity, slip, transpiration, etc. When the fluid in the neighbourhood
of the microstructure is in the Stokes regime, classical results are recovered. Adjoint
homogenization, however, permits simple extension of the analysis to the case in
which the flow displays nonlinear effects. Then, the properties extracted from the
auxiliary systems take the name of effective properties and do not depend only on
the geometrical details of the medium, but also on the microscopic characteristics
of the fluid motion. Examples are shown to demonstrate the usefulness of adjoint
homogenization to extract effective tensor properties without the need for ad hoc
parameters. In particular, notable results reported herein include:

(i) an original formulation to describe filtration in porous media in the presence of
inertial effects;

(ii) the microscopic and macroscopic equations needed to characterize flows
through poroelastic media;
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(iii) an extended Navier’s condition to be employed at the boundary between a fluid
and an impermeable rough wall, with roughness elements which can be either
rigid or linearly elastic;

(iv) the microscopic problems needed to define the relevant parameters for a
Saffman-like condition at the interface between a fluid and a porous substrate;
and

(v) the macroscopic equations which hold at the dividing surface between a free-
fluid region and a fluid-saturated poroelastic domain.

Key words: general fluid mechanics

1. Introduction

The study of the fluid motion above and through natural and engineered surfaces
is a challenging task, particularly if the surface possesses small-scale features
which exert (or are believed to exert) an important fluid-dynamics-related role,
whose effect cannot be captured directly by a numerical simulation because of the
difficulty in addressing all the fine-grained details of the fluid/wall coupling. Such
details might include the effect of the surface texture, its porosity, compliance and
the interactions between the flow of the outer fluid and that of a different fluid
which may be trapped within near-wall microcavities. It then becomes useful to
employ an approach capable of replicating the important features near the wall at a
fraction of the computational cost of a full, detail-resolving simulation – one such
approach is multiscale homogenization.

Before employing any modelling approach in the effort to replicate a specific
function of a natural organism, we must, however, realize that biological evolution
has gone over millions of years with its own laws and constraints, in a way not
limited by the current biases of human thought. This implies that mere imitation
of nature does not yield an optimal solution for a specific purpose; evolution has
progressed in a multi-objective fashion, relying on the introduction of novel traits to
provide natural selection something to act upon. Thus, many primary functions in
the natural world, such as finding a partner or escaping a predator, do not translate
into relevant objectives for an engineering device. Bio-inspiration, not bio-imitation,
is the keyword. In this Perspective article, we limit ourselves to mechanical effects
produced at the interface between a natural surface and a fluid, such as air or
water, with the exclusion of chemical, molecular or atomic interactions. Despite
the fact that we are speaking throughout this article of small-scale features and
effects, we will always remain in the realm of continuum mechanics, to analyse
the interactions of fluids with the heterogeneous, anisotropic, rough, porous and/or
compliant substrates which can be found in biological settings. Beyond their interest
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Flow over natural or engineered surfaces

FIGURE 1. A 3 mm long yellow shouldered ladybird (Apolinus lividigaster), common in
Australia and New Zealand. Picture courtesy of Robert Whyte.

per se, understanding how natural surfaces operate, joined with the ability to model
their coupling to the fluid which surrounds them, will provide insight into the
design of passive and active flow actuation systems for technological applications,
for example, to reduce drag or mitigate noise, and guide the development of
innovative microsensors.

Before proceeding to describe the theory used to model microstructured media and
interfaces, we take a brief detour to illustrate some of the rich varieties of functions
and shapes of natural and engineered surfaces.

1.1. From biological to engineered surfaces

Examples of inspiring natural surfaces abound, although their fluid-mechanics-related
functions and characteristics, if any, usually only unfold under the microscope. In
the animal kingdom we start by making reference to the many species of insects
whose wings are covered by setae/bristles, such as the membranous wings of the
terrestrial adults of the order Trichoptera (thrix in Greek means hair) or of the order
Coleoptera (see, for example, the picture of the Coccinellidae in figure 1). The dense
hairy coat on the wings of this lady beetle (the mean spacing between adjacent hairs
is of order 20 µm) suggests a water repelling effect. Another example comes from
the order Lepidoptera, which includes moths and butterflies, and whose wings are
covered with thousands of scales. Such scales (shown, at different magnifications,
in the three frames of figure 2) are porous, and air can flow through tiny pores
below the outer lamina, reaching the inner, impermeable surface. The outer lamina
consists of ridges, of periodicity equal to a few microns and connected by tiny
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FIGURE 2. Electron microscopic images of the scales of the European peacock butterfly
(Aglais io). Images by SecretDisc, Creative Commons BY-SA 3.0.

(a) (b)

FIGURE 3. Electron microscopic images of (a) the dermal denticles of a lemon
shark (Negaprion brevirostris) and (b) trapezoidal riblets. Left image by Pascal
Deynat/Odontobase, Creative Commons BY-SA 3.0. Right image courtesy of Fraunhofer
IFAM.

cross-bars; it is maintained separated from the inner lamina by post-like structures,
called trabeculae. Such a complex microstructure has a role in light absorption and
refraction, but is also very efficient in reducing the wettability of the wings, thus
allowing their self-cleaning under rain or dew (Perez Goodwyn et al. 2009). Another
possible role of the hollow region below the grooves of butterfly scales has been
discussed by Kovalev (2008), who conducted wind tunnel experiments on a flapping
model of the scale of the butterfly Pyrameis atalanta, arguing for an increase in lift
of approximately 15 % when compared to a similar model in the absence of pores.

The scales over the wings of moths and butterflies are not too dissimilar (including
the size, with a characteristic length of the order of 100 µm in both cases) from the
dermal tooth-like denticles which cover the body of sharks. Such denticles, pictured
in figure 3(a), display typically three to five ridges whose spacing is close to the
riblet spacing for optimal skin friction drag reduction (Bechert & Bartenwerfer
1989). The mechanism by which riblets (figure 3b) work, despite the increase
in wetted area, stems from the large skin friction decrease in the valleys of the
riblets compared to a smooth surface under the same flow conditions, which more
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than compensates the mild increment towards the riblets tips (Hooshmand, Youngs,
Wallace & Balint 1983).

As opposed to prototypical riblets, the shark skin above which denticles are placed
is elastic, and sharks can bend and flex their body while swimming. The long-scale
undulations of the flexible dermis of sharks dramatically reflect onto their propulsion
characteristics, as shown experimentally by Oeffner & Lauder (2012) through the
use of a real shark skin attached to a flexible membrane-like foil, set into motion
by a robotic flapping device that mimics the movement of real sharks. The reason
for the increase in thrust force measured by Oeffner & Lauder (2012), compared
to the rigid plate case and to the flexible case with the denticles sanded off the
dermis, appears to be related to the presence of an intense leading edge vortex
adhering closely to the foil surface. Such a vortex generates a suction force with
a component along the free-stream direction (thus propulsion is enhanced) whereas
in the rigid or sanded cases the vortex is weaker and positioned farther away from
the leading edge of the foil. This explanation has been later corroborated by Wen,
Weaver & Lauder (2014). The latter authors used a three-dimensional printing
technique to fabricate rigid denticles and anchored them onto a flexible membrane
substrate, comparing results to the case of a smooth membrane under identical
flow conditions. When both the synthetic shark skin and the smooth membrane
were held still in the water channel, the synthetic skin experienced a lower drag
by up to 9 %; this reduction turned into a drag increase when the periodicity of
the denticles exceeded a value of approximately 13 (expressed in wall units), a
behaviour consistent with that of riblets. When the foils were made to heave and
pitch, conditions were found for which the printed shark skin required less energy
to swim over a given distance and was more efficient than the smooth foil, as a
result of increased thrust generation. There is thus evidence that the hydrodynamical
performance of sharks results from both the complex three-dimensional, small-scale
structure of the denticles and the long-scale deformation of the skin, related to
its flexibility. Consequently, any realistic modelling effort should considered the
coupled fluid–solid problem.

The scales of other fish families display a variety of shapes and sizes; cycloid
and ctenoid scales are found on the majority of living bony fish, the main difference
being that ctenoid scales feature several small comb-like spines (cf. figure 4). Scales
growing on the dermis of fish are covered by a fine outer skin layer (epidermis)
containing mucus-secreting glands. Mucus gives fish their slippery feeling associated
with excellent drag-reducing properties, as demonstrated experimentally by Rosen
& Cornford (1971) who used a flow rheometer to test a variety of fish mucuses
in a water solution at varying dilutions. It seems that mucus from fast, predatory
fish (such as the Pacific barracuda) is generally most effective, with frictional
drag which decreases by 65 % when a 5 % mucus–seawater mixture is tested.
The reason for the substantial drag reduction in turbulent flow conditions goes by
the name of the ‘Toms effect’ in the fluid mechanics community and has been
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(a) (b)

FIGURE 4. (a) Cycloid scales of a common roach (Rutilus rutilus). Image by kallema,
Creative Commons BY-SA 3.0. (b) Ctenoid scales of a paradise fish (Macropodus
opercularis). Picture by Sue Lindsay c© Australian Museum. The characteristic dimension
of cycloid scales on the left is 1 cm, approximately ten times more than that of ctenoid
scales, on the right.

known for a long time (Toms 1948). The inclusion of additives, e.g. a small
percentage of high molecular weight polymers in water, micellar surfactant systems,
bubbles, rigid fibres or even solid spheres, can lead to drag reduction, and this has
important potential implications for the reduction of energy losses in pipelines, in
marine and underwater vehicles. For the case of polymers, the physical argument
is that polymer chains are stretched by the mean shear in the near-wall region,
causing a stretching of the near-wall streaks and a consequent mitigation of the
intensity of the quasi-streamwise vortex structures in the buffer layer. These vortices
drive momentum transport to/from the wall, and their weakening results in drag
reduction. Beyond its hydrodynamic function, fish mucus plays a role also in the
fish reproductive behaviour, in respiratory gas exchange, in ion and water regulation,
in disease resistance, etc. (Shephard 1994).

Whereas fish (and reptiles) have scales on their dermis, other vertebrates have hair
(mammals), believed to act mainly as sensory organs and/or to provide insulation
against heat loss, and others yet have feathers (birds).

A marine mammal who has undergone some fluid dynamics scrutiny recently is
the fur seal, a pinniped of the Arctocephalinae subfamily, covered with a dense layer
of hair. Itoh et al. (2006) glued a real fur sample onto a test surface, and rendered it
hydrophilic by a tannin treatment, before testing it comparatively against a smooth
surface and a surface with riblets in a channel of rectangular cross-section filled
with either water or with a glycerol–water solution. The seal’s hair was oriented
along the streamwise direction and displayed a range of spanwise wavelengths from
2 to 18 (when measured in wall units, for a Reynolds number, based on bulk speed
and hydraulic diameter of the channel, equal to 7000), against a single wavelength
of 7 wall units for the case of trapezoidal riblets tested under the same conditions.
The notable result by Itoh et al. (2006) was that drag was consistently reduced by
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

FIGURE 5. The currently accepted model of evolution of feathers (Prum 1999). Stage
1: unbranched quill. Stage 2: simple filaments attached to a central point. Stage 3: main
shaft (rachis) with primary branches (barbs). Stage 4: rachis with rows of barbs and
interlocking secondary branches (barbules); the interlocking takes place via small hooks
called barbicels. Stage 5: fully developed, asymmetrical flight feather. Image courtesy of
Emily A. Willoughby.

more than 10 % over a wide range of Reynolds numbers (whereas the maximum skin
friction reduction was 7 % for the surface with riblets), and this was associated with
a weaker streamwise turbulence intensity. Among the factors which could possibly
have produced such a result, the effect of the flexibility of the hair was mentioned
by Itoh et al. (2006), related to the ability of the elements of the hairy coating to
re-orient with, and adapt to, the flow.

The plumage of birds makes for an interesting story. Until recently, common belief
was that feathers had evolved from reptilian scales for the purpose of conferring
flying properties to proto-birds (cf. the entry on the Encyclopaedia Britannica at
the time of writing). Prum (1999) developmental theory, now largely accepted,
focused instead on how feathers grew and acquired structural complexity, without
specific reference to the aerodynamic context. The finding of fossils of small,
non-flying, feathery, theropod dinosaurs in China, displaying the different feather
stages predicted by Prum’s theory, provides, to date, the strongest support to the
theory. The proto-feathers and feathers described by Prum (1999) and displayed
in figure 5 can still be found in different parts of the wings and body of modern
birds. Each feather’s type is associated with certain functions. The most notable
are feathers in the wings and tail of birds, which play mostly an aerodynamic and
flight control role, and plume-like feathers used mainly for insulation purposes. The
structure of feathers also provides for water repellence, as probably first observed
by Cassie & Baxter (1944) who argued that ‘man’s attempts to make clothing with
the water-repellency of a duck should be directed to perfecting an appropriate cloth
structure rather than, as at present, to searching for an improved water-repellent
agent’. Today it is thought that it is the two-scale structure of the feather vane
which renders it exceptionally waterproof, with air trapped underneath the network
of barbs and barbules (Bormashenko et al. 2007).
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FIGURE 6. Barn owl (Tyto alba). Photo by Steve Brace, CC BY 2.0.

Probably the best example of engineering device, directly inspired by the long
flight feathers at the tip of birds’ wings and which has now become commonplace
in aircraft, is represented by the winglet, a wingtip protuberance which aims
at reducing lift-induced drag. Over the past thirty years many bio-inspired winglet
shapes have been proposed, including variable cant angle winglets, blended winglets
and spiroid wing tips. Other feathers, called coverts, are present on the suction side
of wings and hold (also) a dynamic role: they pop up and vibrate when the bird
encounters gusty winds or flies at large angles of incidence (for example during
a perching manoeuvre). Such an occurrence alleviates the stall behaviour of the
wings, maintaining adequate lift, since the raised feathers prevent the region of
reversed flow to spread from the trailing edge all the way to the leading edge of
the wing, as shown in model experiments by Bechert et al. (2000). Flight tests
on a STEMME S10 motor glider, equipped with self-activated, movable flaps,
demonstrated that stall was delayed as the angle of attack was gradually increased,
when compared to the configuration without movable flaps (Bechert, Hage & Meyer
2007). Such positive results, obtained with high aspect ratio wings and a basically
two-dimensional flow, were not confirmed when swept and tapered wings were
tested in the wind tunnel, highlighting the difficulty in adapting a simple, working
solution to a different configuration.

Another important role which feathers can play is related to noise (or lack
thereof). Some species of predatory birds (the owl in particular, shown in figure 6)
do not fly very fast, but are so silent as to not be perceived by their prey. The
most extensive recent scrutiny of the flight apparatus of the barn owl has been
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conducted by Bachmann (2010), as a basis for studying silent flight. He described
(i) the serrations at the leading edge of some of the primary flight feathers, acting
as turbulence generators and leading to a stable air flow along the distal wing,
(ii) the velvet-like texture on the dorsal surface of all feathers, with the porosity
of this structure capable to effectively reduce friction noise and (iii) the flexible
fringes at the trailing edge of the feathers, formed by barb endings, able to limit the
broadband scattering noise in the wake. These three aspects have been scrutinized
independently in a large number of theoretical, numerical and experimental studies,
mostly using static wing models. For example, experiments by Hersh, Soderman &
Hayden (1974) demonstrated the ability of wings with leading edge serrations to
mitigate aerodynamic noise; trailing edge noise has been theoretically investigated
by Jaworski & Peake (2013), who argued that the porous, compliant nature of the
outer fringes can reduce the edge scattering mechanism; the velvet-like covering on
the suction side of wings was tested by Clark et al. (2016), who found a reduction
in the pressure fluctuations on the surface, as a function of the surface density of
the downy fibres. Probably it is a combination of all of these effects, coupled to a
slow wing beat, which confers acoustic stealth to owl flight.

Also the plant kingdom provides for many interesting examples of surfaces/
substrates capable of inspiring new functionalized surfaces and flow control
techniques. One of the best known examples is the leaf of the plant Nelumbo
nucifera (known as sacred lotus) which exhibits remarkable superhydrophobicity.
Several other plants have a similar property, such as the Salvinia oblongifolia
or the Brassica oleracea (Koch & Barthlott 2009) (cf. figure 7). A drop of
water placed onto a superhydrophobic substrate maintains a quasi-spherical shape,
does not wet the surface and slides easily away. These properties arise from a
combination of surface texture and interfacial energy. On the one hand, a low
surface energy material guarantees low wettability of the surface; on the other,
nano- or micro-roughness elements permit the maintenance of a stable air layer,
minimizing the contact between the liquid and the solid. On submerged leaves
the presence of a gas film contributes to the survival of the plant, enhancing the
exchange of O2 and CO2 with the water, allowing for underwater photosynthesis and
respiration; furthermore, the self-cleaning property of superhydrophobic surfaces and
the limited availability of water are believed to provide defence against pathogens,
such as fungi and bacteria (Koch & Barthlott 2009).

At the other end of the spectrum stand superhydrophilic leaves, with high affinity
to water. They either absorb water through their surface pores to remain permanently
wet, or they let water spread easily across their surface. The most striking example
is the Ruellia devosiana which is also superoleophilic (Koch et al. 2009). The leaf
surface has a high interfacial energy; this aspect, combined with the channel-like
structures formed by the leaves’ superficial cells, translates into fast water-spreading
properties. This characteristic is believed to protect the plant against the formation
and proliferation of micro-organisms, called biofilm.
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FIGURE 7. Magnified image of the flower head of a green cauliflower (Brassica
oleracea). Photo credits: Brandon Broll.

The self-cleaning ability of both superhydrophobic and superhydrophilic coatings
can be exploited, in different manners, against the formation of biofouling on naval
vessels and infrastructures, a major economic burden for the maritime industry.
Reviews of such abilities are provided by Kirschner & Brennan (2012) and Liu &
Jiang (2012). Another class of materials which presents anti-fouling properties is
that of lubricant-infused materials. These are microstructured, porous materials with
a layer of lubricant liquid, immiscible and unreactive with water, interposed between
the solid surface and water. After reviewing the ability of lubricant-infused surfaces
to repel organic, aqueous and complex liquids, and to fight fouling by bacteria,
blood and algae, Amini et al. (2017) demonstrated, under both controlled laboratory
conditions and in marine field tests, that the lubricant film was also very effective
against adhesion by mussels, among the most ubiquitous marine macrofoulers.

By changing the scale of view, we can look at a whole plant; the interactions
between the flow of water or air and plants play an important role in mediating
hydrological, geomorphological and biological processes. Plants are often slender
and flexible and are susceptible to being deformed by the flow, this effect is called
reconfiguration and results in reduced resistive forces (Alben, Shelley & Zhang 2002;
Gosselin, de Langre & Machado-Almeida 2010). If multiple plants are involved, we
can have collective effect such as the waving of a crop field under the effect of wind,
or of a seagrass bed deformed by the motion of water. The organized behaviour of
systems of plants goes by two Japanese words: honami (when in air) and monami
(in water), and a rich literature exists on these phenomena (de Langre 2008; Nepf
2012). The interaction between the plants and the flow occurs particularly near the
top of the vegetation; the mean flow has a distribution similar to that of a mixing
layer and a system of large-scale vortices of the Kelvin–Helmholtz type appears
near the interface (Ghisalberti & Nepf 2002). The interest in this type of interaction

877 P1-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.607


Flow over natural or engineered surfaces

stems from the possibility of replicating them at different spatial and temporal
scales by engineering devices to, for example, sense the wall shear stress (cf. the
flexible micropillars designed by Brücker, Spatz & Schröder (2005)) or actively
control the surface skin friction (this is the case, for example, for the microscopic
flap actuators described by Ho & Tai (1998)). Another passive control technique
has been employed by Hasegawa & Sakaue (2018); they used an electrostatic
flocking technique to cover portions of the external surface of a cylinder with nylon
polyamide fibres. The cylinder was then placed in a wind tunnel run at a velocity
of 20 m s−1 (the Reynolds number, based on the diameter, D = 50 mm, of the
cylinder was equal to 6.1 × 104) and the effect of the various coatings assessed.
When thin and short fibres were employed, a drag reduction of up to 50 % was
achieved when a short (along the azimuthal direction) coating was placed in the
most sensitive region, i.e. somewhere upstream of the flow detachment point of the
smooth cylinder configuration. This reduction in pressure drag was accompanied
by a narrowing of the wake region. Longer fibres displayed some drag-reducing
capabilities when placed in the aft of the cylinder, in the separated region. Similar
effects had been reported previously in laminar flow conditions (Favier et al. 2009).

We have exposed a brief overview of exemplar coatings from nature and of a few
engineering systems which might have been inspired by them; clearly, the biological
surfaces which can possibly be modelled are limitless, as are the functions they carry
out. Bio-mimicry can guide in the functionalization of materials via a combination
of physical (texturing/patterning) and chemical modifications (for example by the
addition of surfactants or lubricants, or varying the surface energy of the material).
The dynamic coupling between the material and the fluid should also be examined
attentively; biological systems are immersed in a fluid and interact with it in
many ways. Putting these pieces together represents a challenge for generations of
scientists to come.

1.2. What are we interested in and how can homogenization help?

This paper describes a technique to treat media and interfaces similar to those
described above, by replacing the fine-scale structure with appropriately averaged
properties. The need to use some averaging, or upscaling, procedure stems from
the fact that the length scale of the macrostructure (L in the following) is
typically much larger than the length scale (l) of heterogeneities. Accordingly,
a numerical resolution of the full problem might result in a mesh resolution beyond
the storage or processing capabilities of modern computers, if one were not to
smooth microscale details via some averaging process. The continuum concept
in engineering mechanics is a prime example of homogenization, and properties
such as the elastic modulus of a solid or the viscosity of a fluid are homogenized
quantities.
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The word homogenization was probably coined by Babuška (1976) who described
it as ‘the approach which studies the macrobehaviour of a medium by its
microproperties’, by replacing the rapidly varying properties of a ‘heterogenous
material’ with those of ‘an equivalent homogeneous one’. A heterogeneous material
is one which is composed of domains made by different materials or phases, such
as a composite or a porous matrix. The ‘equivalent’ properties which arise from the
solution of auxiliary problems defined in ‘microscopic domains’ go by the name
of macroscopic, apparent or effective properties. It should already have been clear
that the prefix micro used throughout this paper does not refer to the actual size of
1 µm, but to the length scale difference between the internal scale of the medium
or interface and a relevant macroscopic one.

Homogenization theory applies to a variety of fields in physics and properties
of interest range from the thermal conductivity of a heterogeneous medium to the
stiffness tensor of an elastic multi-layered material, from the permeability of a
porous matrix to the magnetic conductivity of some electrically conducting media.
The majority of applications of the theory have so far dealt with problems in solid
mechanics, and techniques to homogenize material properties, including approaches
to statistically characterize the microstructure when local properties have a random
distribution, are described in a large number of monographs and books (see, e.g.
Torquato 2002). A contribution dedicated to problems related to the percolation
of fluids through porous media, which attempts to bridge the gap among various
approaches and approximations, has been edited by Hornung (1997).

