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Abstract

Regular variation provides a convenient theoretical framework for studying large events.
In the multivariate setting, the spectral measure characterizes the dependence structure of
the extremes. This measure gathers information on the localization of extreme events and
often has sparse support since severe events do not simultaneously occur in all directions.
However, it is defined through weak convergence, which does not provide a natural way
to capture this sparsity structure. In this paper, we introduce the notion of sparse regular
variation, which makes it possible to better learn the dependence structure of extreme
events. This concept is based on the Euclidean projection onto the simplex, for which
efficient algorithms are known. We prove that under mild assumptions sparse regular
variation and regular variation are equivalent notions, and we establish several results
for sparsely regularly varying random vectors.
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1. Introduction

Estimating the dependence structure of extreme events has proven to be a major issue in
many applications. The standard framework in multivariate extreme value theory (EVT) is
based on the concept of regularly varying random vectors. Regular variation was first defined
in terms of vague convergence on the compactified space [−∞,∞]d, and several characteriza-
tions have subsequently been established; see e.g. [27], [1], [28], or [15]. Alternatively, it can
also be defined via the convergence of the polar coordinates of a random vector (see Proposition
5.17 and Corollary 5.18 in [27] or Theorem 6.1 in [28]). Following this approach, a random
vector X ∈Rd+ is said to be regularly varying with tail index α > 0 and spectral measure S on
the positive orthant Sd−1+ of the unit sphere if

P (|X|> tx,X/|X| ∈ B | |X|> t)→ x−αS(B) , t→∞ , (1.1)

for all x> 0 and for all continuity sets B of S. This means that the limit of the radial component
|X|/t follows a Pareto distribution with parameter α > 0, while the angular component X/|X|
has limit measure S. Moreover, both components of the limit are independent. The measure S,
called the spectral measure, summarizes the tail-dependence of the regularly varying random
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1116 N. MEYER AND O. WINTENBERGER

vector X. It puts mass in a direction of Sd−1+ if and only if extreme events appear in this
direction. Note that the choice of the norm in (1.1) is arbitrary. In this paper, |·| will always
denote the �1-norm, for reasons explained later.

Based on the convergence (1.1), several nonparametric estimation techniques have been
proposed to estimate S. These approaches tackle nonstandard regular variation for which α= 1
and all marginals are tail-equivalent (possibly after a standardization). Some useful represen-
tations of the spectral measure have been introduced in the bivariate case [11, 12, 13, 14] and
in moderate dimensions [7, 31]. Inference on the spectral measure has also been studied in
a Bayesian framework, for instance by [19]. In higher dimensions, mixtures of Dirichlet dis-
tributions are often used to model the spectral densities [3, 30]. Some alternative approaches
based on grid estimators [24] and principal component analysis [9, 29] have also recently been
proposed.

More recently, the study of the spectral measure’s support has become an active area of
research. In high dimensions, it is likely that this measure only places mass on low-dimensional
subspaces. The measure is then said to be sparse. Sparsity arises all the more for standard reg-
ular variation. There, it is possible that the marginals of X are not tail-equivalent and therefore
that the support of the spectral measure is included in Sr−1+ for r� d. This is the approach
we use in this article. Furthermore, identifying low-dimensional subspaces on which the spec-
tral measure puts mass allows one to capture clusters of directions which are likely to be
extreme together [4, 21]. However, for such subspaces the convergence in (1.1) often fails for
topological reasons, which makes the identification of these subsets challenging.

Several algorithms have recently been proposed to identify the extremal directions of X.
[18] considered ε-thickened rectangles to estimate the directions on which the spectral mea-
sure concentrates. This estimation is based on a tolerance parameter ε > 0 and brings out a
sparse representation of the dependence structure. The authors provided an algorithm called
DAMEX (which stands for ‘detecting anomalies among multivariate extremes’), of complexity
O(dn log n), where n corresponds to the number of data points. Subsequently, [5] proposed an
incremental-type algorithm (CLEF, for ‘clustering extreme features’) to group together compo-
nents which may be large. This algorithm is based on the DAMEX algorithm and also requires
a hyperparameter κmin. Several variants of the CLEF algorithm were then proposed by [6].
These approaches differ in the stopping criteria, which are based on asymptotic results on the
coefficient of tail-dependence. A complexity of O(dn log n) has also been reached by [34], who
base their method on hidden regular variation.