The technique discussed in the present paper is limited to the simple case in
which the microstructure of the media or interfaces is periodic; the existence of two
well-separated length scales renders the governing differential equations amenable
to a solution via a formal asymptotic expansion in terms of a small parameter
ε = l/L, so that results can in principle be searched up to any order of accuracy
in ε. The particular adjoint approach described here extends straightforwardly to
nonlinear equations in which case it results in a strong coupling between micro-
and macroscale fields. The ensuing non-locality of the effective parameters of the
macroscale equations is a known challenge. While the literature reports mostly
mathematical, rather than practical, results (see, e.g. Lions et al. 2001), it is aimed
for the approach presented herein to also guide in the development of practical
models for the homogenization of nonlinear problems.

Before proceeding further, it is useful to say something on the notations used
throughout the paper: a hat over a variable name denotes a dimensional variable,
the corresponding dimensionless quantity being indicated without the hat. The
dimensional velocity components are noted as Û := Û1, V̂ := Û2 and Ŵ := Û3,
along the streamwise (X̂ := X̂1), wall/interface-normal (Ŷ := X̂2) and spanwise
(Ẑ := X̂3) directions. Subscripts and names of dimensionless variables follow the
same convention. Finally, non-dimensional variables indicated with capital letters
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are generally of macroscopic type, while small letters are normally reserved for
microscopic quantities.

2. A step back in time: to slip or not to slip?

Until the early nineteen century engineers were mostly concerned with empirical
formulas, and mathematicians (‘geometers’) with theories of unresisted flows.
However, the problem of the possible slippage of a viscous fluid above a solid
surface and the resistance opposed by a wall to a fluid in motion near it were
present long before the day the equations ruling the motion of viscous fluids were
first derived. For example, Jean le Rond D’Alembert explained the paradox which
now bears his name by the ‘tenacity and adherence of the fluid particles’ responsible
for the fore–aft asymmetry of the fluid motion, even for rear–front symmetric bodies.
Henri Navier seemed to have been convinced of the fact that fluid particles adhere
to solid walls, before settling for a slip condition (Navier 1823) in the effort to
match experimental results by Pierre-Simon Girard for the flow in capillary tubes
(a detailed historical account of the early days of hydrodynamics can be found in
the book by Darrigol (2005)). In his seminal paper, Navier derived the equations
governing the motion of a viscous, incompressible fluid starting from first principles,
by considering interactions between ‘molecules’. He also stated that the ‘molecules
in the proximity of solid walls can only move in the plane of the walls’, with the
solid surface exerting a resistance to the motion proportional to the slip velocity, Ûs.

By equating the shear stress exerted by the fluid onto the wall, µ dÛ/dŶ , to the
resistance opposed by the wall, assumed proportional to the slip velocity, Navier
concluded that at a fixed wall the boundary condition read

Ûs = λ̂dÛ

dŶ
, (2.1)

and likewise for the spanwise component of the velocity. The constant of
proportionality λ̂, today called Navier’s slip coefficient or slip length, is a function
of the dynamic viscosity, µ, of the fluid and of the ‘nature of the bodies with which
the fluid is in contact’.

Navier’s contemporaries do not seem to have paid much attention to his
fundamental theoretical contribution and the equations ruling the flow of viscous
fluids, both in the incompressible and in the compressible forms, were rederived
independently a few other times and eventually put in the modern form used
today by Stokes (1845). The boundary condition for the fluid next to a solid wall
remained, however, a matter of controversy; Stokes himself started using a slip
condition before deciding for no slip a few years later.

The problem was eventually settled – and the empirical no-slip condition
universally accepted – when Taylor (1923) demonstrated that, using no slip at
the walls, perfect agreement could be achieved between theory and experiments
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near the onset of the first instability for the flow between differentially rotating
cylinders.

In actuality, no slip still poses problems in some situations where small-scale
effects at the wall and molecular interactions among different fluids and a solid
surface occur. A well-known example is that of a liquid (a small drop or a rivulet)
spreading down an incline. The use of the no-slip condition at the leading edge
triple line yields an infinite force singularity which needs to be removed for the
continuum equations to be tenable (Dussan 1979). The numerical remedy usually
adopted consists in either using a thin precursor film or in enforcing a slip condition.
There is no clear criterion, however, on the choice of either the thickness of the
precursor film or the slip length. Another case, discussed further in the following,
for which a slip condition applies is that of the flow over rough, superhydrophobic
or lubricant-impregnated surfaces.

Incidentally, it is of interest to note that the same condition (2.1) given by Navier
was derived also by Maxwell (1879) on the basis of a scattering model for the case
of a rarefied gas in the absence of heat flux between the gas and the wall, when
0.01.Kn. 0.1, where the Knudsen number, Kn, is the ratio of the mean free path
of the gas molecules to the characteristic length of the system.

3. Difficulties with one of the simplest cases of dividing surfaces: Poiseuille
flow over a porous bed

Probably the simplest case of a dividing surface is that which separates a region
of incompressible laminar flow in a plane channel (the so-called free-fluid domain)
from a second region formed by alternating, fixed solid grains and pores, with fluid
which saturates the pores and slowly moves through them. If the driving pressure
gradient is sufficiently small we can assume that the free-fluid region is ruled by
Stokes’ equation whereas the motion in the porous medium can be described by
Darcy equation. This dividing surface is thus also called the Stokes–Darcy interface.

The situation we consider is represented in figure 8. The macroscopic free-fluid
domain extends from Ŷ = 0 to Ŷ = 2L and the porous region occupies the space
Ŷ 6 0. The pressure gradient acts along X̂, in both the channel and the porous layer,
so that only a streamwise velocity component is non-zero. The porous medium is
assumed isotropic and its permeability is a scalar quantity, denoted by K̂.

Beavers & Joseph (1967) observed that the flow rate in the channel was larger in
the presence of the porous layer than with a no-slip wall at Ŷ = 0 and hypothesized
that the fluid could slip with a velocity Ûs at the Stokes–Darcy interface. Their
dimensional semi-empirical condition reads

Ûs = 〈û(0)〉 + K̂1/2

αBJ

∂Û

∂Ŷ

∣∣∣∣
Ŷ→0+

, (3.1)

with 〈û(0)〉 the seepage velocity through the porous medium, evaluated some distance
below the dividing surface; the angle brackets in (3.1) denote volume averaging (see
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Porous medium

Free-fluid
region

0

2L

Ŷ

Û(Ŷ )

X̂

FIGURE 8. Sketch of the configuration by Beavers & Joseph (1967).

later definition (4.11)) and αBJ is a dimensionless parameter of order one, which
is a function of the properties and the geometry of the permeable material near
the dividing surface, of the local direction of the flow, of the Reynolds number
and of the possible presence of structural non-uniformities at the surface of the
porous medium (Larson & Higdon 1986; Sahraoui & Kaviany 1992). Structural
non-uniformities are hardly avoidable in practice since, near the interface, solid
inclusions cannot pack as tightly as elsewhere in the porous layer and the porosity
is locally larger.

The Darcy velocity is 〈û(0)〉 = −(K̂/µ)(dp̂(0)/dX̂) (cf. § 4) with dp̂(0)/dX̂ the
macroscopic pressure gradient and K̂ an order-l2 quantity (so that the dimensionless
permeability is K= K̂/l2), where l represents a characteristic dimension of the pores
(or of the solid inclusions). As anticipated, ε = l/L is a small parameter.

Eventually, the slip velocity reads (Beavers & Joseph 1967)

Ûs = ελ̂x
∂Û

∂Ŷ

∣∣∣∣
Ŷ→0+

− ε2KL2

µ

dp̂(0)

dX̂
, (3.2)

and reduces to the no-slip condition, Ûs = 0, in the limit of zero permeability.
The term λ̂x is defined by λ̂x = K1/2L/αBJ; equation (3.2) (like those to follow in
this section) is written using K (and not K̂) to highlight the ε order of the terms
composing Ûs. Further experiments by Beavers, Sparrow & Magnuson (1970) and
Beavers, Sparrow & Masha (1974) provided quantitative verification of (3.2) for a
range of materials and fluids.

To analyse the behaviour at the interface, different descriptions are available,
two of which are sketched in figure 9. The microscopic description relies on the
pointwise calculation of flow and pressure fields, including the motion through
the pores of the lower medium. The so-called mesoscopic approach is usually
based on local volume-averaged equations which are assumed valid throughout
the domain; a diffuse interface layer of O(l) thickness appears. This approach
is also called the one-domain approach and requires knowledge of how effective
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Homogeneous porous region

Inner scales: ´u, l

Scales: u, l

Outer scales: u/´, LHomogeneous fluid region(a) (b)

Dividing surface
O(l)

O(l)

Ŷ Ŷ

X̂ X̂

-

+

Diffuse
interface

layer

FIGURE 9. (a) Microscopic and (b) mesoscopic descriptions of the porous/fluid transition
region. Characteristic velocity and length scales are indicated within each region; the
symbols ⊕ and 	 are used further on (§ 7) to denote interfacial and porous regions where
the pressure scale is µU/l.

properties (porosity, permeability, etc.) vary as the dividing surface is crossed. In the
macroscopic description the interface layer becomes infinitely thin; it is positioned
at Ŷ = 0 and slip occurs there. This is also sometimes referred to as the two-domain
approach, with Stokes or Navier–Stokes equations governing the free-fluid region,
and homogenized equations (Darcy, Forchheimer, etc.) in the porous medium.

Analytical techniques to evaluate the slip velocity usually start from the equations
at the mesoscopic level, i.e. focussing on a neighbourhood of the diffuse interface
layer. For example, Saffman (1971) justified theoretically the empirical condition by
Beavers & Joseph (1967) by first ensemble averaging the Stokes equation across the
porous/fluid domain and then performing asymptotic matching at the edge of the
interface layer. Retaining terms up to second order in ε in Saffman’s development
the slip velocity turns out to be

Ûs = ελ̂x
∂Û

∂Ŷ

∣∣∣∣
Ŷ→0+

− ε2KBL2

µ

dp̂(0)

dX̂
. (3.3)

Here, B is a constant of order one which can be determined by the structure of
the convolution kernel introduced by Saffman to express the mean force per unit
volume exerted by the fluid on the porous medium, as a function of the velocity in
the interface layer. For B equal to one, Beavers and Joseph’s semi-empirical relation
is recovered exactly.

Saffman argued that the inclusion of the ε2 term in (3.3) is not necessary if the
goal of the study is the determination of the total flow rate through the channel;
this is the case since there is an unknown excess flow rate of order ε2 within the
interfacial layer (product of a velocity of order ε times a thickness of the same
order) and it is thus of little use to estimate Ûs up to ε2 if the excess flow rate
is unavailable anyhow. A detailed calculation of the velocity in the interface layer
would permit the evaluation of the excess flow rate, in which case one would need
also to estimate Ûs up to order ε2. Furthermore, according to Saffman only the
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condition at leading order

Ûs = ελ̂x
∂Û

∂Ŷ

∣∣∣∣
Ŷ→0+

, (3.4)

is truly local, the ε2 correction being function of non-local effects. As such,
Saffman’s argument goes, the ‘extra term retained by Beavers and Joseph is at best
only true for one particular geometry’. Equation (3.4) coincides with Navier’s slip
condition (2.1) with λ̂x a slip length whose determination requires knowledge of the
parameter αBJ . Just like in Navier’s slip condition, the position where slip must be
enforced is defined up to a constant shift of order l. A perturbation of the interface
position of order l generates a perturbation in the solution for the mean speed of
order ε2 times the Darcy velocity scale (Saffman 1971; Jäger & Mikelić 2009).

Another formal derivation of Navier’s condition at the dividing surface in the
form (3.4) was given by Jäger & Mikelić (2000) on the basis of homogenization
theory. Their analysis started from the steady equations of motion in the free-fluid
region (0 < Ŷ 6 2L) and through the pores of the medium (Ŷ < 0), and proceeded
via asymptotic expansion and averaging to recover the slip velocity at the dividing
surface as an order-ε correction to the no-slip condition; the slip length arose from
an auxiliary Stokes-like problem defined on a longitudinally periodic microscopic
cell. Jäger and Mikelić did not provide analytical or numerical solutions to their
auxiliary problem and focussed attention on issues of existence, uniqueness,
regularity, asymptotic behaviour and convergence of the microscopic solutions.
Conversely, Lācis & Bagheri (2017) placed emphasis on actual numerical results
(and even rendered a software tool available, for anyone interested to compute
effective parameters for her/his own microscopic problem). They used asymptotic
homogenization to study the two-dimensional motion over and through an isotropic
porous matrix, with the flow both tangent and normal to the Stokes–Darcy dividing
line. The velocity components at such a dividing line were found to be

Ûs = ελ̂
(
∂Û

∂Ŷ
+ ∂V̂

∂X̂

) ∣∣∣∣
Ŷ→0+

− ε2Kitf L2

µ

∂ p̂(0)

∂X̂

∣∣∣∣
Ŷ→0−

, (3.5)

V̂|Ŷ=0 =−ε2KL2

µ

∂ p̂(0)

∂Ŷ

∣∣∣∣
Ŷ→0−

. (3.6)

The wall-normal velocity at Ŷ = 0 is (trivially) equal to the Darcy velocity
component, and this stems from mass conservation and the X̂-periodicity of the
unit cell crossing the dividing line. The horizontal component of the velocity has a
form similar to that by Beavers & Joseph (1967), with two differences:

(i) there is the extra strain term ∂V̂/∂X̂, whose existence had already been
postulated by Nield (2009) also for the case of flat interfaces; and

(ii) an interface permeability Kitf appears (Kitf 6=K).
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Both the slip length λ̂ and the interface permeability Kitf result from the
solution of microscopic problems over the unit cell across the interface. Lācis
& Bagheri (2017) solved such problems, and validated their interface coefficients
by comparing macroscopic simulations, closed by the use of (3.5) and (3.6), to
pointwise simulations which fully accounted for the flow through the pores of the
domain in Ŷ < 0.

Before moving to the description of the asymptotic homogenization strategy
used in the present paper, it is appropriate to mention a few further results which
arise from a related upscaling technique, the so-called volume-averaging approach
(Whitaker 1999). Here the idea is to obtain the governing system at the macroscale
by first averaging the microscale equations in space and then using approximations
arising from scaling postulates. A very pedagogical comparison between multiscale
asymptotic homogenization and volume averaging was provided by Davit et al.
(2013). Using the latter strategy, Ochoa-Tapia & Whitaker (1995a,b) addressed the
problem of the fluid–porous interface by using the Darcy–Brinkman equation in
the porous domain and Stokes’ equation in the fluid region; their momentum jump
condition at a sharp surface of discontinuity in Ŷ = 0 reads

Ûs = εK
1/2L
β

[
1
θ

∂Û−

∂Ŷ

∣∣∣∣
Ŷ→0−

− ∂Û+

∂Ŷ

∣∣∣∣
Ŷ→0+

]
, (3.7)

with θ the porosity below the interface layer and β a jump coefficient well
approximated by β = θ−1/2 for the Darcy number Da = K̂/L2 in the range
(10−10, 10−7) (Valdés-Parada et al. 2009). This condition on Da is rather restrictive,
since it implies that ε is typically not larger than a number of order 10−4; however,
for larger values of ε the coefficient β is available from the solution of a generalized
momentum transport equation which holds across the interface (Valdés-Parada et al.
2009, 2013).

An alternative derivation of the stress jump condition (Chandesris & Jamet 2007)
by a matched asymptotic expansion method yields

Ûs = εKL
d
γ

[
∂Û+

∂Ŷ

∣∣∣∣
Ŷ→0+

− ∂Û−

∂Ŷ

∣∣∣∣
Ŷ→0−

]
− ε2 L2Kτ

µ

dp̂(0)

dX̂
, (3.8)

with γ and τ excess quantities of order one, related to jumps in porosity and
permeability across the interface layer, and d the dimensionless thickness of the layer
(scaled by l). Neglecting the term of order ε2, condition (3.8) resembles, but does
not coincide with, equation (3.7). A recent paper by Angot, Goyeau & Ochoa-Tapia
(2017) generalized the fluid–porous interface condition to multidimensional viscous
flows, starting from the one-domain, volume-averaged description. Their condition
reduced to some of the previously derived forms (in particular it reduced to (3.1)
and (3.7) in some appropriate limits) for the case of unidirectional flow.
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The last approach which deserves being cited is that by Le Bars & Worster
(2006). These authors started from the mesoscopic Darcy–Brinkman formulation
which stems from volume averaging. Provided that some length scale constraints
were satisfied (Whitaker 1996) the equations valid across both the fluid and the
porous medium can be written with the velocity in either intrinsic average form
(e.g. Breugem, Boersma & Uittenbogaard 2006; Luminari, Airiau & Bottaro 2018)
or in superficial average form (e.g. Le Bars & Worster 2006). For the definition
of the two averages, cf. (4.11) and (4.13); the distinction may seem minor at this
point but in one case the volume-averaged velocity field is divergence-free and in
the other it is not, except when the porosity is constant (a condition which does
not hold across the dividing surface). It should also be noted that more than one
form of the volume-averaged equations applicable across the interface appears in
the literature, with variations related to the presence or absence of the porosity
within some gradient terms or of nominally small terms (cf. discussions by Le Bars
& Worster (2006) and Davit et al. (2013)). Following the approach by Le Bars &
Worster (2006), the Darcy–Brinkman equation for the simple problem in figure 8
reads

0=−θ dp̂(0)

dX̂
+µd2〈Û〉

dŶ2
−µθK̂−1〈Û〉. (3.9)

All fields are continuous across the dividing line, including the porosity θ and the
permeability K̂, whose Ŷ-variation must be prescribed. In the free-fluid region the
porosity is equal to one and K̂−1 vanishes, so that (3.9) reduces to Stokes’ equation.
By a simple argument on the order of magnitude of the forces, Le Bars & Worster
(2006) showed that Stokes’ equation remained valid below the dividing line up
to a depth d̂ of order l. Thus, they simply suggested to impose continuity of the

velocity vector at the position Ŷ =−d̂, with d̂= c
√

K̂/θ and c a constant of order
one. Permeability and porosity in this expression must be evaluated deep within the
porous matrix; the unknown constant c should be assigned and there is no clear
strategy on how to prescribe it. This is a drawback since the solution across the
dividing line can vary substantially with even mild variations of c. By carrying out
simulations which capture the microscopic physics, Zampogna & Bottaro (2016)
have shown the nonlinear increase of c (and thus d̂) with the pore Reynolds number.

Despite the many contributions, the issue of the most appropriate strategy to
treat the dividing surface is not yet convincingly settled, in particular because of
the lack of validation against small-feature-resolving numerical and experimental
results in non-trivial macroscopic settings for many of the proposed theoretical
conditions. Our own adjoint strategy, reported in § 7, describes a mean to assign
parameters in Saffman’s equation (3.3), limiting, for the moment, the validation
exercise to a very simple flow configuration. Before getting there we must however
cover some preliminary ground, starting from the description of the fluid flow in a
homogeneous, porous matrix.
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4. The flow in a porous medium

We consider the flow in a porous medium in regions away from boundaries. The
assumption underlying the theory used throughout this paper is that the geometric
features of the domain (pores and inclusions) repeat themselves regularly over a
short spatial interval; furthermore, material properties (density, elasticity, etc., of both
the fluid and the solid) must be periodic over the same spatial scale and the same
must be true for the structural properties of the flow field through the pores of the
medium. These assumptions permit us to define a representative volume element
(RVE) which encapsulates all the small-scale properties of the problem, as well as
those of the flow regime. In many cases the RVE coincides with the unit cell, the
smallest building block over which cyclic boundary conditions can be enforced upon
considerations of geometric and material periodicity alone.

To make the above clearer, examples of direct simulations of the flow in both
a unit cell and in a cell whose size is doubled in both directions, under the
same driving pressure gradient along the horizontal direction, are displayed in
figure 10 for the case of a porous medium with staggered cylindrical inclusions.
When the fluid within the pores moves slowly, so that the Stokes approximation
is appropriate, the RVE and the unit cell coincide. When the flow displays inertial
effects, i.e. with the presence of wakes behind the inclusions which interact with
neighbouring inclusions, it becomes necessary to extend the size of the RVE beyond
the unit cell. The size of the adequate RVE cannot be determined a priori and one
needs to progressively enlarge the domain until properties averaged over the RVE
become domain-size independent. When the flow through the medium is turbulent,
there is some direct numerical simulation (Chu, Weigand & Vaikuntanathan 2018)
and experimental (Evseev 2017) evidence which lends support to the pore-scale
prevalence hypothesis, particularly as the porosity, θ decreases. This means that
macroscopic eddies are not present because of the geometrical constraints imposed
by the pores. In this case a relatively small RVE can be employed.

The case treated in figure 10 illustrates the above for the case of a two-
dimensional flow with a relatively large value of the microscopic Reynolds number,
defined further below, so that unsteadiness is maintained. Interestingly, the larger
amplitude oscillations of the cell-averaged u velocity component are found for the
solution in the unit cell, whereas smaller oscillations appear when the computational
domain is larger (grid density and time steps are the same in the two cases). This
is possibly an effect of two-dimensionality. To appreciate the difference between
the time-averaged solutions computed in the two domains it is useful to look at the
difference between the time-averaged streamwise velocity fields (image on the right).
Such a difference is relatively large (up to approximately 10 % of the maximum
of u, overline indicates time average). Despite this, positive and negative variations
cancel out in a way such that the time- and volume-averaged value of u is very
close in the two cases (it is 1.523 for the case of the unit cell, and 1.532 when
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FIGURE 10. (a) Variation in time of the RVE-averaged streamwise velocity component for
the flow through a staggered array of cylinders at Re= 2000 (Re is defined after (4.3));
the porosity is θ = 0.9372. The black line corresponds to the solution in the unit cell; the
red line refers to the solution in a 2× 2 RVE. (b) Isolines of the u velocity component in
the unit cell, after time averaging. (c) Isolines of the difference between the time-averaged
u field in the 2× 2 RVE and the time-averaged solution in the unit cell.

the area of the domain is four times larger). The same small variation is found
when examining the dimensionless effective permeability of this isotropic medium
(defined later in § 4.2): its value is 7.61× 10−4 when computed in the unit cell case
and 7.66× 10−4 in the larger RVE.

Provided a sufficient separation of scale exists between the characteristic size l of
the RVE and the dimension L of the macroscopic phenomenon whose effects we
are focussing upon, multiscale homogenization can be applied. The goal of the next
sections is to derive macroscopic equations containing effective coefficients which
arise from the solution of auxiliary problems valid at the microscopic RVE level.

4.1. Recovering Darcy’s law

Let us consider an unbounded, rigid, porous medium saturated by an incompressible
Newtonian fluid of constant density ρ and dynamic viscosity µ. The porous medium
is assumed to be composed of a series of regular, spatially periodic cells of
characteristic size l such as the unit cell sketched in figure 10. The volume of the
fluid domain is denoted Vf , Vs is the volume of the solid domain and the fluid–solid
boundary is Γ . We assume that the macroscopic pressure gradient is balanced by
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viscous diffusion at the pore scale, i.e.

1P
L
=O

(µu
l2

)
, (4.1)

with u a microscopic velocity scale. The variables can be normalized with l/u, l, u,
1P=µuL/l2 and µu/l2 for, respectively, time, length, velocity, pressure and volume
forcing terms, yielding in the fluid domain the dimensionless system

∂ui

∂xi
= 0, (4.2)

Re
[
∂ui

∂t
+ uj

∂ui

∂xj

]
=−1

ε

∂p
∂xi
+ ∂

2ui

∂x2
j
+ fi, (4.3)

with ε= l/L� 1 the ordering parameter necessary to indicate the relative importance
of different terms, Re = ρul/µ the microscopic Reynolds number and fi the ith
component of a macroscopic volume force. Since the structure of the medium
involves two characteristic length scales, we introduce the microscopic and the
macroscopic variables, xi and Xi = εxi, for the chain rule to yield

∂

∂xi
→ ∂

∂xi
+ ε ∂

∂Xi
. (4.4)

Furthermore, each generic dependent variable g is expanded in power series of ε as

g(t, xi, Xi)= g(0)(t, xi, Xi)+ εg(1)(t, xi, Xi)+ · · · , (4.5)

so that, plugging into the balance equations (4.2) and (4.3) and collecting the two
leading orders in ε, we have

∂u(0)i

∂xi
= 0, (4.6)

∂u(1)i

∂xi
+ ∂u(0)i

∂Xi
= 0, (4.7)

∂p(0)

∂xi
= 0, (4.8)

Re

[
∂u(0)i

∂t
+ u(0)j

∂u(0)i

∂xj

]
=−∂p(1)

∂xi
− ∂p(0)

∂Xi
+ ∂

2u(0)i

∂x2
j
+ f (0)i . (4.9)

Equation (4.8) yields p(0) = p(0)(t, Xi), i.e. pressure at leading order does not vary
along the microscale. Equation (4.9) can be further simplified upon assuming that
inertia within the pores is negligible, e.g. Re is at the most of order ε for the
convective term to be lifted to higher order. This is the case for many porous media
problems, characterized by slow flow and small pores. In this case (4.9) becomes

0=−∂p(1)

∂xi
− ∂p(0)

∂Xi
+ ∂

2u(0)i

∂x2
j
+ f (0)i , (4.10)
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Flow over natural or engineered surfaces

to be solved together with (4.6), subject to the no-slip condition on the fluid–grain
interface Γ and periodicity on opposite lateral boundaries of the unit cell.

The procedure at this point requires the introduction of an averaging operator over
the unit cell of total volume V =Vf +Vs, plus an inner product, defined respectively
as

〈a〉 := 1
V

∫
Vf

a dV, (4.11)

(b, c) := 1
V

∫
Vf

bc dV, (4.12)

with a, b and c real functions of the microscale variables. Equation (4.11) is also
called the superficial or phase average, and the porosity of the medium can thus
be written as θ = Vf/V = 〈1〉. Furthermore, if for example c= 1, it is (b, c)= 〈b〉.
A second averaging operation can be introduced, the intrinsic average, defined by

〈a〉f := 1
Vf

∫
Vf

a dV = θ−1〈a〉. (4.13)

Thus, for example, the mean pressure in the porous medium is 〈p〉= θp(0)+ ε〈p(1)〉+
· · · , and the mean interstitial pressure (or pore pressure) is 〈p〉f = p(0) + ε〈p(1)〉f +
· · · .

We now sum the inner product (4.12) of equations (4.6) and (4.10) with two test
functions, respectively p† and u†

i , i.e.

0=
(

p†,
∂u(0)i

∂xi

)
+
(

u†
i ,−

∂p(1)

∂xi
− ∂p(0)

∂Xi
+ ∂

2u(0)i

∂x2
j
+ f (0)i

)
. (4.14)

The multidimensional equivalent of integration by parts stems from Gauss’ theorem
and is known as the Lagrange–Green identity; for a term of the form a∂b/∂xi, the
volume integral may be written as∫

V
a
∂b
∂xi

dV =
∫
∂V

abni dA−
∫
V

∂a
∂xi

b dV, (4.15)

with ∂V the surface of the volume V and ni the ith component of the outward
normal vector n. Applying this transformation as many times as needed to every
derivative in (4.14) we obtain the identity(

∂u†
i

∂xi
, p(1)

)
+
(
−∂p†

∂xi
+ ∂

2u†
i

∂x2
j
, u(0)i

)
=
(

u†
i ,
∂p(0)

∂Xi
− f (0)i

)
, (4.16)

using periodic boundary conditions on the outer boundaries of the unit cell for all
test functions, and zero value for u†

i at the fluid/grain interface Γ . The variables p†

and u†
i are called adjoint variables, and are defined so as to satisfy in the unit cell
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the microscopic (or auxiliary) problem which follows:

∂u†(k)
i

∂xi
= 0; −∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
=−δki, (4.17a,b)

with δki the Kronecker delta. This system has to be solved for k = 1, 2 and 3,
i.e. with −δ1i, −δ2i and −δ3i as successive source terms for the second equation
in (4.17), and each resolution yields a specific, unique u†(k)

i field. It is important
to stress the point that the superscript (k) in the adjoint variables’ names does not
denote an asymptotic order (as it does for the case of the direct variables), but
denotes the row of the matrix, e.g. u†(k)

i =Aki. Thus, for example, the first system of
(4.17), for k= 1, reads

∂A11

∂x1
+ ∂A12

∂x2
+ ∂A13

∂x3
= 0, (4.18)

−∂p†(1)

∂x1
+ ∂

2A11

∂x2
j
=−1, (4.19)

−∂p†(1)

∂x2
+ ∂

2A12

∂x2
j
= 0, (4.20)

−∂p†(1)

∂x3
+ ∂

2A13

∂x2
j
= 0. (4.21)

Using (4.16), the cell-averaged velocity along the generic direction k reads 〈u(0)k 〉 =
−(u†(k)

i , (∂p(0)/∂Xi) − f (0)i ). Assuming that f (0)i is either a constant or a function of
only the macroscale variables, the seepage velocity 〈u(0)k 〉 can thus be written as

〈u(0)k 〉 =−Kki

[
∂p(0)

∂Xi
− f (0)i

]
, (4.22)

with

Kki = 〈u†(k)
i 〉 = 〈Aki〉, (4.23)

the medium permeability which is unique, symmetric and positive definite (Mei &
Vernescu 2010). Equation (4.22) is the classical Darcy equation which expresses the
phase-averaged velocity as a function of the pore pressure gradient. The permeability
is available from geometrical microscopic properties alone. A similar derivation of
Darcy’s law was given for the first time by Ene & Sanchez-Palencia (1975). The
cell average of (4.7) yields 〈

∂u(0)i

∂Xi

〉
= 0, (4.24)

on account of periodicity. The spatial-averaging theorem (see, e.g. Mei & Vernescu
2010) permits the interchange of integration with respect to xi and differentiation
with respect to Xi, thanks to the no-slip condition, so that the continuity equation to
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FIGURE 11. First component of the permeability as a function of porosity for a porous
medium formed by staggered cylinders. With this geometrical arrangement, the porosity
must be larger than θmin = 1−π/4= 0.2146 for the inclusions not to touch one another.

be coupled to (4.22) is

∂〈u(0)i 〉
∂Xi

= 0. (4.25)

For the two-dimensional porous medium drawn in figure 10, the first component
of the permeability is shown in figure 11, as a function of the porosity θ of the
medium. The second diagonal component, K22, is identical to the first, from the
symmetry properties of the medium, and the off-diagonal components vanish. This
simple example thus corresponds to the case of an isotropic medium, for which
Kij =Kδij.

Note that if our goal had been to obtain the local velocity at some position x′,
instead of the phase average velocity, it would have been sufficient to replace the
source term in (4.17b) by −δkiδ(x− x′), to obtain

u(0)k (x
′)=−V〈u†(k)

i 〉
[
∂p(0)

∂Xi
− f (0)i

]
. (4.26)

4.1.1. Conditions at the boundaries of the macroscopic porous domain
Darcy’s equation can be written in terms of the pore pressure at leading order by

combining (4.22) and (4.25), to yield

∂

∂Xk

[
Kki

(
∂p(0)

∂Xi
− f (0)i

)]
= 0. (4.27)
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Close to boundaries the assumption of spatial homogeneity drops and a boundary
layer appears. For example, at a solid wall (say, placed on a plane of constant Y)
which bounds a porous, isotropic region, the non-penetration condition suggests
imposing ∂P(0)/∂Y = 0. This ‘intuitive’ condition is confirmed by a boundary layer
analysis, as indicated by Carraro, Marǔsić-Paloka & Mikelić (2018).

Particular care must be used in treating the interface between a free-fluid region
and a porous domain and the commonly employed condition of pressure continuity
at the dividing surface (Ene & Sanchez-Palencia 1975; Lācis & Bagheri 2017) is
an approximation which, according to Carraro et al. (2018), is acceptable only for
the case of isotropic porous media. Recently, Lācis et al. (2019) have proposed
a pressure jump condition obtained from a normal-momentum balance through
the dividing surface; this condition, briefly described later in § 7.1.2, extends and
complements that proposed by previous researchers.

4.2. The effect of inertia through the pores

With increasing flow rate through the pores, nonlinear interactions lead to
unsteadiness and eventually turbulence, even when the driving pressure gradient
∂p(0)/∂Xi is maintained constant in time. The transition from creeping flow to
inertia-dominated flow is typically quantified by the Reynolds number, Re, although
it is well known that the value of the transition Reynolds number is not unique, and
depends strongly on the structure of the medium and the flow direction. Pauthenet
et al. (2018) have recently used volume averaging to identify a unique transition
Reynolds number, based on a length scale which depends both on the medium
permeability and a tortuosity coefficient. Typically the inertial transition occurs for
Re = O(1), in which case the left-hand side of (4.9) cannot be ignored. Before
addressing the full equations, it is instructive to take a brief detour to analyse the
role of the time variable on a model linear problem.

4.2.1. Properties of the adjoint function of a linear, parabolic problem
Let us consider the function space of all real continuous functions f (t) defined

over 06 t 6 T . The inner product between functions in this space can be defined by

f1 · f2 :=
∫ T

0
f1(t)f2(t) dt. (4.28)

Given a parabolic, linear equation, to be integrated from t= 0 to t= T and defined
in terms of the operator L as

df
dt
=Lf + S, (4.29)
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Flow over natural or engineered surfaces

with S a source term, it is possible to introduce the adjoint equation, to be integrated
backwards, i.e. proceeding from t= T to t= 0, as

− df †

dt
=L†f †, (4.30)

with the property that

f (T)f †(T)= f (0)f †(0)+ S · f †. (4.31)

The above stems immediately from the defining property of adjoint operators, i.e.

Lf · f † = f ·L†f †. (4.32)

The adjoint function f † plays the role of a Green’s function for equation (4.29) for,
if we integrate (4.30) using f †(T)= 1 as the terminal condition, the direct solution
at the generic final time t= T is simply

f (T)= f (0)f †(0)+ S · f †. (4.33)

In other words, once the adjoint solution, viz. the Green’s function, f †(t), is available,
the final direct solution f (T) is found by simply multiplying the Green’s function at
t= 0 with any initial condition f (0), and summing this to the inner product of f †(t)
with any source term, S, of the direct equation. The extension to multidimensional
problems is straightforward and is addressed below on the actual problem of interest.

4.2.2. Adjoint of the nonlinear time-dependent, microscopic equations
The adjoint system of equations (4.6) and (4.9) can be derived in a similar manner

as in the linear case, carrying out integrations in both space and time. The time
integral must run from the initial time, set arbitrarily to 0, to a generic final time,
T . After a few integrations by parts it is simple to find∫ T

0

(
∂u†

i

∂xi
, p(1)

)
+
(

Re

[
∂u†

i

∂t
+ u(0)j

∂u†
i

∂xj

]
− ∂p†

∂xi
+ ∂

2u†
i

∂x2
j
, u(0)i

)
dt

=
∫ T

0

(
u†

i ,
∂p(0)

∂Xi
− f (0)i

)
dt+ (u†

i , u(0)i )|t=T
t=0 . (4.34)

The auxiliary problem to be solved with periodicity at the boundaries of the RVE
and no-slip at the fluid/grain contact surfaces reads

∂u†(k)
i

∂xi
= 0; −Re

[
∂u†(k)

i

∂t
+ u(0)j

∂u†(k)
i

∂xj

]
=−∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
+ S†

ki, (4.35a,b)

with the source term S†
ki equal to the Kronecker delta, δki, if the problem is steady,

and S†
ki= 0 in a time-dependent problem. In this latter case, the terminal conditions

at t= T for the adjoint problem will need to be defined. As before, the superscript
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(k) in the adjoint variables in (4.35) stems from the need to define and solve three
different auxiliary problems, k= 1, 2 and 3, for each of the velocity components.

The steady problem
The adjoint momentum equation is simply

− Re u(0)j
∂u†(k)

i

∂xj
=−∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
+ δki, (4.36)

and the resulting macroscopic problem reads

〈u(0)k 〉 =−Keff
ki

[
∂p(0)

∂Xi
− f (0)i

]
, (4.37)

with

Keff
ki = 〈u†(k)

i 〉. (4.38)

The resulting macroscale equation (4.37) is the same as in the creeping flow case
(i.e. the Darcy equation (4.22)), but now the adjoint variables (and consequently
the permeability) do not depend only on the geometric small-scale properties of the
porous medium, but also on the direct flow state; the permeability is thus called
effective (or apparent) and noted with the superscript eff . As opposed to the Stokes
permeability of equation (4.23), the apparent permeability tensor is in general not
symmetric; Lasseux & Valdés-Parada (2017) have shown that it can be decomposed
into the sum of a symmetric and a skew-symmetric part, the latter component
originating from inertial transport. Resolution of (4.36) is indispensable to obtain
all components of the apparent permeability tensor, for any given macroscopic
forcing ∂p(0)/∂Xi − f (0)i . For simplicity, from now on, the f (0)i volumetric force will
be taken conservative and absorbed into the pressure gradient term.

The unsteady problem
Because of the minus sign in front of the first term of the adjoint momentum
equation in (4.35), and the presence of a positive diffusion term on the right-hand
side, the only stable direction of evolution for the equation is for time t running
from T to 0. It is then convenient to introduce the time variable τ = T − t, which
runs from τ = 0 to τ = T , for the equation to read

Re

[
∂u†(k)

i

∂τ
− u(0)j

∂u†(k)
i

∂xj

]
=−∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
. (4.39)

From (4.34) we are left with

0=
∫ T

0

(
u†(k)

i ,
∂p(0)

∂Xi

)
dt+ (u†(k)

i , u(0)i )|t=T
t=0 ; (4.40)

as initial condition for the adjoint variable at τ = 0 we can choose either

u†(k)
i = δki (choice 1) or

u†(k)
i = δkiδ(x− x′) (choice 2).

}
(4.41)
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Flow over natural or engineered surfaces

With the first choice we recover the phase-averaged velocity at any final time t= T ,
whereas the second choice yields the instantaneous, pointwise velocity distribution
in the RVE. In other words, choice 1 yields

〈u(0)k 〉|t=T = (u†(k)
i , u(0)i )|t=0 −

∫ T

0
Keff

ki
∂p(0)

∂Xi
dt, (4.42)

with Keff
ki = 〈u†(k)

i 〉 the effective dynamic permeability, function of τ = T − t. The
last integral above is a convolution when the imposed pressure gradient is time
dependent. Choice 2 gives

u(0)k (T, x′,X)= V(u†(k)
i , u(0)i )|t=0 − V

∫ T

0

(
u†(k)

i ,
∂p(0)

∂Xi

)
dt. (4.43)

Both choices illustrate nicely the fact that adjoint fields operate as Green’s functions,
expressing the sensitivity to either the initial condition, u(0)i |t=0, or the source term,
∂p(0)/∂Xi. In the study of the flow through porous or poroelastic media the average
velocity is usually sought for, immediately available from choice 1. Recently, the
problem of the unsteady seepage of fluid in a porous medium has been posed and
solved by Lasseux, Valdés-Parada & Bellet (2019), within Whitaker’s (1996) volume-
averaging framework.

4.2.3. Further considerations on the steady case
A microscopic problem similar to that given in equation (4.36) has been given

previously by Whitaker (1996) in terms of two closure variables, noted below as
e={ek} and E={Eik}. The most notable difference with Whitaker’s closure problem
is that his stationary closure equations are

∂Eik

∂xi
= 0, Re u(0)j

∂Eik

∂xj
=−∂ek

∂xi
+ ∂

2Eik

∂x2
j
+ δik, (4.44a,b)

with periodicity for Eik and ek on the cell boundary and zero value for Eik at Γ ; the
effective permeability is

Keff
ik = 〈Eik〉. (4.45)

In other words, the advective term on the left-hand side of (4.44) contains u(0)j ,
whereas it contains −u(0)j in model (4.36). This apparent difference is easily
understood upon closer scrutiny of the two models, which turn out to be simply
the transpose of one another, as shown by Lasseux & Valdés-Parada (private
communication, 2018). Upon solving with the adjoint formulation, for k = p, with
p = 1, 2 or 3, one recovers Keff

p1 , Keff
p2 and Keff

p3 . Conversely, the solution of (4.44)
yields for any k=p: Keff

1p , Keff
2p and Keff

3p . The final entries of the apparent permeability
tensor in the two cases are the same.

To illustrate the above we consider two different types of inclusion within a
two-dimensional unit cell. The first inclusion is cylindrical while the second is
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(a) (b)

FIGURE 12. Streamlines of the steady, adjoint velocity field u†(1)
i in the unit cell, built

from the solution of (4.36) for k= 1, isotropic (a) and anisotropic (b) grains. The direct
flow is driven diagonally (at 45◦) by a macroscopic pressure gradient in both cases.

highly irregular, they are shown in figure 12. The direct fields in the two cases
are computed by solving equations (4.6) and (4.9) (the latter in its steady form)
in the periodic cell, subject to a pressure gradient inclined at 45◦ with respect to
the horizontal axis of the unit cell. In particular, in the first case (cylindrical grains
with porosity of the medium θ = 0.80) we take ∂p(0)/∂X = ∂p(0)/∂Y = −74.32,
and in the second (asymmetric inclusions with porosity θ = 0.734) we take
∂p(0)/∂X = ∂p(0)/∂Y = −639.4. In the symmetric case the microscopic Reynolds
number is Re = 80.7 while in the second case it is 782; the filtration velocity
components in the two cases are

isotropic case: 〈u(0)〉 = 〈v(0)〉 = 0.6666,
anisotropic case: 〈u(0)〉 = 0.8467, 〈v(0)〉 = 9.720× 10−2.

}
(4.46)

Once the direct fields are computed, they are used in (4.36) to obtain the adjoint
velocity and pressure. When k = 1 the adjoint velocity components are denoted by
u†(1)

i and from them we can draw adjoint streamlines, represented in figure 12 for
the two configurations at hand. For the case of isotropic grains it is found through
averaging: Keff

11 =Keff
22 = 6.331× 10−3; Keff

12 =Keff
21 = 2.635× 10−3. Using Darcy’s law

with the apparent permeability tensor we thus have

〈u(0)〉 = 〈v(0)〉 =−Keff
11
∂p(0)

∂X
−Keff

12
∂p(0)

∂Y
= 0.6665, (4.47)

in excellent agreement with the direct simulation result.
The irregular grain geometry produces the following result for the apparent

permeability tensor:
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Flow over natural or engineered surfaces(
8.65× 10−4 4.59× 10−4

−1.71× 10−4 3.23× 10−4

)
(4.48)

while, for comparison purposes, the intrinsic (Stokes) permeability components Kki

are (
5.53× 10−3 −2.25× 10−4

−2.25× 10−4 6.71× 10−3

)
. (4.49)

Using Darcy equation with the effective permeability components we recover

〈u(0)〉 =−Keff
11
∂p(0)

∂X
−Keff

12
∂p(0)

∂Y
= 0.8466, (4.50)

〈v(0)〉 =−Keff
21
∂p(0)

∂X
−Keff

22
∂p(0)

∂Y
= 9.720× 10−2, (4.51)

which, again, agree very well with the results from the direct simulation.
The presence of an inertial term in the macroscopic Darcy equation can be made

explicit by writing Keff
ki as

Keff
ki = (Fjk + δjk)

−1Kji, (4.52)

with Fjk the non-symmetric, u(0)j -dependent Forchheimer tensor; equation (4.37) then
becomes the Darcy–Forchheimer equation (Whitaker 1996)

〈u(0)k 〉 =−Kki
∂p(0)

∂Xi
−Fki〈u(0)i 〉. (4.53)

Clearly, as Re→ 0 Darcy equation is recovered; when Re increases, the so-called
regime of weak inertia is entered and Fki〈u(0)i 〉 ∼ 〈u(0)k 〉〈u(0)i 〉〈u(0)i 〉 (Mei & Auriault
1991; Firdaouss, Guermond & Le Quéré 1997). Upon further increasing Re, the
strong inertia regime is attained with Fki〈u(0)i 〉 proportional to the square of the
seepage velocity (Whitaker 1996; Lasseux, Abbasian Arani & Ahmadi 2011). For
yet larger values of the Reynolds numbers, the flow in the porous medium undergoes
successive bifurcations, before transition to a turbulent state. The onset of unsteady
motion within the pores of the medium depends on the geometry, the dimensions
and the arrangement of the grains within the porous domain.

4.2.4. Possible solution strategies
In practical calculations, to account for the dependence of Keff

ki on the microstate
when convection terms are non-negligible, both direct and adjoint states are needed.
For any given geometry of the inclusions, the parameters to be considered are the
orientation of the driving pressure force and the local Reynolds number.

Extensive parametric calculations under steady conditions have been reported
by Lasseux et al. (2011). The two-dimensional case was considered, with solid
inclusions of either circular or square shape; interestingly, Lasseux et al. (2011)
considered both ordered and disordered arrangements of grains, in the latter case
also including grains of varying sizes (and this implied the use of periodic RVEs of
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rather large dimensions). For the case of ordered structures the Forchheimer tensor
Fjk was found to be non-symmetric, except when the applied pressure gradient was
directed along a symmetry axis of the representative elementary cell. This stems
from the fact that, for an arbitrary orientation of ∂p(0)/∂Xi, the force on the grain
due to inertia is not necessarily aligned with the mean flow. Another interesting
result was that the range of Reynolds numbers in which the weak inertia form of
the Forchheimer equation occurred was more narrow when disordered structures
were considered, possibly explaining why experiments with natural media often did
not exhibit such a regime.

An alternative strategy, requiring consideration of only adjoint variables, has been
proposed by Valdés-Parada, Lasseux & Bellet (2016). It consists in solving the
system

∂u†(k)
i

∂xi
= 0; Re u†( j)

l
∂p(0)

∂Xl

∂u†(k)
i

∂xj
=−∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
+ δik, (4.54a,b)

which holds since the microscopic equation

u(0)j =−u†( j)
l
∂p(0)

∂Xl
, (4.55)

applies in the unit cell (Mei & Vernescu 2010).
A less involved approximation consists in expressing the direct velocity field in

the RVE as the sum of a mean part plus a periodic deviation of zero mean, i.e.

u(0)j (xi, Xi)= 〈u(0)j 〉f (Xi)+ u′j(xi, Xi)= θ−1〈u(0)j 〉(Xi)+ u′j(xi, Xi), (4.56)

and then neglecting the fluctuations, i.e. assuming u(0)j = θ−1〈u(0)j 〉 to replace the
actual direct field in the microscopic problem (4.36) with its intrinsic average. The
results of this Oseen-like procedure deteriorate as the Reynolds number increases,
as shown in the representative results of figure 13 for the isotropic, regular medium
sketched in the image, when compared to results obtained from the direct solver
(labelled as ‘DNS’ in the figure). For θ = 0.8 and Re = 0 the dimensionless
permeability of the medium is 1.941 × 10−2; as inertia becomes prominent the
permeability decreases as initially shown by Edwards et al. (1990). The results by
these authors are however numerically under-resolved; fine grid direct simulations,
displayed with asterisks in the figure, yield slightly larger values of the apparent
permeability component, particularly for Re exceeding 100. Values identical to
those of the direct solver, to within graphical accuracy, are found when solving
(4.54). Conversely, the Oseen-like approach produces approximate results which
almost coincide with those by Edwards et al. (1990) over the whole range of Re
examined.