Since the self-normalized vector X/|X| fails to capture the support of a sparse spectral
measure S, we replace it by another angular component based on the Euclidean projection
onto the simplex Sd−1+ = {x ∈Rd+ : x1 + . . .+ xd = 1}. This projection has been widely studied
in learning theory (see e.g. [10], [25], or [22]). Many different efficient algorithms have been
proposed, for instance by [10] and [8]. Based on this projection, we define the concept of sparse
regular variation. With this approach we obtain a new angular limit vector Z whose distribution
slightly differs from the spectral measure and which is more likely to be sparse. We prove that
under mild conditions the two concepts of regular variation are equivalent, and we give the
relation between the two limit vectors. In addition, we study this new angular limit and show
that it allows one to capture the extremal directions of X. The numerical results we provide
emphasize the efficiency of our method in detecting directions which may be large together.
These results also highlight how the new vector Z provides an interpretation of the relative
importance of a coordinate j in a cluster of extremal directions.
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Sparse regular variation 1117

Outline. The structure of this paper is as follows. We introduce in Section 2 the concept of
sparse regular variation based on the Euclidean projection onto the simplex. This notion gives
rise to a new angular vector, for which we study the distribution and compare it with the
spectral measure. In the main theorem of this section we establish the equivalence under mild
conditions between sparse regular variation and standard regular variation. In Section 3 we
discuss to what extent the Euclidean projection allows us to better capture the extremal direc-
tions of X. We use a natural partition of the simplex to address this issue, and we prove that �

and Z behave similarly on so-called maximal directions. Finally, in Section 4 we illustrate the
performance of our method on simulated data and briefly discuss it together with the approach
of [18].

Notation. We introduce some standard notation that is used throughout the paper. Symbols in
bold such as x∈Rd are vectors, with components denoted by xj, j ∈ {1, . . . , d}. Operations and
relationships involving such vectors are meant componentwise. We define 0= (0, . . . , 0) ∈
Rd , Rd+ = {x ∈Rd : x≥ 0}, and Bd+(0, 1)= {x ∈Rd+ : x1 + . . .+ xd ≤ 1}. For j= 1, . . . , d, ej

denotes the jth vector of the canonical basis of Rd. For a ∈R, a+ denotes the positive part of a;
that is, a+ = a if a≥ 0 and a+ = 0 otherwise. If x∈Rd and β = {i1, . . . , ir} ⊂ {1, . . . , d}, then
xβ denotes the vector (xi1, ..., xir ) of Rr. For p ∈ [1,∞], we denote by |·|p the �p-norm in Rd,

except for p= 1, for which we just write |·|. We write
w→ for weak convergence. For a set E, we

denote by P(E) its power set: P(E)= {A, A⊂ E}. We also use the notation P∗(E)=P(E) \
{∅}. If E= {1, . . . , r}, we simply write Pr =P({1, . . . , r}) and P∗r =P({1, . . . , r}) \ {∅}. For
a finite set E, we denote by |E| its cardinality. Finally, if F is a subset of a set E, we denote by
Fc the complementary set of F in E.

2. Sparse regular variation

2.1. From standard to sparse regular variation

We start from Equation (1.1), which we rephrase as follows:

P((|X|/t,X/|X|)∈ · | |X|> t)
w→ P((Y,�) ∈ ·) , t→∞ , (2.1)

where Y is a Pareto(α)-distributed random variable independent of �. We call the random
vector � the spectral vector, its distribution being the spectral measure. If the convergence
(2.1) holds we write X ∈ RV(α,�). In many cases the spectral measure is sparse; that is, it
places mass on some lower-dimensional subspaces. The self-normalized vector X/|X| then
fails to estimate the spectral vector � on such subsets.

Remark 1. The notion of sparsity in EVT can be defined in two different ways. The first
concerns the number of subsets {x∈Rd+ : xβ > 0 and xβc = 0}, β ∈P∗d , which gather the mass
of the spectral measure (see Section 3 for some insights on these subsets). ‘Sparse’ means
then that this number is much smaller than 2d − 1. This is for instance the device of [18]. It
corresponds to the assumption (S2.a) in [16]. The second notion deals with the number of null
coordinates in the spectral vector �. In this case, ‘sparse’ means that with high probability
|�|0� d, where |·|0 denotes the �0-norm of �, that is, |�|0 = |{i= 1, . . . , d : θi �= 0}|. This is
denoted by (S2.b) in [16]. Throughout this article we refer to this second notion.