Another possible approach to treat flows with inertial effects through porous
media consists in creating a database of direct and adjoint states, possibly using
a metamodel based on kriging interpolation, or any other suitable interpolation
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FIGURE 13. Variation of the apparent permeability with the microscopic Reynolds
number for a two-dimensional medium composed by regularly arranged circular grains.

technique, to fill the data gaps which inevitably arise when discretizing a very
large space of parameters, thus generating a look-up table of permeabilities to
be employed, for example, when the pressure gradient changes intensity and/or
direction, or when the porosity is not homogeneous. This approach has been
followed by Luminari et al. (2018) for a medium formed by a three-dimensional
staggered array of cylindrical fibres. Interestingly, for such a case the apparent
permeability tensor remains strongly diagonally dominant, regardless of the
orientation and intensity of the driving force, a fact which must be correlated
to the transversely isotropic nature of the medium considered.

5. The flow in a poroelastic medium

Poroelasticity is a continuum theory which deals with the analysis of a porous
medium formed by an elastic matrix which contains interconnected fluid-saturated
pores. The presence of the fluid influences the mechanical properties of the solid
material. Since the pores are fluid filled, the fluid acts as a stiffener for the material;
when there is a gradient of pore pressure, the fluid exerts a stress on the solid
skeleton, deforming it and leading to volumetric changes in the pores. This, is turn,
affects the fluid pressure. The theory is thus concerned with the coupling between
changes in solid stress and changes in fluid pressure. The two-way fluid–solid
coupling occurs instantaneously in the so-called quasi-static approximation of
poroelasticity, whereas this is not the case in the dynamic approximation, when
elastic wave propagation is accounted for. Work in poroelasticity was initiated
by Terzaghi (1925), who conducted controlled experiments in a one-dimensional
model of a fully saturated soil sample under a Heaviside step function load, to
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understand the behaviour of soil as a foundation material. From his laboratory
experiments, Terzaghi derived a simple consolidation equation which turned out to
be a special case of the full, three-dimensional quasi-static theory later formulated
by Biot (1941). Subsequently, Biot (1956a,b) extended the theory to describe
low- and high-frequency elastic waves propagating in a fluid-saturated porous
medium. The principal applications pursued initially by researchers in the field
were concerned with problems in hydrogeology, geomechanics and petroleum
engineering; Wang (2000) gives a complete historical and scientific account of
the linear theory as referred to those applications. Other studies of poroelasticity
have been mostly concerned with biomechanics, for example with applications to
the behaviour of the interstitial fluid contained within bones (Cowin 1999) or solid
tumours (Netti et al. 1997). Our intent is to apply the theory of poroelasticity to the
macroscopic description of the fluid motion over and through deformable, natural
or functionalized, coatings and materials.

Biot (1941, 1956a,b) obtained his equations using an averaging process conducted
over what was later called the RVE, to extract effective material parameters. This is
sometimes called the effective medium approach. Another technique capable to yield
the same system of equations (Bowen 1982) is based on mixture theory, an approach
which employs a density-weighted averaging procedure rather than integration over
the volume of the RVE. Auriault & Sanchez-Palencia (1977) were the first to derive
the quasi-static form of the equations of poroelasticity through the use of a two-scale
homogenization approach. The same multiscale technique was later employed by
Burridge & Keller (1981) for the dynamic form of the equations. A similar upscaling
procedure, by the use of adjoints, is pursued below, with a focus on poroelastic
media away from boundaries.

Let us assume that the coupled fluid–solid problem undergoes a ‘fast’ process of
characteristic (large) frequency f . Using this frequency to normalize time in the fluid
equations, we have

∂uk

∂xk
= 0,

(
ρf l2f

µ

)
∂ui

∂t
+ Re uj

∂ui

∂xj
=−1

ε

∂p
∂xi
+ ∂

2ui

∂x2
j
, (5.1a,b)

with the same scales as in the rigid case for length, velocity and pressure. Assuming
small elastic deformations of the solid skeleton, and calling V̂={V̂i} the dimensional
solid displacement vector, it is

ρs
∂2V̂i

∂ t̂2
= ∂σ̂ij

∂X̂j

, (5.2)

with the solid stress tensor σ̂ij defined by σ̂ij= Ĉijklε̂kl(V̂). Ĉijkl=ECijkl is the elasticity
tensor, with Ĉijkl = λLδijδkl + G(δikδjl + δilδjk), λL and G are the Lamé constants,
functions of the Young’s modulus, E, and the Poisson’s ratio, νP, through

λL

E
= νP

(1+ νP)(1− 2νP)
and

G
E
= 1

2(1+ νP)
. (5.3a,b)
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The elasticity tensor has the following symmetry properties:

Cijkl = Cjikl = Cijlk = Cklij. (5.4)

We also define the dimensional strain tensor, ε̂kl(V̂), as

ε̂kl(V̂)= 1
2

(
∂V̂k

∂X̂l

+ ∂V̂l

∂X̂k

)
. (5.5)

At the interface Γ between the elastic solid and the fluid, components of velocity
and stress must be continuous

Ûi = ∂V̂i

∂ t̂
, (5.6)[

−P̂δij +µ
(
∂Ûi

∂X̂j

+ ∂Ûj

∂X̂i

)]
nj = σ̂ijnj, (5.7)

with the unit normal vector n= {ni} at the interface oriented from the solid into the
fluid.

Inertia in the fluid is comparable to the microscopic viscous term provided the
characteristic microscale is of the order of the thickness of the Stokes layer, i.e.

l∼
√
µ

ρf f
. (5.8)

For ‘slow’ processes (when f is sufficiently small) this cannot be the case: the Stokes
layer thickness exceeds typical pore/grain dimensions and ρf ∂Û/∂ t̂ is negligible
compared to both viscous diffusion and macroscopic pressure gradient terms.

Inertia in the solid equilibrates variations of the stress at the macroscale when L
is of the order of the elastic wavelength

L∼ 1
f

√
E
ρs
. (5.9)

The expansion parameter ε of the multiple scale analysis to follow can thus be taken
equal to

ε = l
L
=
(
ρs

ρf

µf

E

)1/2

. (5.10)

If we consider, for example, an open-cell elastomeric foam saturated by water, we
have ρs = 10 kg m−3 and E = 105 Pa, together with ρf = 103 kg m−3 and µ =
10−3 Pa s, so that ε= 10−5

√
f (with f in Hertz). At a frequency of 100 Hz, we thus

have l∼ 100 µm and L∼ 1 m (ε = 10−4). Whether such length scales are realistic
depends on the microstructure and the phenomenon under consideration, and should
they not be, one might reconsider the normalization of the equations.
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From (5.6) we infer that the displacement scale is of order u/f , so that the
dimensionless variables can be written (and expanded) as

xi = X̂i

l
, t= f t̂, p= p(0) + εp(1) + ε2p(2) + · · · = P̂

1P
,

ui = u(0)i + εu(1)i + · · · =
µ

εl1P
Ûi, vi = v(0)i + εv(1)i + ε2v

(2)
i + · · · =

µf

εl1P
V̂i.


(5.11)

In dimensionless terms, the microscopic strain tensor εkl(v) is

εkl(v)= 1
2

(
∂vk

∂xl
+ ∂vl

∂xk

)
. (5.12)

Using Xi = εxi and (4.4), mass conservation for the fluid and the momentum
equations for both fluid and solid read, at different orders in ε,

O(ε−1):

∂p(0)

∂xi
= 0, (5.13)

O(ε0):

∂u(0)k

∂xk
= 0, (5.14)

∂u(0)i

∂t
+ Re u(0)j

∂u(0)i

∂xj
=−∂p(1)

∂xi
− ∂p(0)

∂Xi
+ ∂

2u(0)i

∂x2
j
, (5.15)

∂σ
(−1)
ij

∂xj
= ∂

∂xj
[Cijklεkl(v

(0))] = 0, (5.16)

O(ε1):

∂u(1)k

∂xk
+ ∂u(0)k

∂Xk
= 0, (5.17)

∂σ
(0)
ij

∂xj
+ ∂σ

(−1)
ij

∂Xj
= ∂

∂xj
{Cijkl[εkl(v

(1))+ Ekl(v
(0))]} + ∂

∂Xj
[Cijklεkl(v

(0))] = 0, (5.18)

O(ε2):

∂2v
(0)
i

∂t2
= ∂σ

(1)
ij

∂xj
+ ∂σ

(0)
ij

∂Xj
= ∂

∂xj
{Cijkl[εkl(v

(2))+ Ekl(v
(1))]}

+ ∂

∂Xj
{Cijkl[εkl(v

(1))+ Ekl(v
(0))]}, (5.19)
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with Ekl(v) representing the macroscopic strain tensor

Ekl(v)= 1
2

(
∂vk

∂Xl
+ ∂vl

∂Xk

)
. (5.20)

All variables are periodic at the boundaries of the RVE. At the fluid–solid interface
Γ the kinematic and dynamic conditions are

O(ε0):

u(0)i =
∂v

(0)
i

∂t
, σ

(−1)
ij nj = 0, (5.21a,b)

O(ε1):

u(1)i =
∂v

(1)
i

∂t
, −p(0)δijnj = ρs

ρf
σ
(0)
ij nj, (5.22a,b)

O(ε2): [
−p(1)δij +

(
∂u(0)i

∂xj
+ ∂u(0)j

∂xi

)]
nj = ρs

ρf
σ
(1)
ij nj. (5.23)

According to (5.13) the pressure at leading order does not depend on the microscale
xj, as in the rigid case. Equation (5.16) and the second of (5.21) yield, analogously,
v
(0)
i = v(0)i (t, Xj), from which σ (−1)

ij = 0. On account of the above, indicating a time
derivative with a dot over a variable name, the fluid equations at order ε0 can be
written as

∂(u(0)i − v̇(0)i )

∂xi
= 0, (5.24)

∂(u(0)i − v̇(0)i )

∂t
=−v̈(0)i −

∂p(1)

∂xi
− ∂p(0)

∂Xi
+ ∂

2(u(0)i − v̇(0)i )

∂x2
j

, (5.25)

having assumed, for simplicity, that the microscopic Reynolds number Re is at the
most of order ε, to drop the nonlinear term from (5.15). It would not be difficult to
maintain it, and derive the macroscopic problem and closure relations in much the
same way as done in the rigid case with inertia, but we choose not to do so since
our purpose is mainly to illustrate the procedure. We need to build adjoint problems
by defining an inner product as in (4.12) but with the domain of integration which
is either Vf or Vs depending on whether we consider fluid-based or solid-based
variables; furthermore, we must integrate in time from t= 0 to a generic final time
T . We introduce three adjoint variables, p†, u†

i and v
†
i , assumed periodic over the

RVE, and write
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0

(
p†,

∂(u(0)i − v̇(0)i )

∂xi

)

+
(

u†
i ,−

∂(u(0)i − v̇(0)i )

∂t
− v̈(0)i −

∂p(1)

∂xi
− ∂p(0)

∂Xi
+ ∂

2(u(0)i − v̇(0)i )

∂x2
j

)

+
(
v†

i ,
∂

∂xj
{Cijkl[εkl(v

(1))+ Ekl(v
(0))]}

)
dt= 0. (5.26)

After integration by parts, accounting for boundary and interface conditions of the
direct problem, the first and second terms of (5.26) become

1
V

∫ T

0

∫
Vf

−∂p†

∂xi
(u(0)i − v̇(0)i )+

∂u†
i

∂t
(u(0)i − v̇(0)i )−

∂

∂t
[u†

i (u
(0)
i − v̇(0)i )]

+ ∂u†
i

∂xi
p(1) + ∂

2u†
i

∂x2
j
(u(0)i − v̇(0)i )− u†

i

(
v̈
(0)
i +

∂p(0)

∂Xi

)
dV dt, (5.27)

plus some boundary and interface terms which we force to zero. The third term
of (5.26), upon using Gauss’ theorem and the second interface condition in (5.22),
reduces to

1
V

∫ T

0

∫
Vs

[
−ρf

ρs
εii(v

†)p(0) − εij(v
†)Cijklεkl(v

(1))− εij(v
†)CijklEkl(v

(0))

]
dV dt. (5.28)

5.1. Fluid problems

The adjoint problem valid in the interstitial domain of the RVE is

∂u†
i

∂xi
= 0; ∂u†

i

∂t
− ∂p†

∂xi
+ ∂

2u†
i

∂x2
j
= 0, (5.29a,b)

together with u†
i = 0 on Γ and periodicity of the adjoint variables at the cell

boundaries. Notice that (5.29b) runs backward in time, from T to 0. As done
previously, we introduce τ = T − t and express it as a forward-in-τ propagating
equation

∂u†(k)
i

∂τ
=−∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
, (5.30)

with initial condition

u†(k)
i |τ=0 = δki. (5.31)

The dynamic Darcy law expressing the instantaneous fluid velocity relative to the
solid for a deformable medium is thus

〈u(0)k 〉|t=T − θv̇(0)k |t=T =−
∫ T

0
Kki

(
v̈
(0)
i +

∂p(0)

∂Xi

)
dt+ (u†(k)

i , u(0)i − v̇(0)i )|t=0, (5.32)
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with Kki = 〈u†(k)
i 〉 the dynamic permeability; the time integral is a convolution.

Equation (5.32) must be coupled to a macroscopic equation of conservation of mass
of the fluid phase. We start by writing (5.17) as

∂(u(0)i − v̇(0)i )

∂Xi
=−∂u(1)i

∂xi
, (5.33)

and take the phase average (4.11)

∂

∂Xi
(〈u(0)i 〉 − θv̇(0)i )=

〈
∂v̇

(1)
i

∂xi

〉
, (5.34)

having used Gauss’ theorem, recalling that the unit normal vector at Γ points into
the fluid, and the first of (5.22). The term on the right-hand side is a volume integral
over Vs and necessitates knowledge of v(1)i . This is addressed below.

5.2. Momentum equation for the solid skeleton

From (5.28), in the solid it is

1
V

∫
Vs

εij(v
†)Cijklεkl(v

(1)) dV =−
CijklEkl(v

(0))+ ρf

ρs
p(0)δij

V

∫
Vs

εij(v
†) dV. (5.35)

The integral on the left-hand side can easily be reduced to

1
V

∫
Γ

εij(v
†)Cijklv

(1)
k nl dA− 1

V

∫
Vs

∂

∂xl
(Cklijεij(v

†))v
(1)
k dV. (5.36)

The auxiliary problem in the solid skeleton Vs is thus taken to satisfy

∂

∂xl
(Cklijεij(v

†(n)))= δkn, (5.37)

with Cklijεij(v
†(n))nl= 0 on Γ and periodicity of the adjoint displacement v†(n) on the

boundaries of the unit cell. Once the rank-2 tensor v†(n) is computed, the average
solid displacement at order one can be expressed in terms of v(0)i and p(0) as

〈v(1)i 〉 =
1
V

∫
Vs

v
(1)
i dV = Timn

(
CmnklEkl(v

(0))+ ρf

ρs
p(0)δmn

)
, (5.38)

with Timn = (1/V)
∫
Vs
εmn(v

†(i)) dV a tensor of rank 3. Knowledge of 〈v(1)i 〉 permits
us to express the right-hand side of (5.34) and to close the fluid equations.

5.3. Macroscopic momentum equation for the composite

To express the momentum balance of the continuum composite, formed by both the
fluid and the poroelastic material, we have to first phase average over the respective
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domain and then sum equations (5.13), (5.15) (with Re→ 0), (5.18), and (5.19), as
follows: 〈

−∂p(0)

∂xi

〉
+ ε

〈
−∂u(0)i

∂t
− ∂p(1)

∂xi
− ∂p(0)

∂Xi
+ ∂

∂xj

(
∂u(0)i

∂xj
+ ∂u(0)j

∂xi

)〉

+
〈
ρs

ρf

∂σ
(0)
ij

∂xj

〉
+ ε

〈
ρs

ρf

(
−∂

2v
(0)
i

∂t2
+ ∂σ

(1)
ij

∂xj
+ ∂σ

(0)
ij

∂Xj

)〉
= 0. (5.39)

Using Gauss’ theorem and the conditions (5.22) and (5.23) on the continuity
of stress components at Γ , the effective momentum equation for the composite
simplifies to

〈u̇(0)i 〉 +
ρs

ρf
(1− θ)v̈(0)i =−θ

∂p(0)

∂Xi
+ ρs

ρf

∂〈σ (0)ij 〉
∂Xj

. (5.40)

The last derivative can also be written as
∂

∂Xj
〈Cijklεkl(v

(1))〉 + (1− θ) ∂
∂Xj

CijklEkl(v
(0)), (5.41)

to highlight the dependence of 〈σ (0)ij 〉 on v(0) and p(0) through equation (5.38). It is
with the knowledge of 〈v(1)〉 and Kij (available from the solutions of two adjoint
systems in, respectively, the solid and the fluid portion of the microscopic RVE) that
the dynamic problem for p(0), v(0) and 〈u(0)〉 can be closed. These seven unknowns,
functions of time and X, are found from the solution of equations (5.32), (5.34) and
(5.40).

The case of quasi-static poroelasticity poses no added difficulty, and only requires
cancelling a few terms from the equations. If Re is not negligible, the adjoint
microstructural problems can be set up in a manner similar to that described in
the previous section. Also this extension should provide but a simple exercise.
On the other hand, the actual numerical solution of the equations can be rather
involved; Zampogna et al. (2019a) present extensive microscopic results for a
medium constituted by elastic fibres, as well as macroscopic applications of standing
and travelling waves.

6. Homogenization for a rough, impermeable surface

The issue of the flow developing over a rough wall is of considerable practical
importance, for both laminar and turbulent flow conditions, even when surface
defects are of small amplitude in an absolute sense. For example, distributed,
micron-sized roughness elements placed near the attachment line of a swept wing
have a demonstrated potential to maintain laminar a boundary layer affected by the
so-called cross-flow instability (Saric & Reed 2002). Similarly, transition started
by the amplification of Tollmien–Schlichting waves in the boundary layer over
a flat plate can be delayed by the presence of sub-optimally growing streaks
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generated by carefully configured roughness elements (Fransson et al. 2006). In
both circumstances, the result is a reduction in surface-averaged skin friction
drag. Also under turbulent conditions well-configured wall roughness elements
can produce a positive effect (in terms of reduced drag, for example), as shown
by Sirovich & Karlsson (1997). They fabricated a specified pattern of randomly
aligned, small-amplitude v-shaped protrusions at the wall, pointing in the upstream
direction, and demonstrated that such elements interfere with the energy-carrying
eddies in the wall region, reducing the frequency of both burst and sweep events as
compared to the smooth wall case. Such events account for a sizeable fraction of
skin friction, and a drag reduction of approximately 10 % was reported. Effective
protrusions were found to have typical dimensions and transverse periodicity of
some 200l∗ (the wall unit l∗ is defined as l∗ = ν/u∗, with u∗ the friction velocity,
u2
∗ = τ̂ /ρ|Y=0, τ̂ being the total stress at the rough wall), and height of only

approximately 5l∗. As a comparison, the mechanism by which riblets (of typical
spanwise wavelength and height of the order of 10l∗) work is quite different, since
their aim is to restrain the movement of near-wall coherent structures and reduce
the rate of energy loss to the small scales of the flow (cf. § 6.4.1). A different
case of surface protrusions which produce beneficial effects has recently been
reported by Domel et al. (2018). They fabricated roughness elements inspired by
shark denticles and placed arrays of artificial denticles on the suction side of a
wing, testing different sizes, number of rows and positions. In the most remarkable
among the various set-ups tested, simultaneous drag reduction and lift generation
were reported, significantly outperforming all the more traditional vortex generator
designs, over the whole range of angles of attack. Such behaviour was ascribed to
two concurrent effects: a pressure redistribution in the wake of the denticles, and
the presence of streamwise vortices on the suction surface, capable of replenishing
momentum losses in the boundary layer. Counter-rotating streamwise vortices were
also produced by thin longitudinal strips placed by Cho, Kim & Choi (2018)
over the entire suction side of an airfoil. Their presence was capable of favouring
surface-attached flow, significantly improving the stall behaviour of the airfoil at
moderately low values of the Reynolds number.

The few examples mentioned above constitute a sufficient argument for the
importance of developing a model capable of addressing the effect of wall
protrusions on the flow, bypassing the need for expensive trial-and-error direct
numerical simulations or experiments, when the goal is to find effective surface
features aimed, for example, at reducing skin friction drag, attenuating the
amplification rate of instabilities, delaying stall, etc.

Extensive reviews of rough walls turbulent boundary layers are given by Raupach,
Antonia & Rajagopalan (1991) and Jiménez (2004). In the immediate vicinity of a
smooth wall the only relevant length scale is l∗; conversely, if the surface is rough
there are several additional relevant scales: k, lx, lz, . . . , with k a characteristic

877 P1-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.607


A. Bottaro

roughness height (distance peak-to-trough), lx and lz the mean spacings between
adjacent elements along x and z. Furthermore, there are other scales related to
the local sparseness of the elements, their shapes, the root mean square roughness
height, etc. Because of reasons which are both historical and related to convenience,
it has become customary to reduce all length scales to a single variable, ks, the
equivalent sand-grain roughness height. Such a value can be obtained a posteriori
equating any arbitrary wall topography to equivalent sand-grain experiments by
Nikuradse (1933) in terms of how much the mean velocity U+ = U/u∗ is shifted
in the Clauser plot from the smooth-surface level. In a smooth channel the log law
reads

U+ = 1
κ

ln Y+ + A, (6.1)

with the von Kármán constant κ = 0.392 and A= 4.48 (Luchini 2018). The variable
Y+ is defined as Y+ = Ŷ/l∗. When the wall is rough, a downward shift in the
log law is often experienced, by an amount 1U+ called the roughness function,
dependent on the wall texture, the roughness height and the coupling between the
near-wall flow and the outer turbulence (Flack & Schultz 2014); in this case 1U+ is
negative. Conversely, when 1U+ is positive there is an upward shift of the velocity
distribution and drag is smaller than in the corresponding smooth-wall case.

The so-called roughness sublayer extends approximately 3ks to 5ks away from
the wall; contrasting evidence exists as to whether and how the effect of roughness
penetrates into the inertial region and up to the outer layer of the flow. Townsend
(1961) argued that outside the roughness sublayer (i.e. for y & 5ks) the dynamic
features of turbulence at high Reynolds number are independent of the roughness
length scales k, lx, lz, . . . (aside from the indirect role of wall roughness in defining
the velocity scale u∗, the virtual origin of the velocity profile and the thickness
of the boundary layer). Townsend’s wall similarity hypothesis met with mixed
success, until it became clear that the hypothesis was acceptable provided there was
a substantial separation between the roughness scale, ks, and the outer length scale
δ (i.e. the boundary layer thickness or the channel half-height, L), irrespective of
the surface topography. Flack, Schultz & Shapiro (2005) argued for the existence
of wall similarity for δ/ks > 40, with some or most of the log-law region destroyed
by the presence of the roughness when ks was larger than the δ/40 threshold.

Another aspect of interest concerns the viscous scaling of roughness: k+s = ks/l∗
is the roughness Reynolds number whose value separates the flow regimes
conventionally defined as hydrodynamically smooth (k+s . 5), transitional (5 . k+s .
70) and fully rough (ks & 70). To set ideas, if air (water) flows at a free-stream speed
U∞ of 150 m s−1 (respectively, 10 m s−1), so-called smooth conditions are achieved
for ks . 10 µm (assuming u∗ ∼U∞/20) which is within the range of roughness of
many clean, machined industrial surfaces. In the so-called hydrodynamically smooth
regime the shear stress at the wall is entirely viscous, whereas form drag on the
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roughness elements accounts for a large portion of the stress when in fully rough
conditions. In recent years, the concept of hydrodynamically smooth surfaces has
been challenged. Whereas in the past it was believed that 1U+ vanished for k+s . 5,
i.e. a wall covered by roughness elements fully immersed in the viscous sublayer
was thought to exhibit the same skin friction as a smooth wall, today this is not
the case. Bradshaw (2000), by modelling the flow inertia through the roughness
elements with an Oseen approximation, suggested that the drag increased from the
smooth-wall behaviour with the square of k+s , when k+s remained sufficiently small.
Careful experiments by Grüneberger & Hage (2011) confirmed this quadratic trend
for the case of transverse riblets. Recently, Thakkar, Busse & Sandham (2018)
have approached the problem conducting direct simulations of turbulence in a
rough channel, with an accurate resolution of a grid-blasted surface model. In their
simulations k+s ranges from 3.26 (with 1U+ = −0.35) to 104.4 (1U+ = −8.72).
By fitting the three data points in the low ks range (i.e. 3.26 6 k+s 6 13.05), and
including the limit point (k+s = 0→1U+ = 0), they found

1U+ =−0.063(k+s )
1.37, (6.2)

in the lower transitionally rough regime which thus extends from k+s = 0 to about 13.
For roughness amplitudes above 13 and up to about k+s = 78 the regime was defined
as upper transitionally rough, with 1U+ a logarithmic function of k+s . The fully
rough regime was attained for even larger amplitudes (Thakkar et al. 2018).

In terms of ks matters have thus been clarified in a satisfactory manner; it is not
yet clear, however, how to translate the many length scales of an arbitrary roughness
geometry into an equivalent sand-grain roughness height a priori, i.e. in the absence
of experimental results to compare to. In other words, a way is needed to categorize
any kind of wall roughness, particularly in the upper transitional and fully rough
regimes where form drag on the roughness elements contributes increasingly to the
overall drag as the Reynolds number increases.

6.1. The homogenization approach

We consider a rough wall such as that sketched in figure 14; the roughness amplitude
is assumed to be sufficiently small for its characteristic scale l to be much smaller
than the macroscopic scale L of the outer flow structures. The RVE is periodic along
the wall tangent directions, x and z, and extends along y from the lower solid, rough
boundary at ywall(x, z), where the no-slip condition applies, up to y → ∞. Such
an upper, asymptotic limit should not distract from the fact that the RVE remains
typically confined to the wall roughness sublayer. The surface defects are assumed
to be positioned below (at the most tangent to) the smooth plane positioned in y= 0.
From a macroscopic point of view, the presence of the boundary is replaced by
slip velocity components, Us and Ws, applied at some effective, smooth interface
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x

y

ywall(x, z)

Unit cell

RVE

FIGURE 14. Cross-section of the wall in a (x, y) projection of the microscopic domain,
with a sketch of the unit cell and the RVE. The outermost dashed vertical lines indicate
the boundaries over which periodicity can be enforced for the RVE. The inner and outer
length and velocity scales are, respectively, (l, U) and (l/ε, U/ε).

positioned, for example, in Y = 0. Particular care is needed when considering the
wall-normal velocity component at the fictitious wall, as we will see later.

As in § 4.1, the procedure starts by identifying the proper scales to normalize the
equations in the RVE. We assume that the microscopic pressure gradient in the near-
wall region is equilibrated by viscous diffusion, so that

1P=O
(
µU

l

)
, (6.3)

with U a characteristic velocity within the roughness sublayer. This pressure scale
differs from that adopted in (4.1) for the case of porous media flows. In that case
the underlying assumption was that the fluid through the pores was forced by the
macroscopic pressure gradient; here it is assumed that the near-wall flow is driven
by the outer shear. We employ l, U , l/U and 1P to scale length, velocity, time
and pressure in the near-wall (inner) region, so that the dimensionless continuity and
momentum equations are

∂ui

∂xi
= 0, (6.4)

R
[
∂ui

∂t
+ uj

∂ui

∂xj

]
=− ∂p

∂xi
+ ∂

2ui

∂x2
j
, (6.5)

with the Reynolds number defined by R = U l/ν. Notice that, as indicated in the
caption of figure 14, the outer velocity components Ûi, at the outer edge of the RVE,
scale with U/ε. The chaining of inner and outer velocities is related to the need to
take a distinguished limit for y→+∞ (and Y → 0+) where the pressure field is
continuous.
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Two possibilities emerge at this stage. If R→ 0 tends to zero, the roughness
sublayer is dominated by viscosity; this corresponds to a laminar situation or to the
lower transitionally rough regime and leads to linearized equations to describe the
near-wall flow. If, on the other hand, R is O(1) or larger, inertia near the wall cannot
be neglected and we are in the upper transitionally rough or possibly the fully rough
regime of motion. These two cases are considered separately below.

6.1.1. The small roughness limit
When the wall roughness is of sufficiently small amplitude for the flow in its

proximity to be dominated by viscosity, e.g. when R is of order ε or smaller, (6.4)
and (6.5) reduce at leading order to the Stokes problem

∂u(0)i

∂xi
= 0, (6.6)

0=−∂p(0)

∂xi
+ ∂

2u(0)i

∂x2
j
, (6.7)

and the RVE is the unit cell. The equations must be supplemented by no-slip
conditions at the wall, ywall, and periodicity at the cell boundaries in x and z. The
conditions at the upper boundary of the domain will arise as part of the solution in
terms of outer, macroscopic variables.

We multiply equations (6.6) and (6.7) by p† and u†
i , then sum and integrate in

space, over Vf . Using Lagrange–Green identity it is easy to find

0=
(

p(0),
∂u†

i

∂xi

)
+
(

u(0)i ,

[
−∂p†

∂xi
+ ∂

2u†
i

∂x2
j

])
+ b.t. (6.8)

with b.t. denoting boundary terms coming from integration by parts. The adjoint
variables are taken to solve the system

∂u†
i

∂xi
= 0, (6.9)

0=−∂p†

∂xi
+ ∂

2u†
i

∂x2
j
, (6.10)

together with ‘no-slip’ conditions for u†
i at y = ywall and periodicity on the lateral

boundaries of the unit cell for both adjoint velocity components and adjoint pressure.
The equation

b.t.=
∫
Ω

−p(0)v† + v(0)p† + u†
i
∂u(0)i

∂y
− u(0)i

∂u†
i

∂y
dx dz= 0, (6.11)

must be satisfied, with all variables evaluated at y → +∞. We still have some
freedom in choosing the adjoint conditions at the upper boundary of the microscopic

877 P1-45

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.607


A. Bottaro

domain and can thus set up two distinct auxiliary problems, which will be denoted
below by the superscript (k) on the adjoint variables, with k which can be equal to
either 1 or 3

∂u†(k)
i

∂y
= δik, v†(k) := u†(k)

2 = 0, at y→+∞; (6.12a,b)

also the index i can take the values 1 and 3 to denote, respectively, the components
of the adjoint vector along x and z, so that from (6.11)–(6.12) the surface-averaged
velocities become

lim
y→+∞
du(0)e := lim

y→+∞
du(0)1 e = lim

y→+∞

⌈
u†(1) ∂u(0)

∂y
+w†(1) ∂w(0)

∂y
+ p†(1)v(0)

⌉
; (6.13)

lim
y→+∞
dw(0)e := lim

y→+∞
du(0)3 e = lim

y→+∞

⌈
u†(3) ∂u(0)

∂y
+w†(3) ∂w(0)

∂y
+ p†(3)v(0)

⌉
. (6.14)

As already stated after (4.17), the superscript (k) next to the name of an adjoint
variable stands for the row of a matrix, and not for some asymptotic order. Thus, in
the present case, u†(k)

i is the component of a 2× 2 matrix.
In practice, the upper boundary conditions are enforced at y= y∞ sufficiently far

away from the wall. The operator d·e introduced above denotes averaging over a
planar surface Ω of the RVE at any given position y, i.e.

dae = 1
Ω

∫
Ωf

a dx dz, (6.15)

with Ωf the area occupied by the fluid; Ω and Ωf might differ, for example when
averaging over a plane which cuts through roughness elements. This definition is the
planar counterpart of volumetric phase averaging (4.11).

The third constraint is simply

dv(0)e = 0, (6.16)

at any y, because of mass conservation and periodicity.
Provided y∞ is taken large enough, it is found that the adjoint variables there are

constant over Ω; such values will be denoted by a ∞ subscript. Equation (6.13)
expressed in outer variables, defined so that Ui = εdu(0)i e, reduces to

U|Y∞ = ε
(

u†(1)
∞
∂U
∂Y
+w†(1)

∞
∂W
∂Y

) ∣∣∣∣
Y∞
, (6.17)

and similarly for W|Y∞ . The simple Taylor expansion

U|Y∞ =U|Y=0 + Y∞
∂U
∂Y

∣∣∣∣
Y=0

+ · · · , (6.18)
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permits us to transfer the boundary conditions to the reference surface in Y = 0, to
recover the classical Navier condition at Y = 0, correct to order ε, i.e.

Us =U|Y=0 = ε
(
λx
∂U
∂Y
+ λxz

∂W
∂Y

) ∣∣∣∣
Y=0

, (6.19)

with λx and λxz dimensionless slip lengths defined by

λx = u†(1)
∞ − y∞, λxz =w†(1)

∞ . (6.20a,b)

Analogous reasoning leads easily to the transverse slip velocity at Y = 0, given by

Ws =W|Y=0 = ε
(
λzx
∂U
∂Y
+ λz

∂W
∂Y

) ∣∣∣∣
Y=0

, (6.21)

with the slip lengths defined by

λzx = u†(3)
∞ , λz =w†(3)

∞ − y∞, (6.22a,b)

whereas V vanishes at order ε in Y = 0 (cf. (6.16)). In compact form we can write
the in-plane components of the velocity at the fictitious wall in Y = 0 as(

Us

Ws

)
= εΛ ∂

∂Y

(
U
W

) ∣∣∣∣
Y=0

, (6.23)

with

Λ=
(
λx λxz

λzx λz

)
, (6.24)

the slip tensor; Λ is diagonal for symmetric wall patterns, in particular for isotropic
or orthotropic surface roughnesses, in which case λxz = λzx = 0. This is the case of
riblets, for example, and in this simpler limit our result coincides with that derived
by other methods by Bechert & Bartenwerfer (1989) and Luchini, Manzo & Pozzi
(1991).

Another interesting contribution on this problem is due to Achdou, Pironneau &
Valentin (1998); these authors went up to second order in ε, still in the limit of
negligible R, and focussed on two-dimensional problems. Thus, they identified the
nonlinear correction to the first-order Navier condition, Us = ελx∂U/∂Y|Y=0, always
maintaining the wall-normal velocity equal to zero, and analysed numerically a
few steady, laminar cases, comparing model results to direct simulations which
fully accounted for the surface topography. The second-order approximation, which
required the solution of two additional microscopic closure problems in the unit
cell, consistently provided an excellent match to the direct simulations. However, in
all the cases tested, the first-order term gave already very satisfactory comparisons
to the feature-resolving simulations, and this raises the question of whether there
is any substantial advantage in deriving the second-order correction for (only) the
longitudinal velocity.
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6.1.2. An alternative derivation of the slip velocity
Since we are interested in expressing the slip velocity at some fictitious smooth

surface as a function of an external, macroscopic shear, we can assume that the
microscopic equations are driven by two shear stress components, along x and z,
which will be called τx and τz, functions of X and Z; τx and τz are positioned at
some generic coordinate Y (above, or at the most coinciding with, the upper edge
of the wall protrusions) via the use of the delta function. The direct equations (6.6)
and (6.7) now become

∂u(0)i

∂xi
= 0, (6.25)

0=−∂p(0)

∂xi
+ ∂

2u(0)i

∂x2
j
+ δ(y−Y)Si, (6.26)

with Si the components of the volume source term S = (τx, 0, τz). The boundary
conditions at y→∞ are ∂u(0)/∂y= v(0) = ∂w(0)/∂y= 0; the other conditions are, as
before, no slip at y= ywall and periodicity on opposing vertical planes. The adjoint
variables, i.e. the Green’s functions, are taken to satisfy the system

∂u†(k)
i

∂xi
= 0, (6.27)

0=−∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
+ δ(y−Y)δki, (6.28)

with the same boundary conditions as in the direct problem for variables with
corresponding names. As before, the index k can only take values 1 and 3. For
example, when k = 1 the last term on the right-hand side of (6.28) is the vector
[δ(y−Y), 0, 0]. The Lagrange–Green identity yields

du(0)k (x,Y, z, Xj)e = du†(k)
i (x,Y, z)eSi, (6.29)

from which the macroscopic slip velocity components when Y = 0 follow

Us = ε(λxτx + λxzτz), Ws = ε (λzxτx + λzτz), (6.30a,b)

with λx = du†(1)(x, 0, z)e, λxz = dw†(1)(x, 0, z)e, λzx = du†(3)(x, 0, z)e and λz =
dw†(3)(x, 0, z)e. In a numerical application, provided the delta function is well
approximated and discretized, the results for the components of the slip tensor Λ

when computed as described here coincide with those reported in (6.24); equation
(6.30) coincides with (6.23), aside from formally higher-order terms related to
∂V/∂X|Y=0 and ∂V/∂Z|Y=0.
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6.1.3. Accounting for near-wall inertia
If R is order one, using the same approach just described the leading-order

equations become

∂u(0)i

∂xi
= 0, (6.31)

R

[
∂u(0)i

∂t
+ u(0)j

∂u(0)i

∂xj

]
=−∂p(0)

∂xi
+ ∂

2u(0)i

∂x2
j
+ δ(y−Y)Si, (6.32)

subject to the same boundary conditions as in § 6.1.2. In this case, the volumetric
source term Si can, in principle, depend also on time. We now multiply equations
(6.31) and (6.32) by p† and u†

i , sum and integrate in time, from t= 0 to some final
time t = T , and in space, over Vf . We impose for the backward-in-time auxiliary
system to satisfy

∂u†(k)
i

∂xi
= 0, (6.33)

−R
(
∂u†(k)

i

∂t
+ u(0)j

∂u†(k)
i

∂xj

)
=−∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
, (6.34)

with the same adjoint boundary conditions used in § 6.1.2, i.e. ∂u†(k)/∂y = v†(k) =
∂w†(k)/∂y= 0 when y→∞ and u†

i = 0 at y= ywall. We are left with

R
∫
Vf

u†(k)
i ui

∣∣∣∣
t=T

dV =R
∫
Vf

u†(k)
i ui

∣∣∣∣
t=0

dV +
∫ T

0

∫
Vf

u†(k)
i δ(y−Y)Si dV dt. (6.35)

Setting the terminal condition for the adjoint problem as

u†(k)
i |t=T = δkiδ(y−Y), (6.36)

(6.35) gives

du(0)k e|t=T,y=Y = 1
R

∫ T

0
du†(k)

i e|y=YSi dt+ V
Ω
(u†(k)

i , u(0)i )|t=0. (6.37)

In terms of outer variables, at the upper edge of the rough pattern (i.e. when Y = 0)
we thus have

Us(T, X, Z)= ε

R

∫ T

0
λ1iSi dt+ ε V

Ω
(u†(1)

i , u(0)i )|t=0, (6.38)

Ws(T, X, Z)= ε

R

∫ T

0
λ3iSi dt+ ε V

Ω
(u†(3)

i , u(0)i )|t=0, (6.39)

with the dynamic slip lengths given by

λx := λ11 = du†(1)
1 e|y=0, λxz := λ13 = du†(1)

3 e|y=0,

λzx := λ31 = du†(3)
1 e|y=0, and λz := λ33 = du†(3)

3 e|y=0.

}
(6.40)
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FIGURE 15. (a) Rough wall used to illustrate the procedure. Isosurfaces of u† (1) (b) and
w† (1) (c) in the unit cell, arising from the solution of the adjoint equations (6.9)–(6.10).
The vertical axis ỹ in the figure has its origin on a mid-plane through the roughness.

We observe, once more, that nothing has been said yet about the vertical velocity
condition at the surface in y= 0, aside from stating that, at leading order, dv(0)e= 0.

6.1.4. Sample results for the slip lengths
An example of isosurfaces of u†(1) and w†(1) in a unit cell, for the case of a

quasi-isotropic rough wall, is displayed in figure 15, for the case of a near-wall flow
with negligible inertial effects. The results have been computed by the procedure
described in § 6.1.1. Two microscopic vertical axes are defined; one is y and, as
usual, has its origin at the upper rim of the roughness elements. The other axis
is ỹ and it runs through the rough surface, in such a way that

∫
Ω

ỹwall dx dz = 0.
The highest roughness peak is found at ỹ= 0.1685 and the lowest trough is at ỹ=
−0.1144. For the specific roughness pattern considered here, we have u†(1)

∞ = 3.9482
and w†(1)

∞ = λxz = 5.60 × 10−4 at ỹ∞ = 4. The solution of the adjoint system, when
setting k= 3 in (6.12), is u†(3)

∞ = λzx = 5.60× 10−4 and w†(3)
∞ = 3.9459.

By (6.20) and (6.22) it is immediately obtained that the diagonal components of
Λ are negative if measured with respect to ỹ, i.e. the two virtual origins, for the
longitudinal and the transverse motion, sit above the ỹ = 0 axis, with reverse flow
in the region underneath the virtual origin (cf. figure 16). This causes numerical
problems because of loss of ellipticity (Achdou et al. 1998). In an actual simulation
the origin of the vertical coordinate should be shifted, to make it coincide, e.g. with
the position of the roughness crests (in ỹ = 0.1685) as shown in the sketch of
figure 16, thus using y as wall-normal coordinate in place of ỹ. For the particular
case of figure 15 the slip tensor becomes

Λ=
(

0.1167 5.6× 10−4

5.6× 10−4 0.1144

)
, (6.41)

and the structure of the matrix indicates clearly the weakly anisotropic nature of the
surface considered. When computing the entries of Λ with the alternative approach
described in § 6.1.2 the same results are obtained.
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ywall(x, z)

X = ´x

Y = ´y

ÎX

y¡

FIGURE 16. Sketch of a generic near-wall region in a streamwise–wall-normal plane. In a
macroscopic description the velocity decreases linearly towards a virtual origin, indicated
in the image with a black dot. The control volume drawn within dashed lines is meant
to show that, locally, a wall-normal velocity (in this case at Y = 0) arises when there is
a gradient (in X or Z) of the velocity components parallel to the Y = 0 plane.

6.2. The transpiration velocity

The problem remains of setting the vertical velocity boundary condition at
the fictitious wall; although (6.16) is correct at y = 0, posing the macroscopic
wall-normal velocity component V = 0 at Y = 0 is an approximation of first order
in ε which represents a questionable modelling strategy. The reason for this has
been discussed by Orlandi & Leonardi (2006) for the case of turbulent flows over
rough walls beyond the lower transitionally rough regime. These authors conducted
several direct simulations of turbulence in a channel by the immersed boundary
method, with different types of roughness patterns on one wall (the other wall was
smooth), capturing the details of the flow through the micro-indentations at the
wall. The channel had total height equal to 2L+ k̂, with k̂ the roughness height. In
particular, Orlandi & Leonardi (2006) looked at a regular texture of cubic elements,
of height k̂= 0.2L; the pattern periodicity in both X and Z was equal to 0.4L (thus,
in our notations, it is ε= 0.4 if the RVE and the unit cell coincide). The simulation
for the surface roughness just described was carried out at Re = UavgL/ν = 2800,
corresponding to a friction Reynolds number Reτ = u∗L/ν= 240, and to a reasonably
large roughness Reynolds number, k+= u∗k̂/ν = 48. The friction velocity, u∗, at the
lower wall was computed accounting for both friction and form drag, employing
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the total stress on the plane of the roughness crests in Ŷ = 0, i.e.

τ̂ total
lower wall =µ

∂Û

∂Ŷ

∣∣∣∣
Ŷ=0

− ρÛ′V̂ ′|Ŷ=0, (6.42)

with primes denoting turbulent fluctuations. Orlandi & Leonardi (2006) observed that
near the rough wall the turbulent stress was approximately twice as large as the
viscous stress when the friction Reynolds number was close to 300; at the upper,
smooth wall in Y=2, V ′ vanishes and τupper wall is purely viscous. They also observed
that the three-dimensional rough wall produced shorter streaks near the lower wall
as compared to the upper one, as a result of violent ejection and sweep events,
with large values of V ′ on the plane of the roughness crests. For the case being
discussed here it was found that 1U+ ≈ −8.6. Because of the failure of previous
theories to parameterize the roughness function with geometrical properties of the
rough wall alone, Orlandi & Leonardi (2006) considered several two- and three-
dimensional surface textures and reported that 1U+ correlated linearly with the root
mean square (r.m.s.) of the wall-normal velocity. This is a significant conclusion and,
as reported by Orlandi and Leonardi, ‘the final step could consist in establishing a
correspondence between certain kinds of roughness and the r.m.s. of V’.

An interesting new approach to approximate the wall-normal velocity at Y = 0,
based on a mass conservation argument, has been proposed recently by Lācis et al.
(2019). Their argument is interpreted below in a form consistent with the present
notations: it starts by inverting equation (6.23), i.e. by writing

∂

∂Y

(
U
W

) ∣∣∣∣
Y=0

= ε−1B

(
Us

Ws

)
, (6.43)

with the 2× 2 matrix B =Λ−1 of components bjk (the indices j and k take values
equal to 1 and 3). The next step is to express the microscopic velocity components
u(0) and w(0) in the neighbourhood of the roughness as a function of the macroscopic
stress acting at Y = 0, via a 2× 2 transfer matrix A, of components aij = aij(x, y, z)
(as above, also i and j here can be 1 and 3). Below we will show how this transfer
matrix is computed. For the time being we write(

u(0)

w(0)

)
= A

∂

∂Y

(
U
W

) ∣∣∣∣
Y=0

; (6.44)

from which, using (6.43), (
u(0)

w(0)

)
= ε−1AB

(
Us

Ws

)
. (6.45)

The dimensional continuity equation yields

V̂|Ŷ=0 =−
∫ 0

Ŷwall

(
∂Û

∂X̂
+ ∂Ŵ

∂Ẑ

)
dŶ =− ∂

∂X̂

∫ 0

Ŷwall

Û dŶ − ∂

∂Ẑ

∫ 0

Ŷwall

Ŵ dŶ, (6.46)
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Flow over natural or engineered surfaces

with the last equality coming from Leibniz integral rule. We now normalize this
equation with microscopic scales, and use (4.4) and (4.5) to obtain

v(0)|y=0 + εv(1)|y=0 =− ∂

∂xi

∫ 0

ywall

u(0)i dy− ε
[
∂

∂xi

∫ 0

ywall

u(1)i dy+ ∂

∂Xi

∫ 0

ywall

u(0)i dy
]
.