In order to better capture this sparsity, we replace the quantity X/|X| by the vector π1(X/t),
where πz(v) denotes the Euclidean projection of the vector v in Rd+ onto the positive sphere
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1118 N. MEYER AND O. WINTENBERGER

FIGURE 1. The Euclidean projection onto the simplex S1+.

Sd−1+ (z) := {x∈Rd+ : x1 + . . .+ xd = z}, z> 0. The projected vector πz(v) is defined as the
unique solution of the following optimization problem (see [10] and the references therein):

minimize
w

1

2
|w− v|22 s.t. |w|1 = z . (2.2)

The Euclidean projection onto the positive sphere Sd−1+ (z) is then defined as the application

πz : Rd+ → Sd−1+ (z)

v �→ w= (v− λv,z)+ ,

where λv,z is the unique constant satisfying the relation
∑d

i=1 (vi − λv,z)+ = z. Several algo-
rithms which compute πz(v) have been introduced [10, 8]. We present two of them in Appendix
A: first one that gives an intuitive way to computeπz(v), and then one based on a median-search
procedure whose expected time complexity is O(d).

The projection satisfies the relation πz(v)= zπ1(v/z) for all v ∈Rd+ and z> 0. This is why
we mainly focus on the projection π1 onto the simplex Sd−1+ . In this case we write π as
shorthand for π1. An illustration of π for d= 2 is given in Figure 1. We list below some
straightforward results satisfied by the projection:

P1. The projection preserves the order of the coordinates: if vσ (1) ≥ . . .≥ vσ (d) for a
permutation σ , then π(v)σ (1) ≥ . . .≥ π(v)σ (d) for the same permutation.

P2. If π(v)j > 0, then vj > 0. Equivalently, vj = 0 implies π(v)j = 0.

P3. The projection π is continuous, as is every projection on a convex, closed set in a Hilbert
space.

The substitution of the self-normalized vector X/|X| by the projected vector π(X/t)
motivates the following definition.

Definition 1. (Sparse regular variation.) A random vector X ∈Rd+ is sparsely regularly vary-
ing if there exist a random vector Z defined on the simplex Sd−1+ and a nondegenerate random
variable Y such that

P((|X|/t, π(X/t)) ∈ · | |X|> t)
w→ P((Y,Z) ∈ ·) , t→∞ . (2.3)

If X satisfies (2.3), we write X ∈ SRV(α,Z).

In this case, standard results on regularly varying random variables state that there exists α > 0
such that Y follows a Pareto distribution with parameter α. The continuity of π ensures that
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regular variation with limit (Y,�) implies sparse regular variation with limit (Y, π(Y�)). In
contrast to the limit in (2.1), here we lose independence between the radial component Y and
the angular component Z of the limit. The dependence relation between the two components
is given by the following proposition.

Proposition 1. If X ∈ SRV(α,Z), then for all r≥ 1 we have

P(Z∈ · | Y > r)
d= P(π(rZ) ∈ ·) .

For β ∈P∗d we denote by e(β) the vector with 1 in position j if j ∈ β and 0 otherwise.
Then the vector e(β)/|β| belongs to the simplex. We consider the following class of discrete
distributions on the simplex: ∑

β∈P∗d
p(β) δe(β)/|β| , (2.4)

where (p(β))β is a (2d − 1)-vector with nonnegative components summing to 1. This is the
device developed by [32]. The family of distributions (2.4) is stable under multiplication by
a positive random variable and Euclidean projection onto the simplex. Hence, if � has a dis-
tribution of type (2.4), then Z=� almost surely (a.s.). The following corollary states that
distributions of this kind are the only possible discrete distributions for Z.

Corollary 1. If the distribution of Z is discrete, then it is of the form (2.4).

The family of distributions given in (2.4) forms an accurate model for the angular vec-
tor Z. Indeed, the distributions of this class place mass on some particular points of the
simplex on which extremes values often concentrate in practice. They include the case of
complete dependence, which corresponds to the case p({1, . . . , d})= 1, and the case of asymp-
totic independence, which corresponds to the case p({j})= 1/d for all j= 1, . . . , d (see also
Example 2).

2.2. Main result

We establish in this section some relations between the vectors � and Z. We start
by introducing some notation which will be useful throughout the article. We consider
the sets

Ax = {u ∈ Sd−1+ : u≥ x} , x∈ Bd+(0, 1) ,

Xβ = {x∈ Bd+(0, 1) : xβ > 0β, xβc = 0βc} , β ∈P∗d ,

X 0
β = {x∈ Bd+(0, 1) : xβc = 0βc} , β ∈P∗d ,

and we define λβ as the Lebesgue measure on the set Xβ . For β, γ ∈P∗d such that γ ⊃ β we
also consider the functions

Gβ (x)= P(Zβ > xβ, Zβc ≤ xβc ) , xβ ∈ B|β|+ (0, 1) , xβc ∈ B|β
c|
+ (0, 1) ,

and
Hβ,γ (u, v,w)= P

(
φγ (Z)β ≥ u, min

j∈γ \β φγ (Z)j > v, max
j∈γ c

φγ (Z)j ≤w
)
,
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for u ∈ B|β|+ (0, 1), v,w∈ [0, 1], and with φγ : Sd−1+ →Rd+, u �→ φγ (u) defined as

φγ (u)j =
⎧⎨
⎩

uj + |uγ c |
|γ | for j ∈ γ ,

uj + |uγ c\{j}|
|γ |+1 for j ∈ γ c ;

see Lemma 3 for more insights on this function.
We consider the following assumption:

(A) For all β, γ ∈P∗d such that γ ⊃ β and for λβ -almost every x ∈Xβ the function Hβ,γ is
continuously differentiable in (xβ, 0, 0).

Remark 2. (On Assumption (A).) Suppose that the distribution of Z is a mixture of a discrete
part

∑
k akδuk and a continuous part

∑
β∈P aβ fβ with P⊂ {β ∈P∗d : |β| ≥ 2} and with continu-

ous densities fβ . Then so is the distribution of φγ (Z), since φγ (Z) is a linear transformation of
Z. In this case, Assumption (A) is satisfied.

We are now able to state the main result of this paper.

Theorem 1. (Equivalence of regular variation and sparse regular variation) Under Assumption
(A) we have equivalence between regular variation and sparse regular variation. More
precisely, we have the following:

1. If X ∈RV(α,�), then X ∈ SRV(α,Z), with Gβ (x) equal to

E

[(
1∧min

j∈β+

( |β|�j − |�β |
|β|xj − 1

)α
+
∧min

j∈βc
(|�β | − |β|�j)α+ −max

j∈β−

( |β|�j − |�β |
|β|xj− 1

)α
+

)
+

]
(2.5)

for all x∈X 0
β such that for all j ∈ β, xj �= 1/|β|, and where β+ = {j ∈ β, xj > 1/|β|} and

β− = {j ∈ β, xj < 1/|β|}.
2. If X ∈ SRV(α,Z) with Z satisfying (A), then X ∈RV(α,�) with � satisfying

P(�∈ Ax)= P(Z∈ Ax)+ α−1
∑

γ∈P∗d : γ⊃β
dHβ,γ (xβ, 0, 0) ·

(
xβ − 1

|γ | ,−
1

|γ | ,−
1

|γ | + 1

)
(2.6)

for β ∈P∗d and λβ -almost every x∈Xβ .

Remark 3. (Discrete distributions.) Note that if the angular vector Z has a discrete distribution,
then Assumption (A) is satisfied and we have dH(xβ, 0, 0)= 0 for all β ⊂ γ and λβ -almost
every x∈Xβ . Hence Theorem 1 ensures that there exists a spectral vector � such that P(� ∈
Ax)= P(Z∈ Ax), i.e. �

d=Z. Actually, using Corollary 1 and arguments similar to those above,
we obtain �=Z a.s.