(6.47)

Equation (6.45) states that u(0)i = ε−1aijbjk(Uk)s, so that (6.47) can be subdivided into
different orders to read

v(0)|y=0 =− ∂

∂xi

∫ 0

ywall

u(0)i dy, (6.48)

v(1)|y=0 =− ∂

∂xi

∫ 0

ywall

u(1)i dy− ∂

∂Xi

∫ 0

ywall

aijbjk(Uk)s/ε dy. (6.49)

It should be noted that (Uk)s/ε in (6.49) is formally O(1) since the macroscopic slip
speed is O(ε). Averaging the two equations above over the surface of the RVE, on
the plane of the roughness crests, it is found, owing to the x- and z-periodicity of
u(0)i and u(1)i , that

dv(0)e = 0, dv(1)e =−ε−1

[∫ 0

ywall

daijebjk dy
]
∂(Uk)s

∂Xi
. (6.50a,b)

It is important to stress the point that v(1) does not vanish when averaged over the
(x, z) plane of a unit cell when non-zero horizontal gradients of the slip velocity
are present locally at the fictitious wall in Y = 0 (the word locally, here, is relative
to a macroscopic point of view). Finally, the transpiration velocity, expressed in
macroscopic, dimensionless variables, becomes

V|Y=0 =−εmik
∂(Uk)s

∂Xi
=−ε

[
m11

∂Us

∂X
+m13

∂Ws

∂X
+m31

∂Us

∂Z
+m33

∂Ws

∂Z

]
, (6.51)

with the transpiration length coefficient given by

mik =
[∫ 0

ywall

daije dy
]

bjk. (6.52)

The blowing/suction speed at the fictitious wall in (6.51) is formally O(ε2), given
that the slip velocity is O(ε); however, it can become reasonably large since it
depends on horizontal gradients of Us and Ws, which can be very significant in the
vicinity of intense, localized near-wall turbulent events.

6.2.1. Evaluating the transfer matrix A
We must now give the coefficients of the matrix A. In the case of a steady, linear

system (cf. (6.25)–(6.26)) the solution depends on the volume forcing S as

u(0)i = u†(i)
j Sj, (6.53)
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(cf. (6.29)), so that the solution of the adjoint system (6.27)–(6.28) forced by a delta
function positioned in y = 0 yields directly the required transfer matrix. In other
words, the components of A needed to evaluate the transpiration length, mik, are

aij = u†(i)
j . (6.54)

This procedure was applied by Lācis et al. (2019) for the case of a turbulent
channel flow with a regularly patterned wall. A texture of aligned rectangular
cuboids was placed on the lower surface of the channel with ε = 0.2 and height k̂
of the cuboids equal to 0.04L. For this configuration our own computations give
λx = λz = 5.724× 10−2 (and also λxz = λzx = 0, as expected because of the isotropy
of the wall pattern), so that b11 = b33 = 17.47 and b13 = b31 = 0. The value of the
slip length coincides with that computed by Lācis et al. (2019). Our calculations
further yield

∫ 0
ywall
da11e dy= ∫ 0

ywall
da33e dy= 4.596× 10−3. Using definition (6.52), we

finally obtain m11 = m33 = 8.029 × 10−2, very close to the value quoted by Lācis
et al. (2019) for the same geometry.

6.2.2. Testing the rough-wall boundary conditions
For the simple geometry examined here, (6.51) becomes

V|Y=0 =−εm11

[
∂U
∂X
+ ∂W
∂Z

] ∣∣∣∣
Y=0

, (6.55)

i.e. from continuity

V|Y=0 = εm11
∂V
∂Y

∣∣∣∣
Y=0

. (6.56)

The physical significance of the transpiration coefficient in this case is thus
immediately evident: m11 plays the same role as λx and λz, i.e. the vertical velocity
component can be extrapolated to zero in Y = −εm11. The existence of a vertical
Navier coefficient was previously hypothesized by Gómez-de-Segura et al. (2018),
but no strategy was put forward to assign its value.

The average velocity distribution computed by employing the equivalent wall
conditions (6.23) and (6.56) agrees quite well with a geometry-resolving simulation,
as shown first by Lācis et al. (2019), whereas when fluid transpiration at the wall is
neglected |1U+| is underestimated. We have repeated the simulations by Lācis et al.
(2019) with the coefficients given in § 6.2.1, and the results, scaled in wall units
using the friction velocity based on the total stress at Y = 0, are shown in figure 17.
The mean velocity plotted on the vertical axis is relative to the slip velocity on the
roughness’ crests, thus eliminating the need to define a zero velocity plane (Orlandi
& Leonardi 2006). The result embodied by this figure demonstrates the importance
of adding a nominally smaller-order wall-normal velocity term to reproduce mean
profiles over a rough surface. It has been shown by Lācis et al. (2019) that also

877 P1-54

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.607


Flow over natural or engineered surfaces
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FIGURE 17. Mean velocity profiles for a channel flow at Reτ = 180. The top curve (empty
circles) corresponds to a smooth wall. The dashed line represents the result of a direct
simulation over a wall patterned with cuboids, modelled using Navier’s slip and V|Y=0= 0.
The solid line corresponds to results obtained using both slip and wall transpiration, for
the same rough wall. This latter curve is rather close to the results of the geometry-
resolving direct simulation by Lācis et al. (2019), represented with filled square symbols.

the r.m.s. values of the fluctuating velocity components are well captured by the
approach which includes transpiration through the fictitious wall.

The configuration tested corresponds to the lower transitionally rough regime (the
roughness Reynolds number is k+= 7.1 and 1U+≈−2.4); as such, we are justified
in employing slip and transpiration conditions with coefficients evaluated on the
basis of microscopic Stokes problems. When advection through the roughness is
non-negligible and R cannot be set to zero, an Oseen-like strategy, such as that
described in § 4.2.4, might be attempted. This is presented in the next section, while
in § 6.4 we will describe a few interesting cases in which microscopic wall features
produce sizeable effects.

6.3. Near-wall turbulence beyond the lower transitionally rough regime

When a turbulent shear flow interacts with a rough wall of relatively large
amplitude, the slip tensor cannot be a function of geometrical features alone, and its
components cannot simply arise from the solution of Stokes problems. This is the
case since, as stated by Zampogna, Magnaudet & Bottaro (2019b), ‘inertial coupling
with the dynamic properties of the external macroscopic flow must be included
in the microscopic problems, in order for the modified slip condition to mimic
properly the role of the rough layer as turbulence promoter’. Finding a convenient
reduced-order model to simplify the numerical treatment of a complex, rough wall,
represents an important endeavour. Whereas nowadays computational resources

877 P1-55

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.607


A. Bottaro

permit direct simulations which fully account for the interaction between the
turbulent fluctuations and the motion within complex terrains, in the limit of small,
turbulent Reynolds numbers and for rather elementary macroscopic geometries,
there are still many situations in which direct simulation of turbulence is not viable.
The approach described below might represent a first step to make progress towards
new near-wall models to be used in large eddy or Reynolds-stress computations of
turbulent flows of engineering interest.

To start, we need to consider a simple case, such as the turbulent flow in a
channel driven by a constant pressure gradient along X, with one rough wall. All
the equations must be re-examined in view of finding suitable approximations.
Microscopic advection within the roughness elements can be treated by an
Oseen-like linearization and unsteady effects within the roughness elements can,
in the first instance, be neglected. Equations (6.31) and (6.32), in the absence of
the delta function applied as a volume force, are thus transformed into

∂u(0)i

∂xi
= 0, Ru∗j

∂u(0)i

∂xj
=−∂p(0)

∂xi
+ ∂

2u(0)i

∂x2
j
. (6.57a,b)

The non-dimensional, constant velocity u∗j is assumed to be directed only along x
and to be equal to u∗ = (u∗/U, 0, 0), with u∗ the friction velocity. To assume that
the friction velocity prevails near the roughness elements seems the most sensible,
elementary approximation to try; clearly, we should expect some discrepancies with
respect to full, roughness-resolving direct numerical simulations (in analogy to the
results reported in figure 13), particularly when the Reynolds number increases
and/or when the roughness protrudes significantly outside of the viscous sublayer.
However, the advantage of starting from (6.57) is that an iterative approach between
inner and outer domains is not required: the steady adjoint fields, and thus the slip
lengths, can be obtained in one shot.

To obtain slip lengths it is necessary to set up adjoint problems. Treating the
advective term of (6.57) as described above, the direct system becomes

∂u(0)i

∂xi
= 0, εReτ

∂u(0)i

∂x
=−∂p(0)

∂xi
+ ∂

2u(0)i

∂x2
j
, (6.58a,b)

where the friction Reynolds number is Reτ = u∗L/ν. At this point the usual adjoint
machinery gives

∂u†(k)
i

∂xi
= 0, −εReτ

∂u†(k)
i

∂x
=−∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
, (6.59a,b)

for k equal to 1 and 3, together with (6.12) and the same adjoint boundary condi-
tions as in § 6.1.1. Eventually, the surface-averaged in-plane velocity components at
the upper boundary of the RVE are

lim
y→+∞
du(0)e = lim

y→+∞

⌈
u†(1) ∂u(0)

∂y
+w†(1) ∂w(0)

∂y
+ p†(1)v(0)

⌉
, (6.60)
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λx = λz

∫ 0

ywall

da11e dy m11 =m33 1λ

Reτ = 0 6.416× 10−2 8.295× 10−3 0.1293 0.0651
Reτ = 180 5.600× 10−2 7.230× 10−3 0.1291 0.0731
Reτ = 360 5.297× 10−2 6.906× 10−3 0.1304 0.0774

TABLE 1. Navier’s slip and transpiration coefficients. The values of Reτ indicated are
those used in solving equation (6.59).

lim
y→+∞
dw(0)e = lim

y→+∞

⌈
u†(3) ∂u(0)

∂y
+w†(3) ∂w(0)

∂y
+ p†(3)v(0)

⌉
. (6.61)

After having computed the adjoint velocities at some large but finite distance y∞
from ywall, the slip speed components in macroscopic terms read

Us = ε
(
λx
∂U
∂Y
+ λxz

∂W
∂Y

) ∣∣∣∣
Y=0

, (6.62)

Ws = ε
(
λzx
∂U
∂Y
+ λz

∂W
∂Y

) ∣∣∣∣
Y=0

, (6.63)

with λx = u†(1)
∞ − y∞, λxz = w†(1)

∞ , λzx = u†(3)
∞ and λz = w†(3)

∞ − y∞. These are the same
expression found before (cf. (6.23) and (6.24)), except for the fact that the adjoint
state now accounts for advection. Also the blowing/suction velocity at the fictitious
wall in Y = 0 does not formally change, and is expressed in (6.56) for roughness
geometries with simple symmetries, such as that examined here. The roughness
pattern of interest is composed by aligned cubes; the flow in a channel with such a
textured wall has been simulated by the immersed boundary method by Orlandi &
Leonardi (2006), with full account of the fluid behaviour throughout the protrusions
(cf. description of the configuration in § 6.2).

The numerical solution of the small-scale problem with advective effects
approximated with the Oseen linearization, yields the results displayed in figures 18
and 19. The coefficients of the matrix A needed to compute transpiration lengths
are found with the procedure outlined in § 6.1.2, subtracting the term εReτ∂u(0)i /∂x
from the right-hand side of (6.26). The slip length λx= λz is found to decrease with
Reτ while the transpiration length m11 =m33 varies more mildly (cf. table 1).

The microscopic results obtained prompt the following three, somewhat speculative,
reflexions:

(i) Two (or more) length scales can be identified for any arbitrary roughness
pattern. These coefficients are needed to parameterize and compare different
surface textures, paving the way to possible correlations between slip/
transpiration coefficients and the roughness function, 1U+.

(ii) The rim of the roughness, i.e. the y= 0 plane, has no particular significance in
relation to the flow, which means that any physically relevant quantity cannot
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FIGURE 18. Isosurfaces of u† (1) (a) in the unit cell, from the solution of the adjoint
system (6.59) with Reτ = 180. The image in (b) shows a11 = u† (1) from (6.26), including
streamwise advection, for the same Reτ and roughness pattern. This pattern is formed by
a regularly aligned distribution of cubic elements of side length equal to 0.5 (cf. sketch
on the upper right corner).

0-0.1-0.2

Re†

-0.3
y

-0.4-0.5

0.06

0.05

0.04

0.03

0.02

0.01

0

FIGURE 19. Wall-normal distribution of da11e for an aligned pattern of cubic roughness
elements. The three curves refer to the Stokes approximation (uppermost line), Reτ = 180
and Reτ = 360.

depend on the choice of the origin. We thus argue that the relevant length scale,
for simple rough walls such as the present one, is simply the distance between
the two virtual origins, that seen by the wall-normal flow (ejections and sweeps)
and that seen by the wall-parallel flow (streaks). In analogy to the case of
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FIGURE 20. Mean velocity profiles for the turbulent flow over cubic, aligned roughness
elements. Symbols and line styles have the same meanings as in figure 17; the data
represented with filled square symbols stem from a direct simulation with full account
of the fluid flow through the roughness elements (Orlandi & Leonardi 2006).

riblets discussed below, the relevant length scale here is thus 1λ = m11 − λx,
an increasing function of Reτ (cf. table 1).

(iii) When using a simple rough pattern formed by regularly spaced, identical posts,
a possible passive flow control strategy meant to reduce skin friction drag
should probably focus on minimizing the value of m11. This is borne out by
figures 17 and 20: a vanishing value of m11 reduces drag as compared to the
case with transpiration through the wall.

The macroscopic results for the case considered here are summarized in figure 20.
The first thing to observe is that, despite the fact that transpiration is a second-order
term in ε, the difference with the impermeable case, represented in the figure with
a dashed line, is large. Thus, this formally higher-order effect plays a significant
role, and more so now than in the case of smaller-amplitude roughness. The model
with condition (6.56) has been computed for Reτ ≈ 200 (using λx = 0.056 and
m11 = 0.1291, cf. table 1), while the feature-resolving simulation by Orlandi &
Leonardi (2006) has Reτ ≈ 260. The disagreement between the two results (solid
line and filled square symbols) is rather large and this might stem, in part, from
differences in Reτ . Using a larger Reτ in our model yields a larger transpiration
length and a larger 1λ; this should imply a rise in the absolute value of the
roughness function. Another argument is that, as the roughness amplitude increases,
it is possible that higher-order terms need to be included in the asymptotic expansion
for the variables in order to obtain closer agreement with the ‘exact’ result. A more
likely reason for the disagreement comes from the simple linearization which has
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led to (6.57). Recently, Abderrahaman-Elena, Fairhall & García-Mayoral (2019)
have conducted direct numerical simulations of texture-resolving turbulent flows,
decomposing the fields into a mean, plus a roughness-coherent contribution plus a
background turbulence term. For small amplitudes of the wall indentations (such
that |1U+| . 4) roughness acted mainly by displacing mean and fluctuating fields
below the roughness crests, in much the same way as described in the present
Perspective paper. Above a certain amplitude (in the transitionally rough regime)
the effect of roughness was not anymore perceived as a simple wall-normal shift
of the background turbulence; through the nonlinear terms, the roughness-coherent
field was observed to induce a forcing on the overlying turbulence over a finite
volume adjacent to the surface, and not only at the (virtual) wall itself. According
to R. García-Mayoral (private communication, 2019) to correctly model rough-wall
turbulence when surface textures are of amplitude above a certain threshold it is
necessary to complement the slip/transpiration conditions with a volumetric forcing
in the Navier–Stokes equations, in order to capture the energy interplay between
the roughness-coherent contribution and the background turbulence.

More work is necessary to corroborate and improve the simple strategy outlined
in this section to deal with flows over rough walls; it is clear, however, that
homogenization theory provides a good starting point to progress towards better
understanding.

6.4. Some interesting cases in the limit R→ 0

6.4.1. Riblets
The prototypical case of small-amplitude, anisotropic roughness is constituted of

riblets (figure 3b), minute wall grooves elongated along the mean flow direction. The
state of the art in riblets research is comprehensively reviewed by Bannier (2016),
including a discussion on the effects of riblets size, the influence of pressure
gradients, the laminar–turbulent transition, Reynolds and Mach number effects,
three-dimensional riblets, etc. Here we limit ourselves to longitudinal riblets for
which the slip tensor is simply

Λ=
(
λx 0
0 λz

)
. (6.64)

Whereas riblets are ineffective in laminar flow as a drag reducing agent (Luchini
1995), they represent an interesting passive control approach in the turbulent case,
provided they remain immersed within the viscous sublayer, for the flow to be
in the lower transitionally rough regime. Riblets are one of the few technologies
which have been tested with some degree of success in both laboratory experiments
and in aero/hydrodynamic macroscale settings, without having transitioned yet to
operational fleets of aircraft or ships for reasons of maintenance and effectiveness
over time. Several types of protrusion shapes have been analysed, including
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FIGURE 21. Experimental points for skin friction drag reduction for triangular and blade
riblets as a function of spanwise spacing, s+, scaled in viscous wall units; the dashed lines
represent qualitatively the predictions of a linear Stokes model. Adapted from Bechert
et al. (1997).

triangular, trapezoidal, blade, U-shaped, sinusoidal and notched-peak configurations,
reaching a maximum reduction in skin friction drag of 10 % (cf. figure 21). The best
performances are achieved for spanwise periodicity s+ close to fifteen wall units,
which translates to a spacing of 30–70 µm for typical aeronautical configurations.

The agreed-upon argument is that riblets create a gap between the virtual origin
of the mean, longitudinal flow and that of the transverse flow, as by the sketch
in figure 22. The turbulent mean flow is primarily affected by the longitudinal
slip length, λx, whereas turbulent fluctuations also see the transverse slip length,
λz. Assuming that turbulent fluctuations see their effective wall only at λz, the
difference in slip lengths becomes the only physically significant length scale
parameter. Luchini et al. (1991) were the first to argue that the properties of ribbed
walls must be a function of 1λ= λx− λz, and that variations in 1λ are responsible
for a displacement of the logarithmic layer, yielding a reduction of the skin friction
coefficient, Cf = 2τ̂ /ρÛ2

avg = 2(u∗/Ûavg)
2. Such a variation is approximated by

1Cf

Cf0
=− 1U+

(2Cf0)
−1/2 + (2κ)−1

, (6.65)

with 1Cf = Cf − Cf0 , and Cf0 the reference coefficient for the flow over a smooth
wall under the same external conditions (Luchini 1996; García-Mayoral & Jiménez
2011). Equation (6.65) applies for small changes of Cf , i.e. for small roughness
functions 1U+, in the linear, dashed tracts of figure 21. Because of linearity it is

1U+ 'µ01λ
+, (6.66)
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s s

¬x
¬z

(a) (b)

FIGURE 22. Sketch of streamwise (a) and spanwise (b) velocity profiles at the crest
and trough of a ribbed wall. The virtual origins are indicated with open circles.

with 1λ+ scaled in wall units, and Luchini (1996) has shown that, to a good
approximation, µ0 = 1. In turn, 1λ+ is a function of s+, dimensionless periodicity
of the riblets, as shown for several shapes by Luchini et al. (1991). The linear
dependence of 1Cf on 1λ+ (respectively, s+) persists up to 1λ+ equal to
approximately 2 (respectively, s+' 10, cf. dashed lines in figure 21), i.e. as long as
the texture length scales are small compared to the characteristic scales of near-wall
turbulence. Beyond some thresholds on 1λ+ and s+ the linear behaviour deteriorates.
When the spacing of the riblets is above a value of the order of 20÷ 30 wall units,
quasi-two dimensional spanwise rollers appear, related to a Kelvin–Helmholtz
instability of the mean velocity profile (García-Mayoral & Jiménez 2011). This
occurrence, as we will see in the following, is common to the case of the flow over
porous and poroelastic coatings, and is associated with a drag increase.

Numerical modelling of the flow over walls with riblets by the use of equivalent,
homogenized conditions has consistently used V = 0 at Y = 0. The possibility of a
transpiration condition has been suggested, but never much elaborated upon. On the
basis of the findings reported in § 6.2, we can now state that to second order in ε
a suitable boundary condition is

V|Y=0 =−ε
[

m11
∂U
∂X
+m33

∂W
∂Z

] ∣∣∣∣
Y=0

. (6.67)

The coefficients are

m11 =
[∫ 0

ywall

da11e dy
]

b11 and m33 =
[∫ 0

ywall

da33e dy
]

b33, (6.68a,b)

with

B=Λ−1 =
(

1/λx 0
0 1/λz

)
. (6.69)
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The two transpiration coefficients m11 and m33 are in general different, which means
that the transpiration velocity cannot take the simple form (6.56); the presence of
two additional length-related parameters modifies at higher order the picture which
has emerged over the years on the role of the length scale 1λ.

Riblets can be optimized for given flow conditions (e.g. for cruise flight of
an aircraft in still air), but their use can be detrimental in off-design conditions
(for example, during take-off or landing, or in gusty winds). Three-dimensional
variations of the conventional flow-parallel riblet shape have been proposed in
the recent past, including streamwise-sinusoidal and zigzag riblets (Kramer et al.
2010; Grüneberger et al. 2012), and grooves of variable height (McClure, Smith
& Baker 2010), with limited success. In general, three-dimensional riblets do not
outperform their two-dimensional, streamwise-invariant, counterpart. A possible, as
yet little-explored alternative to potentially extend the range of flow parameters
for which riblets, or any other kind of protrusions at the wall, exert a beneficial
effect consists in rendering them capable to deform elastically, adapting to the
flow. Trapezoidal riblets made of high-elongation elastomeric materials have been
patented by Rawlings & Burg (2016), with the claim that their optimized structural
design provides the capability for riblets to be ‘thinner, lower weight and more
aerodynamically efficient’. To date, the only fluid–solid coupling analysis of riblets
is due to Zampogna et al. (2019c); a similar upscaling strategy, within the adjoint
framework, is described in the following section.

6.4.2. Deformable surface protrusions
The study of the fluid flow interacting with microscopic surface features made of

a linearly elastic material and attached to a rigid substrate starts from the equations
of motion for the fluid and Cauchy’s equations for the solid, i.e. in dimensional form

∂Ûi

∂X̂i

= 0, ρf

(
∂Ûi

∂ t̂
+ Ûj

∂Ûi

∂X̂j

)
=− ∂P̂

∂X̂i

+ ∂

∂X̂j

[2µε̂ij(Û)], (6.70a,b)

ρs
∂2V̂i

∂ t̂2
= ∂σ̂ij

∂X̂j

= ∂

∂X̂j

[Ĉijklε̂kl(V̂)], (6.71)

with the operator ε̂kl defined as in (5.5) and applicable to both the fluid velocity, Û,
and the solid deformation, V̂. The fluid and solid equations are coupled through the
matching of velocities and tractions across the microscopic fluid–solid boundary in
Ŷ = Ŷwall(X̂, Ẑ, t̂), viz.

Ûi = ∂V̂i

∂ t̂
, (6.72)

and

− P̂ni + 2µε̂ij(Û)nj = σ̂ijnj. (6.73)
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At the lower boundary of the unit cell (Ŷ→−∞) we simply set V̂i = 0, under the
assumption that the thick elastic coating is anchored onto a rigid substrate; at the
upper boundary (Ŷ→∞) we match with the outer shear flow, which requires setting
the velocity and length scales in the region just above the upper boundary. Before
doing this, it is however important to establish scaling relations within the unit cell,
to normalize the microscale equations. Upon assuming that the continuum coating,
made up by fluid and solid, is characterized by a frequency, f , sufficiently large for
dynamic effects to be felt at leading order, we can write that in the fluid domain

ρfU f ∼ 1P
l
∼µU

l2
, (6.74)

with U the velocity scale, 1P the pressure scale and l the microscopic length scale.
From the above, we can choose the velocity scale to be

U = 1Pl
µ
. (6.75)

We also have a relation between the microscale l and the frequency f , which states
that, for viscous effects to balance inertia, l must be of the order of the Stokes layer
thickness, i.e.

l=
√
µ

ρf f
. (6.76)

The small displacement of the surface micropattern is assumed to occur coherently
over a macroscopic length L, as in the case of honami waves of canopies under the
effect of wind. By balancing inertia and diffusion in Cauchy’s equation for the solid,
we have

ρsf
2 ∼ E

L2
, (6.77)

so that the macroscale L can be taken to coincide with the elastic wavelength
(cf. (5.9)), i.e.

L= 1
f

√
E
ρs
. (6.78)

The kinematic condition (6.72) at the interface is useful since it permits us to
relate the solid displacement to the fluid velocity, so that the length scale of the
deformation, V̂, is chosen equal to

U
f
= 1Pl
µf

. (6.79)

The dimensionless variables are thus written (and expanded) as follows:

t= f t̂, x= X̂
l
, p= p(0) + εp(1) + · · · = P̂

1P
,

ui = u(0)i + εu(1)i + · · · =
µÛi

1Pl
, vi = v(0)i + εv(1)i + · · · =

µV̂if

1Pl
.

 (6.80)
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Substituting (6.80) into the equations for fluid and solid phases, using Xi = εxi and
(4.4), assuming that the microscale Reynolds number is small, R= (ρfU l/µ)=O(ε),
the governing equations at different orders become

O(ε−2):

∂σ
(−2)
ij

∂xj
= 0, (6.81)

O(ε−1):

∂σ
(−1)
ij

∂xj
+ ∂σ

(−2)
ij

∂Xj
= 0, (6.82)

O(ε0):

∂2v
(0)
i

∂t2
= ∂σ

(0)
ij

∂xj
+ ∂σ

(−1)
ij

∂Xj
, (6.83)

∂u(0)i

∂xi
= 0, (6.84)

∂u(0)i

∂t
=−∂p(0)

∂xi
+ ∂

2u(0)i

∂x2
j
, (6.85)

with the following kinematic and dynamic conditions at the interface in y =
ywall(x, z, t):

u(0)i =
∂v

(0)
i

∂t
, (6.86)

u(1)i =
∂v

(1)
i

∂t
, (6.87)

σ
(−2)
ij nj = 0, (6.88)

σ
(−1)
ij nj = 0, (6.89)

ρs

ρf
σ
(0)
ij nj =−p(0)ni + 2εij(u(0))nj. (6.90)

As before, the unit normal vector n points into the fluid; also, in the equations above
we have used the following notations

σ
(−2)
ij =Cijklεkl(v

(0)), (6.91)

σ
(−1)
ij =Cijkl[εkl(v

(1))+ Ekl(v
(0))], (6.92)

σ
(0)
ij =Cijkl[εkl(v

(2))+ Ekl(v
(1))], (6.93)

with the microscopic and macroscopic dimensionless strain operators, εkl(·) and
Ekl(·), as in (5.12) and (5.20). We immediately notice that v(0)i = v(0)i (t, Xj) and
σ
(−2)
ij = 0 on account of (6.81) and (6.88). This allows us to express the fluid mass
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√1
(0) = √2

(0) = √3
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™u1
(0)/™y = u2
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(0)/™y = 0

y = -y∞

y = y∞

y = ywall(x, z, t)

†x

x

y

FIGURE 23. Sketch of representative volume element of volume V (V = Vs + Vf ) drawn
within dashed lines and projected onto the (x, y) plane, for the flow past a rough, linearly
elastic and impermeable surface. Periodicity of all variables holds on opposing planes
parallel to the y-axis.

conservation and momentum equations at leading order in the unit cell as a function
of the fluid velocity relative to the solid skeleton, as

∂

∂xi
(u(0)i − v̇(0)i )= 0,

∂

∂t
(u(0)i − v̇(0)i )=−v̈(0)i −

∂p(0)

∂xi
+ ∂2

∂x2
j
(u(0)i − v̇(0)i ). (6.94a,b)

The leading-order equation for the solid is ∂σ (−1)
ij /∂xj = 0.

At this point we can apply the procedure described in § 6.1.3, assuming that the
fluid momentum equation is driven by a stress term, S = (τx, 0, τz), which only
depends on macroscopic independent variables and time. This forcing is applied
at a generic position y = Y in Vf by the use of the delta function. The boundary
conditions for y→±∞ are shown in figure 23, together with a sketch of the RVE.
Three test functions, p†, u†

i and v
†
i , periodic along the horizontal directions, are

introduced, and adjoint problems are built by employing the inner product defined
in (4.12). However, since the unit cell includes portions filled with either fluid
or solid, the spatial domain of integration in the inner product is either Vf or Vs,
depending on whether we consider fluid-based or solid-based variables (cf. the
analysis in § 5). Integrating also in time we have
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0 =
∫ T

0

(
p†,

∂(u(0)i − v̇(0)i )

∂xi

)

+
(

u†
i ,−

∂(u(0)i − v̇(0)i )

∂t
− v̈(0)i −

∂p(0)

∂xi
+ ∂

2(u(0)i − v̇(0)i )

∂x2
j

+ Siδ(y−Y)

)

+
(
v†

i ,
∂

∂xj
{Cijkl[εkl(v

(1))+ Ekl(v
(0))]}

)
dt. (6.95)

The auxiliary system in the RVE is

∂u†(k)
i

∂xi
= 0, −∂u†(k)

i

∂t
=−∂p†(k)

∂xi
+ ∂

2u†(k)
i

∂x2
j
, (6.96a,b)

∂

∂xj
[Cijklεkl(v

†(m))] = δim. (6.97)

The superscript (k) in system (6.96) reflects the fact that two problems must be
solved in Vf , one for k= 1 and the second for k= 3. The superscript (m) in (6.97)
indicates that three problems must be solved in Vs, for m= 1, 2 and 3.

Integrating by parts the right-hand side of (6.95), imposing that

u†(k)
i = 0; Cijklεkl(v

†(m))nj = 0, on y= ywall, (6.98a,b)

∂u†(k)
1

∂y
= u†(k)

2 =
∂u†(k)

3

∂y
= 0, on y= y∞, (6.99)

and

v†(m) = 0, on y=−y∞, (6.100)

we obtain, using the surface average notation d·e defined in (6.15) and imposing
(6.36) at t= T ,

du(0)k e|t=T,y=Y − v̇(0)k |t=T =
∫ T

0
du†(k)

i e|y=YSi dt

+ V
Ω

[
(u†(k)

i , u(0)i − v̇(0)i )

∣∣∣∣
t=0

−
∫ T

0
(u†(k)

i , v̈
(0)
i ) dt

]
, (6.101)

together with

v(1)m = CijklEkl(v
(0))
∂v

†(m)
i

∂xj
. (6.102)

The two time integrals on the right-hand side of (6.101) are convolutions because
of the temporal behaviour of the auxiliary, microscopic problem in Vf . Equation
(6.102) furnishes the order-one solid displacement as a function of the gradient
of a microscopic tensorial coefficient of rank 2 (which we can solve for) and the
macroscopic solid strain at order zero. Knowledge of v(1) is necessary to address the
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solution of Cauchy’s equations at leading order, which we rewrite here for clarity

∂

∂xj
{Cijkl[εkl(v

(1))+ Ekl(v
(0))]} = 0. (6.103)

We can now move to macroscopic variables; the two instantaneous (at t = T) slip
velocity components become

Us := (U1)s = ε
{
v̇
(0)
1 +

∫ T

0
λxτx + λxzτz dt

}
+ 2εy∞

[
(u†(1)

i , u(0)i − v̇(0)i )|t=0 −
∫ T

0
(u†(1)

i , v̈
(0)
i ) dt

]
, (6.104)

and

Ws := (U3)s = ε
{
v̇
(0)
3 +

∫ T

0
λzxτx + λzτz dt

}
+ 2εy∞

[
(u†(3)

i , u(0)i − v̇(0)i )|t=0 −
∫ T

0
(u†(3)

i , v̈
(0)
i ) dt

]
, (6.105)

with the dynamic slip coefficients formally identical to those given in (6.40).
In the absence of transpiration at the wall, when horizontal gradients of the slip

velocity components can be neglected, the remaining kinematic boundary condition
for the direct problem is simply du(0)2 e = v̇(0)2 , which in macroscopic variables reads

V|Y=0 :=U2|Y=0 = εv̇(0)2 . (6.106)

Cell-averaged balance equations for the fluid/solid composite are still necessary to
close the problem for the unknowns du(0)i e and v

(0)
i , in a manner similar to the

procedure in §§ 5.1, 5.2 and 5.3 for the case of a poroelastic medium away from
boundaries with a free-fluid domain. We refer to Zampogna et al. (2019c) for the
derivation of macroscopic equilibrium laws for the mixture in the unit cell.

6.4.3. Superhydrophobic and lubricant-infused coatings
Another interesting problem which requires a close microscopic look is that of a

surface able to capture and maintain a layer of lubricant fluid, interposed between
the solid matrix and the working fluid. If the working fluid is a liquid, the most
efficient such lubricant is a gas or the vapour; in this case we speak of hydrophobic
or superhydrophobic materials. If the lubricant fluid is a liquid, we speak of SLIPS
(slippery liquid-infused porous surfaces), according to the acronym coined by
Joanna Aizenberg, or of LIS (lubricant-impregnated surfaces) as suggested by Kripa
K. Varanasi.

Much work has been conducted on the flow over hydrophobic and superhydropho-
bic surfaces and several reviews exist (Quéré 2008; Rothstein 2010). Such surfaces
achieve their water repelling properties by combining the wall micro-pattern with a
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FIGURE 24. Drag reduction in a channel with superhydrophobic walls for Reτ = 180.
The top right image illustrates the microscopic surface pattern, and the light-coloured
regions refer to the gas pockets. The solid line in the 1Cf /Cf0 versus s+ plot comes
from numerical results obtained using the Navier slip condition, while filled dots are
used to indicate direct simulation results found when modelling the walls with alternating
patches of no shear and no slip. Finally, the red dashed line corresponds to the analytical
approximation (6.65)–(6.66). Adapted from Luchini (2015).

low surface energy coating. The large majority of the numerical models dedicated
to studying the flow of a liquid over a superhydrophobic wall have considered the
gas plastron as flat and undeformable (i.e. the surface tension is assumed to be
very large), with the liquid able to freely slip over it (i.e. the dynamic viscosity
of the gas is negligible compared to that of the liquid). The first computation
of slip lengths under these assumptions, for the case of streamwise elongated
microgrooves, was conducted by Philip (1972). Since then many other surface
textures have been considered, including circular and square posts, cavities and
grid-like patterns. A result common to all the surface textures examined is that the
slip length is a decreasing function of the solid area fraction of the surface. This
is an immediate consequence of the no-shear condition imposed at the water/gas
interface, and means that larger gas pockets can produce larger drag reduction.
Significant numerical results for flat, shear-free interfaces have been reported by
Luchini (2015). For the case of grooves aligned along the mean flow, as sketched
in figure 24, Luchini modelled superhydrophobic walls both as a flat wall with
alternating patches of no shear and no slip, and by employing the Navier condition
(6.23) with the analytically derived slip lengths. In both cases the transpiration
velocity was set to zero. Figure 24 shows that the direct numerical simulation
results with the two approaches almost coincide up to s+ equal to 30, demonstrating
the accuracy which can be attained by the simple homogenized condition when
the periodicity of the wall pattern is not too large. In any case, a large pattern
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(a) (b) (c)

FIGURE 25. Artist’s impression of the fabrication process of SLIPS/LIS. When a
porous/textured layer (a) is impregnated by a low surface energy, chemically inert
lubricant (b), a slippery surface is created. When the SLIPS/LIS is mildly inclined (c), a
drop of water rolls easily down the surface (Smith et al. 2013). Image courtesy of Joanna
Aizenberg, Harvard University.

periodicity exposes a real superhydrophobic surface to deformation of the interface
and to depletion of the air layer, so that the results obtained for large s+ are
mostly of academic interest. Another significant result obtained by Luchini (2015)
is the accuracy of the analytical approximation embodied by equations (6.65)
and (6.66), reported in the figure as a dashed line. Such an agreement extends
beyond that found for riblets, cf. figure 21. The effect of a deforming air–water
interface has been addressed in the steady, Stokes limit by Alinovi & Bottaro (2018)
(see also references therein), the main conclusion being that 1λ increases when
the interface protrudes outside of the representative microcavity. The interaction
between turbulence and the gas pockets has been studied with direct simulations by
Seo, García-Mayoral & Mani (2015); these authors looked at posts and grooves at
the wall and treated the deforming interface by solving the Young–Laplace equation,
after the pressure distribution had been determined. Later, Seo, García-Mayoral &
Mani (2018) extended their numerical study and proposed a threshold criterion for
the failure of superhydrophobic surfaces.

The fragility of the gas plastron is a primary concern; it can collapse because
of hydrostatic pressure (when the superhydrophobic surface is immersed in water)
or can be carried away by the action of shear forces (in this sense, longitudinal
grooves are particularly prone to destabilization). Some techniques have been
proposed to maintain the gas layer, including entraining outside air or using
electrolysis to replenish the plastron, but none has made it into actual underwater
applications yet. Probably, the most effective alternative consists in using some
liquid lubricant instead of air or vapour, employing an oil with some affinity to the
porous, or textured, solid. It is the case of SLIPS/LIS (cf. the images in figure 25).
Fabricating textures for creating SLIPS/LIS requires the same steps as fabricating
superhydrophobic textures: the solid must be characterized by a low surface energy
and, for the lubricant impregnated surface to be stable, also the surface energy of
the lubricant liquid needs to be low.
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Multiple applications can be envisioned for SLIPS/LIS. These include promoting
dropwise condensation, reducing ice adhesion, enhancing optical transmission,
anti-fouling, friction reduction, etc. (Wong et al. 2011; Solomon et al. 2017). As
far as drag reduction is concerned, the drainage of the infused fluid by the shearing
action of the working fluid is a potential drawback. Liu et al. (2016) have shown
that, for a given external fluid, a lower lubricant viscosity allows more lubricant
to be retained. In the case of recirculating motion (such as in a Taylor–Couette
cell, for example), with azimuthally periodic grooves, the problem of shear-induced
drainage is absent; for this configuration Van Buren & Smits (2017) carried out
torque measurements to find drag reductions of up to 35 % in the turbulent regime.
The level of drag reduction for varying parameters was roughly comparable to
that obtained in the superhydrophobic case, and appeared to peak for a pattern
wavelength s+ approximately equal to 70. Above such a value, drag was seen to
increase again and this appeared to be related to the partial water wetting of the
textured surface.

The reason why SLIPS/LIS reduce skin friction drag, by a similar mechanism
and by a comparable amount than superhydrophobic surfaces, is surprising when
one considers that the viscosity ratio between water and a lubricating liquid is
O(1), while it is approximately 50 when the lubricant is air. This issue has been
addressed recently by Arenas et al. (2019) through direct numerical simulations
for a few texture types, in the approximation of flat, undeformable interfaces. The
water/lubricant interface was shown to damp wall-normal velocity fluctuations,
limiting the flux of momentum inside the micro-cavities and consequently reducing
the Reynolds stress and the dissipation within. In hindsight, the role of the vertical
velocity at the crests of the roughness, and the fact that its absence has the effect
of reducing drag, is also evident from figure 17, upon comparing the two lower
curves (dashed line versus solid line).

7. Crossing the boundary between media

7.1. The dividing surface between a free-fluid region and a porous bed

We are now in the position to consider the situation sketched in figure 9, with
an interface which separates a regular, spatially periodic porous medium from a
free-fluid region. As described in § 4 the equations in the porous medium (Ŷ < 0)
are scaled with l, u and µuL/l2 for, respectively, length, velocity and pressure. We
assume that the RVE traverses the sharp interface; it is similar to that shown in
figure 23, with the difference that now the lower, solid material is porous. In the
region of the RVE above Ŷ = 0 the scales used are l, U and µU/l, and coincide
with those employed for the case of the rough surface in § 6. A matching condition
on the interface stress yields u= εU (cf. also figure 9).
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The leading-order dimensionless equations, upon assuming that R=U l/ν is at the
most of order ε, read

∂u⊕i
∂xi
= 0, (7.1)

0=−∂p⊕

∂xi
+ ∂

2u⊕i
∂x2

j
, (7.2)

in the free-fluid domain (cf. (6.6) and (6.7)), and

∂u	i
∂xi
= 0, (7.3)

0=−∂p	

∂xi
+ ∂

2u	i
∂x2

j
− ∂p(0)

∂Xi
, (7.4)

in the porous region (cf. (4.6) and (4.9)). Superscripts ⊕ and 	 are employed to
denote the domains above and below the dividing surface. The interface layer has a
thickness of order ε and will be assumed, in the following, to be infinitely thin so
that a composite description can be employed, by defining the new variables (ui, p)
equal, respectively, to (u⊕i , p⊕) and (u	i , p	) in the y> 0 and y< 0 domain. We can
thus write

∂ui

∂xi
= 0, (7.5)

0=− ∂p
∂xi
+ ∂

2ui

∂x2
j
−H(−y)

∂p(0)

∂Xi
, (7.6)

with periodic boundary conditions on opposing planes at constant x and z. We could
have matched the two domains without using the Heaviside function H(−y), for
example by employing a hyperbolic tangent function to spread the interface over
a distance of order ε, but this is as arbitrary as the use of any other smoothing
filter. With this limitation in mind, we thus decide to treat the whole domain as
a particular inhomogeneous porous medium with a step function distribution in
porosity and permeability, in a manner similar to Saffman (1971). Clearly, care
must be used in handling the composite dependent variables, in particular when
returning to dimensional quantities, because of the different scalings employed in
the ⊕ and 	 regions.

The analysis proceeds as in § 4, with the multiplication of the two equations (7.5)
and (7.6) by two test functions, p† and u†

i , and integration within the fluid volume
of the unit cell, to obtain

−
∫
Vf

p
∂u†

i

∂xi
+ ui

(
−∂p†

∂xi
+ ∂

2u†
i

∂x2
j

)
dV =−

∫
Vf

(
u†

i H(−y)
∂p(0)

∂Xi

)
dV + b.t., (7.7)
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with the boundary terms (b.t.) which read

b.t.=
∫
Ωf

−pv†

∣∣∣∣∞
−∞
+ vp†

∣∣∣∣∞
−∞
+ u†

i
∂ui

∂y

∣∣∣∣∞
−∞
− ui

∂u†
i

∂y

∣∣∣∣∞
−∞

dΩ, (7.8)

upon assuming x- and z-periodicity of the test functions. We impose that adjoint
variables satisfy a homogeneous Stokes-like system, together with either one of the
two sets of boundary conditions along y which follow:

∂u†(k)
i

∂y
= δki, v† := u†(k)

2 = 0 at y→+∞, (7.9a,b)

u†(k)
i = 0 at y→−∞, (7.10)

with k and i which take the values of 1 and 3. The two auxiliary problems above
for k = 1 and 3 are symmetric for the components of the adjoint velocity along
the interface-tangent directions, except when the interface grains of the porous
medium have anisotropic properties in (x, z) planes near the dividing surface, a case
which we exclude at present. Only the case k= 1 will be pursued in the following,
including some representative results; the second one trivially follows. To simplify
notations, from now on the superscript (k) (with k = 1) will be omitted. Equations
(7.7)–(7.10) lead to the dimensionless equation∫

Ωf

u
∣∣∣∣
∞

dΩ =−∂p(0)

∂Xi

∫
Vf Por

u†
i dV +

∫
Ωf

vp†

∣∣∣∣+∞
−∞
+ u† ∂u

∂y

∣∣∣∣
+∞
+w† ∂w

∂y

∣∣∣∣
+∞

dΩ,

(7.11)
with Vf Por the fluid volume in the y < 0 region. This same equation in compact
notations (cf. (6.15)) reads

due|y→+∞ =−Kitf
i
∂p(0)

∂Xi
+ u†

∞
∂due
∂y

∣∣∣∣
y→+∞

+w†
∞
∂dwe
∂y

∣∣∣∣
y→+∞

+ dvp†e
∣∣∣∣y→+∞

y→−∞
, (7.12)

provided the adjoint variables u† and w† become uniform at y→+∞ (and they are
then denoted with a ∞ subscript); the dimensionless interface permeability vector
Kitf

i is defined by Kitf
i = (1/Ω)

∫
Vf Por

u†
i dV .

Turning to dimensional flow variables (using the scales appropriate to the interface
region), assuming a two-dimensional flow driven by a macroscopic pressure gradient
along X̂, and carrying out a Taylor expansion of the left-hand side of (7.11) centred
around Ŷ = 0 yields the final slip boundary condition sought, which in dimensional
form reads

Ûs = ελxL
dÛ

dŶ

∣∣∣∣
Ŷ→0+

− ε2Kitf
x L2

µ

dp̂(0)

dX̂
+ Udvp†e

∣∣∣∣y→∞
y→−∞

. (7.13)

The first term on the right-hand side of (7.13) is Navier’s slip, with λx=u†
∞− y∞ the

dimensionless slip length, the outer edges of the microscopic computational domain
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FIGURE 26. Surface-averaged values of the adjoint variables plotted against the interface-
normal direction; the porous layer in y< 0 is formed by staggered cylinders of porosity
θ = 0.8586. The interface permeability corresponds to the area of the grey shaded region.

being positioned at y=±y∞. Aside from the last term of (7.13), which in the simple
configuration examined here vanishes, the result in (7.13) coincides with that by
Saffman (1971) in (3.3), once we identify K1/2/αBJ with λx and KB with Kitf

x . The
strength of the present approach lies in the possibility to easily solve a microscopic
Stokes problem in a unit cell to yield the coefficients of (7.13).

For an isotropic porous medium formed by staggered cylinders, a value of y∞
equal to a few units is already sufficient to produce converged results, provided
adequate numerical resolution is adopted, as illustrated in figure 26. Furthermore,
p† goes rapidly to zero away from the dividing surface, so that the term dvp†e|∞−∞
effectively vanishes. The numerical integration of the adjoint Stokes system,
together with boundary conditions (7.9) and (7.10), yields λx = 6.33 × 10−2 and
Kitf

x = 6.30 × 10−3. As a comparison (cf. figure 11), we observe that K11 is over
twice as large than Kitf

x , and precisely K11 = 1.466 × 10−2, which means that the
empirical constant αBJ is equal to 0.5228 in this case. This should be compared to
the value

√
θ ' 0.9266 which the constant assumes from the analysis of Le Bars

& Worster (2006). For the type of porous structure considered, the behaviour of
Kitf

x and λx as a function of the porosity θ is plotted in figure 27. Both curves are
fairly flat in the range 0.2< θ < 0.8 and sharply increase as θ approaches one. The
trend of Kitf

x at low values of the porosity differs from that of K11 (cf. figure 11);
this is because a tight packing of the grains affects the flow throughout the layer
more than it does near the dividing line. The ratio between the two permeabilities,
B=Kitf

x /K11, decreases with θ (except for very sparse packings) and spans over four
decades (it goes from 4800 to 0.4). The constant B does not, in general, exhibit the
order-one magnitude indicated by Saffman (1971); this suggests that the pressure
gradient term in equation (7.13), although formally smaller than the Navier slip
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FIGURE 27. Streamwise components of the interface permeability vector and of the slip
length. The interface permeability should be compared to the permeability component K11
in figure 11, which is needed to describe the flow through the porous medium away from
boundaries.

term, might become significant when the porosity θ is small. The present approach
can be used unambiguously to compute the coefficients of condition (3.3) at the
Stokes–Darcy interface.

7.1.1. Testing the slip condition
To verify the appropriateness of (7.13) we consider the simple case of the two-

dimensional incompressible Stokes flow in a plane channel bounded from above (in
Y = 2) by an impermeable wall and from below (Y = 0) by the isotropic porous
medium characterized in figure 26. The Y = 0 axis is tangent to the uppermost
inclusion (see sketch of the porous medium in figure 28a), and the medium extends
up to Y=−0.5. The small parameter ε which defines the size of the pores is chosen
equal to 0.1 and a direct simulation which captures all details of the flow through
the pores for Y < 0 is conducted as reference. The simulation considers a minimal
domain in X, of length equal to ε on account of the fully developed nature of the
motion. The scales used to normalize the continuity and momentum equations are
L for length, the bulk speed Uavg for velocity and ρU2

avg for pressure, so that the
Reynolds number is defined by Re= ρUavgL/µ. The motion is driven by a constant
pressure gradient dp(0)/dX chosen so that Re = 100. With the given normalization,
the slip velocity takes the dimensionless form

Us = ελx
dU
dY

∣∣∣∣
Y→0+

− ε2Kitf
x Re

dp(0)

dX
, (7.14)
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FIGURE 28. Continuous lines: streamwise velocity distribution in a channel bounded
from below by a porous domain, accounting for the motion through the pores when
Y < 0. (a,c) Show close-ups around the Darcy–Stokes dividing line. Empty circles in all
frames represent either the exact solution of (7.15) or the solution of Darcy equation. The
dimensionless horizontal filtration velocity is equal to 4.40× 10−4.

so that the laminar flow solution in the fluid domain reads

U(Y)=Re
{

dp(0)

dX

[
Y2

2
− ε2Kitf

x

]
+ A[Y + ελx]

}
, (7.15)

with the constant A given by

A=−dp(0)

dX

[
2− ε2Kitf

x

2+ ελx

]
. (7.16)

The solution U arising from the direct simulation is displayed in figure 28 as a
function of Y , together with the distribution (7.15). The agreement with the exact
solution is excellent in the free-fluid region (0 < Y < 2) and also the slip velocity
evaluated at Y = 0 agrees to within 10−5 between the two cases, in particular
Us = 1.912 × 10−2 in the simulation and Us = 1.913 × 10−2 from equation (7.14).
As expected the contribution to the slip velocity from the Navier term is dominant,
ελxdU/dY|Y=0 = 1.893 × 10−2, and this term alone is sufficient to produce a
very satisfactory result, as argued by Saffman (1971). (The error committed in
neglecting the term proportional to the mean pressure gradient is equal to 1 % in
the simple case presented here to illustrate the technique, but it is expected to
change upon varying the ratio between the pore size and the macroscopic length
scale, the porosity and the permeability of the coating and, most of all, the value
of the macroscopic Reynolds number.) Darcy’s solution within the porous domain
(figure 28a) matches well the exact numerical solution, which oscillates in Y because
of the alternation of pores and inclusions, except in two layers of thickness O(ε),
one right below the dividing line (at Y = 0) and the other right above the lower
boundary of the porous medium (at Y =−0.5).
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Whereas the theory just outlined provides satisfactory results, this is also due to
the simplicity of the test case considered. More strenuous tests of the theory should
include rough, permeable interfaces, possibly including fluid transpiration across,
in the manner described in § 6.2, three-dimensional pressure gradients, anisotropic
porous media and inertial effects.

7.1.2. The pressure jump condition
In non-idealized situations a pressure condition at the dividing surface is needed

whenever Darcy’s equation must be solved in order to describe the flow in the
porous medium. An interesting effective condition has been recently proposed by
Lācis et al. (2019), briefly summarized below.

The first step consists in writing a dimensionless, microscopic problem in the
unit cell spanning across the interface; such a problem is the same as (7.5)–(7.6),
with the addition of a shear term on the right-hand side of the momentum equation
equal to δ(y)Si (cf. § 6.1.2). Beyond periodicity along x and z, the other boundary
conditions specify zero shear stress at y=+y∞ and (ui,p)|y=−y∞= (ui,p)|y=−y∞+1 (the
latter on account of the periodicity of the fields on the boundaries of a unit cell, deep
within the porous medium). The solution is linearly dependent on the macroscopic
pressure gradient and on the volume forcing S, i.e.

ui =−ãij
∂p(0)

∂Xj
+ b̃ijSj, (7.17)

p=−c̃j
∂p(0)

∂Xj
+ d̃jSj, (7.18)

with (7.17) leading directly to (7.14). Two microscopic systems can be set up and
read

pore pressure related problem

∂ ãij

∂xi
= 0, −∂ c̃j

∂xi
+ ∂

2ãij

∂x2
k
+H(−y)δij = 0, (7.19a,b)

outer shear related problem

∂ b̃ij

∂xi
= 0, −∂ d̃j

∂xi
+ ∂

2b̃ij

∂x2
k
+ δ(y)δij = 0, (7.20a,b)

with boundary conditions easily available from those of the original equations for
(ui, p). Once solutions of the auxiliary problems above are found, and given that
a macroscopic pressure condition is eventually needed to couple the Stokes system
above the interface to the Darcy system below, the next step consists in the intrinsic
volume averaging of the pressure in the unit cells right above and right below the
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interface, i.e.

P+ := 〈p〉f+ =
∫ 1

0
dpe dy=−c+j

∂p(0)

∂Xj
+ d+j Sj, (7.21)

P− := 〈p〉f− =
1
Vf

∫ 1

0

∫ 0

−1

∫ 1

0
p dx dy dz=−c−j

∂p(0)

∂Xj
+ d−j Sj. (7.22)

The microscopic pressure p in (7.22) is set to zero in the points where solid
inclusions are present, in the unit cell right below (and tangent to) the Stokes–Darcy
dividing plane; the coefficients of (7.21)–(7.22) are

c+j =
∫ 1

0
dc̃je dy, d+j =

∫ 1

0
dd̃je dy,

c−j =
1
Vf

∫ 1

0

∫ 0

−1

∫ 1

0
c̃j dx dy dz, d−j =

1
Vf

∫ 1

0

∫ 0

−1

∫ 1

0
d̃j dx dy dz.

 (7.23)

Eventually, the macroscopic pressure jump is 1P = P+ − P−, a linear function
of the mean velocity within the porous medium (through ∂p(0)/∂Xj) and of the
Navier slip speed (through Sj). The macroscopic pressure is thus discontinuous at
the interface, as already noted by other researchers in the past (see, e.g. Carraro
et al. (2018) and references therein). Whereas it might seem contrived to enforce
a macroscopic pressure jump across a surface through which the microscopic
pressure p is continuous, sample calculations by Lācis et al. (2019) demonstrate
that imposing such a discontinuity gives solutions in excellent agreement with
feature-resolving direct numerical simulation results, whereas the more common
choice (i.e. Ene & Sanchez-Palencia 1975; Lācis & Bagheri 2017) of pressure
continuity at the Darcy–Stokes dividing surface yields rather large differences.

7.2. The conditions across a poroelastic dividing surface

By direct extension of the cases examined so far, it can be shown that the slip
conditions at the dividing surface between a free-fluid region and a poroelastic
matrix take the following form, when the flow is steady, nonlinear interactions are
negligible and the various effects can simply be added up

Us = εv̇(0)1 + ε(λxτx + λxzτz)− ε2Re
(
Kitf

x
∂p(0)

∂X
+Kitf

xz
∂p(0)

∂Z

)
, (7.24)

Ws = εv̇(0)3 + ε(λzxτx + λzτz)− ε2 Re
(
Kitf

zx
∂p(0)

∂X
+Kitf

z
∂p(0)

∂Z

)
. (7.25)

The interface-normal velocity reads

V|Y=0 = εv̇(0)2 − εm̃ik
∂(Uk)s

∂Xi
− ε2ReK̃2i

∂p(0)

∂Xi
. (7.26)
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In the expressions above the same macroscopic scales have been employed as in
§ 7.1.1, and in particular Re = UavgL/ν. All of the coefficients in these equations
are available via the solution of appropriate auxiliary problems defined in a
representative volume element.

To solve for the displacement field it should also be imposed that the total
effective stresses match at the dividing surface. A final condition on the pressure
jump at the interface should be enforced, related to the manner in which the
free-fluid normal stress is partitioned between the elastic skeleton and the pore fluid
(Lācis et al. 2019).

7.3. Turbulence above porous and poroelastic layers

Turbulent flows over impermeable walls differ from those over permeable, porous
and/or elastic surfaces such as those which might be encountered when considering
vegetating canopies, gravel beds, the fur of animals, fabrics or foamed metals. Most
theoretical studies of turbulence over such non-conventional surfaces have focussed
on the motion of a fluid in a channel, in order to capture the essential mechanisms
behind the interaction between fluid flow and material properties.

The simplest case is that of channel walls formed by isotropic porous materials;
in such a case both the porosity and the permeability are scalar quantities. The
picture which emerges from experiments (Suga, Nakagawa & Kaneda 2017) and
numerical simulations (Breugem et al. 2006; Kuwata & Suga 2016) indicates that
with the increase of the Reynolds number it becomes easier for the turbulent eddies
to penetrate within the porous layer, i.e. turbulence is not completely damped near
the dividing surface and momentum exchange is enhanced, resulting in stronger
shear at the interface. At low values of the permeability the near-wall coherent
structures resemble and scale like those found near solid, impermeable walls;
as the porous medium becomes more permeable, turbulent transport across the
interface inhibits the formation of elongated streaks, and favours the creation of a
mean velocity profile susceptible to a destabilization by a Kelvin–Helmholtz-type
instability, with a consequent increase of the spanwise correlation length of the
near-interface coherent structures.

The next case of interest is that of a transversely isotropic porous medium,
characterized by a plane of isotropy and permeability properties symmetric about
the axis normal to this plane. This is the case addressed by Kuwata & Suga (2017)
by the use of a lattice Boltzmann numerical approach coupled to Darcy’s equation
(without correction for advection) in the porous layer. The geometry studied was a
plane channel, with one wall smooth and the second covered by a porous coating.
The diagonal permeability tensor of the porous coating was configured so that the
component along either the X or the Z axis (or that of both axes) was turned off,
resulting in situations typically characterized by a wall-normal-dominant component.
Such configurations do not permit drag reduction as will be discussed later. It was
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indicated by Kuwata and Suga that turbulence intensity was not altered by K22,
whereas K11 (and to a less extent K33) could considerably enhance it (we recall
that the index 1 refers to the X-axis, and the index 2 to the wall-normal Y-axis).
The same geometrical set-up was considered by Rosti, Brandt & Pinelli (2018)
who addressed the problem with a two-domain approach, using volume averaging
(Whitaker 1996) in the porous medium. These authors, following an earlier lead by
Abderrahaman-Elena & García-Mayoral (2017), focussed on varying the directional
properties of the apparent permeability tensor to search for possible drag-reducing
effects. Drag increase was observed whenever Keff

22 exceeded the value of Keff
11 =Keff

33 ,
as in the case of a carpet of wall-normal rigid fibres, for example. With the further
increase of the Y-permeability component, the others being fixed, drag was further
increased. Under these conditions, large V ′ fluctuations were observed, resulting
in the fragmentation of the streamwise-elongated streaks and the creation of new
spanwise-correlated structures. Conversely, when Keff

22 was smaller than Keff
11 = Keff

33 ,
such as for the case of a grid of rods aligned along X and Z, the wall-normal
velocity at the dividing surface was limited and slip was enhanced; the low- and
high-speed streaks were reinforced and could penetrate deep within the porous
medium, resulting in drag reduction of up to 18 % at Reτ = 164 for the largest
value tested of the permeability ratio (Keff

11 /K
eff
22 ≈ 65 000).

These results need to be corroborated by further studies, since they were
obtained neglecting the macroscopic inertia term in the volume-averaged equations
for the porous medium and in the jump condition at the dividing surface. The
latter approximation is possibly the one which should undergo a more thorough
scrutiny, since the effect searched for is linked to phenomena occurring right
across the interface. Nonetheless, the conclusions reached by Rosti et al. (2018)
are very interesting because they suggest that tuning the directional properties
of the permeability might be a very efficient way to manipulate turbulent flows
near walls to achieve a desired result, i.e. drag reduction or mixing enhancement.
Very recent results along the same lines, for transversely isotropic porous media
bounding a channel on the two sides, have been reported by Gómez-de-Segura &
García-Mayoral (2019). They examined only the case of streamwise-preferential
permeability (K11 >K22=K33), coupling the solution of Brinkman’s equation in the
porous coatings (neglecting the influence of the mean pressure gradient within) to a
direct simulation of turbulence in the free-fluid region. Even though their treatment
of the interface can be debated and advective effects within the coatings were
neglected, the results are such as to warrant further investigations. Two different
flow regimes were highlighted: a linear drag-reduction regime for reasonably small
permeability coefficients, and a degradation regime of increasing drag for larger
permeabilities, associated with the onset of Kelvin–Helmholtz rollers. By quantifying
drag reduction by the roughness function 1U+, the linear drag-reduction regime
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corresponds to

1U+ 'µ0

(√
K+11 −

√
K+33

)
, (7.27)

in analogy to riblets (cf. (6.66)), resulting from the relative Y-displacement of the
quasi-streamwise turbulent vortices with respect to the mean flow. As already stated,
a positive value of 1U+ means that the logarithmic region in the (U+, Y+) plot
is shifted upwards, i.e. drag is reduced (cf. (6.65)). The linear behaviour of 1U+

persists up to
√

K+11−
√

K+33 equal to a few units, and it lasts longer for larger ratios
K11/K22; the largest skin friction reduction, 1Cf/Cf0 , is equal to approximately
25 % when Reτ = 180, and is achieved for K11/K22 = 130 (values bigger than
130 were not tested). For

√
K+11 −

√
K+33 above some threshold, skin friction

starts increasing and eventually it exceeds the smooth surface case because of the
appearance of spanwise coherent structures associated with a Kelvin–Helmholtz
instability of the flow (cf. figure 29). The onset of the instability is governed
mainly by K22, i.e. by the transpiration of fluid through the fluid–porous interface.
An interesting conclusion by Gómez-de-Segura & García-Mayoral (2019) is that the
maximum drag reduction is 1U+|max ' 0.3[√(K11/K22) − 1], and it occurs when
K+22' 0.14. This is an important quantitative estimate of what can be achieved with
a given transversely isotropic coating and should guide in configuring low-drag
surfaces. Beyond K+22' 0.14 skin friction increases and, with the further increase of
transpiration through the interface (when K+22 > 0.36), drag exceeds the smooth-wall
case. Gómez-de-Segura & García-Mayoral (2019) argued that the main role of
K11 is to introduce a mean streamwise slip at the interface, with a minor effect
on the overlying turbulent flow. Conversely, as K22 and K33 increase, they modify
profoundly the turbulence dynamics in the near-wall region. This conclusion is
only apparently in contradiction with that by Kuwata & Suga (2017), and must be
ascribed to the fact that the permeability tensor in the cases treated by Kuwata &
Suga (2017) is not dominated by its streamwise component.

On the experimental side, the particle-image-velocimetry measurements by Suga
et al. (2018) provide a significant, albeit partial, confirmation of the numerical
results by Rosti et al. (2018) and Gómez-de-Segura & García-Mayoral (2019).
Suga et al. (2018) created a porous carpet (θ = 0.7) by overlapping copolymer
nets with rounded-square-shaped pores in different arrangements, to yield K22 up
to 173 times larger than the in-plane permeability components. The conclusion
of Suga et al. (2018) was that skin friction increased significantly in all cases
examined when compared to the impermeable case, and more so for larger values
of the Reynolds number. With the increase of Re, large-scale spanwise patterns
emerged, because of the creation of spanwise rolls related to a Kelvin–Helmholtz
instability. It was also reported that K11 was the most sensitive parameter in setting
the turbulence intensity, determining the contribution of ejections and sweeps to the
Reynolds shear stress.
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FIGURE 29. Instantaneous realizations of U+ at a plane Y+ = 3 away from the porous
interface for the case K11/K22 = 130 (aside for the top image which corresponds to
a smooth wall), Reτ = 180. From the second frame on the top to the bottom frame,
we have three drag-reducing and one drag-increasing configurations, characterized by
the parameters displayed on the right. The bottom image shows the appearance of a
Kelvin–Helmholtz-like instability which destroys the longitudinal streaks. Image courtesy
of Gómez-de-Segura & García-Mayoral (2019).

In order of increasing difficulty, as far as the properties of porous media are
concerned, one encounters first orthotropy and then full anisotropy. To the best of
this author’s knowledge, this area of investigation is still untouched.

When the porous skeleton is deformable the problem becomes even more
complicated. Many of the rigid coatings examined so far are transversely isotropic,
with properties symmetric about the wall-normal axis, and hence drag increasing
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according to the arguments presented so far. Flexibility adds a new time scale to
the problem, related to the natural frequency of the filaments, fnat, which increases
with the square root of E/m, the ratio of the Young modulus of the elastic solid
to its mass (including the added mass). Experiments have been carried out by
Brücker (2011) in an oil channel, employing a carpet of elastomeric micropillars
of length equal to 30 (in viscous wall units) arranged in a regular grid. Turbulent
flows have a reasonably well-defined characteristic frequency, fturb, related to cyclic
events of near-wall coherent structures. Brücker considered the case in which
fturb was approximately ten times larger than the characteristic frequency of the
micro-pillars; he reported a stabilization of the streamwise streaks and a reduction
of their meandering, arguing that this might lead to drag reduction. The small pillars
tested by Brücker (2011) were rather soft and sparse and this played a role on their
response to the flow.

The numerical counterpart of Brücker’s experiments has been recently presented
by Sundin & Bagheri (2019). These authors considered a bed of elastic fibres
anchored at one rigid wall and arranged in a regular square pattern, exploring
systematically configurations with different ratios between fnat and fturb. Individual
fibres were modelled with the Euler–Bernoulli equation, discretized in a rod–hinge
fashion, while the fluid was treated by a lattice Boltzmann method. A turbulent
channel flow was considered at a friction Reynolds number close to 180. When
the filaments are heavy and soft, i.e. fnat � fturb, the turbulence–surface interaction
is essentially one-way coupled, the coating reacts slowly to the fluid and behaves
like a rough, rigid surface. This case is similar to that studied by Brücker (2011).
In the opposite limit of light and stiff filaments ( fnat � fturb), the filamentous
bed quickly adapts to the forcing by the fluid and reacts to it, increasing the
isotropy of the turbulent flow, destroying the streaks and increasing drag significantly.
Examples of near-wall flow structures in these two cases are given in figure 30.
The understanding provided by these simulations is important when the objective is
to tune the fluid–surface interactions to make the flow behave as desired, modifying
the mass of the filaments or their elasticity. On the other hand, not all configurations
can be treated by the pointwise approach used by Sundin & Bagheri (2019). For
example, for very dense coatings additional time scales are present and play a
role; in such cases the microscopic description of the fluid through the deforming
filaments becomes very difficult to carry out numerically. Further insight can be
gained by either effective continuum/homogenization approaches or laboratory
experiments. More work on this topic is highly desirable.

8. Closure

Events in our physical world span a wide range of temporal and spatial
scales. Since we cannot describe details at all levels, we must concentrate on
the characteristic time and space scales of immediate interest and treat in some
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(a) (b)

FIGURE 30. Instantaneous isosurfaces of streamwise velocity fluctuations (U′ = ±3,
normalized in viscous units) for slowly reacting (a) and rapidly reacting (b) filamentous
coatings. The mean flow is into the page. Image courtesy of Sundin & Bagheri (2019).

averaged way whatever occurs at different scales and interacts with the phenomenon
we are focussing upon. One way to do this is multiscale homogenization: in this
Perspective article we have covered only the simplest version of the theory, invoking
the presence of only two well-separated length scales. We have further simplified
matters by assuming spatial periodicity of the microstructure. Despite this rather
elementary point of view, consensus has not yet been reached on the most suitable
treatment of phenomena as simple and frequent as the motion of fluid in the vicinity
of rough and/or porous terrain. These topics, only apparently trivial, are of crucial
importance for the scientist who wishes to understand some of the mechanisms
through which nature operates, with the goal of mimicking them to design and
optimize engineering devices like flow sensors and actuators.

The upscaling procedure presented is based on asymptotic expansions and on
the use of the Lagrange–Green identity, to set up systems of equations at the
microscopic level which provide closure relations, the final goal being to obtain
tensorial quantities such as, e.g. permeability or slip to be later used in macroscopic
simulations. The adjoint procedure described permits us to recover known results if
microscale inertia can be discarded; should this not be the case, direct and adjoint
equations on microscopic, representative volume elements are coupled and the
consequence might be the need to iterate back and forth between direct and dual
systems. This difficulty occurs, for example, in the treatment of turbulent flows
over irregular walls, in the transitionally rough or fully rough regimes. Then, an
Oseen-type linearization of the microscale equations can help in approximating the
problem to render it more easily tractable.

The ultimate interest here lies in the interaction between turbulence and a
poroelastic layer, as it occurs when wind flows over vegetated or urban areas,
or in the air flow across the feathers of birds, or yet that over and through the hairy
wings of insects. When the working fluid is water, the presence of a lubricant liquid
within interfacial pores represents another challenging problem, with far-reaching
consequences in applications. To write the homogenized conditions which apply
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in the cases just cited, and in many more, we have proceeded in successive steps.
The analysis started from the case of the flow in porous and poroelastic media,
away from boundaries. Then, we have considered the flow above solid surfaces
with microscopic protrusions, with the wall roughness either rigid or linearly elastic.
The subsequent step has been to analyse the conditions at the interface between a
free-fluid and a porous medium. The final result, embodied by (7.24)–(7.26), is the
expression of the conditions at the dividing surface between a free-fluid region and
a fluid-saturated poroelastic medium.

The adjoint technique described here represents a different approach to classical
multiple scale homogenization, which permits us to easily reconcile in a single
theoretical framework results obtained previously by different means. We should
now reap the benefits of this versatile approach by addressing more thoroughly
some of the problems that herein we have only been able to touch upon.
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