Equation (2.5) gives a relation between the distribution of Z and that of �. While its com-
plexity makes it difficult to use in full generality, specific choices for x lead to useful results.
A convenient special case is the one with β = {1, . . . , d} and x< 1/d, which provides the
relation

GZ(x)=E

[(
1− max

1≤j≤d

(
1/d−�j

1/d− xj

)α)
+

]
.
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In particular, for x= 0 we obtain

GZ(0)= 1−E
[

max
1≤j≤d

(1− d�j)
α
]

. (2.7)

Thus, the probability that Z has a null component is

P(Zj = 0 for some j≤ d)=E
[

max
1≤j≤d

(1− d�j)α
]

. (2.8)

This quantity is null if and only if for all j= 1, . . . , d, �j = 1/d a.s., and is equal to 1 if and
only if min1≤j≤d �j = 0 a.s. This implies that the new angular vector Z is more likely to be
sparse in the sense of Remark 1. In particular, all of the usual spectral models on � that are
not supported on the axis are unsuitable for Z. More insights into the sparsity of the vector Z
are given in Section 3.

Example 1. We consider a spectral vector � in S1+ with a first component �1 uniformly dis-
tributed (and then �2 = 1−�1 is also uniformly distributed). This fits into the framework of
Remark 2. We also assume α= 1 for simplicity. The probability that Z belongs to the first axis
is equal to

P(Z1 = 1)= P(Y�1 − Y�2 ≥ 1)= P(2�1− 1≥ 1/Y)

(see Lemma 3). Since the random variable 1/Y follows a uniform distribution on (0,1) and is
independent of � we obtain

P(Z1 = 1)=
∫ 1

0
P(2�1− 1≥ u) du=

∫ 1

0
P
(
�1 ≥ u+ 1

2

)
du=

∫ 1

0

1− u

2
du= 1/4 . (2.9)

Furthermore, if x ∈ (0, 1), Lemma 3 implies that

P(0< Z1 ≤ x)= P(0< Y�1 − (Y − 1)/2≤ x)

=
∫ 1

0
P
[
(1− u)/2<�1 ≤ (1+ (2x− 1)u)/2

]
du= x/2 .

The distribution of Z1 is thus given by δ0/4+ δ1/4+U/2, where U denotes a uniform distri-
bution on (0,1) and δa a Dirac measure at the point a. We check in Appendix B that this vector
Z satisfies Equations (2.5) and (2.6).

3. Detection of extremal directions with sparse regular variation

3.1. Sparsity in extremes

This section tackles the issue of detecting extremal directions for a regularly varying random
vector X. In such a context it is helpful to partition the underlying space, in our case Sd−1+ , into
understandable subsets [4, 18, 34]. In this article we consider the subsets

Cβ =
{
x ∈ Sd+ : xi > 0 for i ∈ β, xi = 0 for i /∈ β}

, β ∈P∗d , (3.1)

which form a partition of the simplex. An illustration of these subsets in dimension 3 is given
in Figure 2. This partition is helpful for studying the tail structure of X. Indeed, for β ∈P∗d the
inequality P(� ∈Cβ )> 0 means that one is likely to simultaneously observe large values in the
directions i ∈ β and small values in the directions i ∈ βc. Then identifying the subsets Cβ which
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1122 N. MEYER AND O. WINTENBERGER

FIGURE 2. The subsets Cβ in dimension 3 for the �1-norm. The subsets C{1}, C{2}, and C{3} correspond
to the unit vectors e1, e2, and e3, respectively. The dashed lines indicate the subsets C{1,2}, C{1,3}, and
C{2,3}. Finally, the subset C{1,2,3} corresponds to the interior of the simplex.

concentrate the mass of the spectral measure allows us to bring out clusters of coordinates
which can be simultaneously large.

Remark 4. Our approach aims to detect sparse directions that are aligned with the standard
coordinate system. For X ∈Rd+ it allows us to understand how a marginal affects the extremal
behavior of X. In applications, if X represents a phenomenon, the goal is to understand which
groups of marginals are the main causes of the extremal behavior of this phenomenon. This is
why we do not focus on what happens if the directions do not align with the standard coordinate
system.

Example 2. A standard example of sparsity is asymptotic independence, for which the spectral
measure only puts mass on the axis: P(� ∈ �1≤j≤d {ej})= P(� ∈ �1≤j≤d C{j})= 1. This means
that there is never more than one direction which contributes to the extremal behavior of the
vector. This concept has been studied by many authors; see for instance [23] or [26].

As for any low-dimensional subspaces, topological issues may arise for the subsets Cβ in the
convergence (2.1). Indeed, for β �= {1, . . . , d}, the subset Cβ is included in its boundary (with
respect to the topology of the simplex), and the convergence (2.1) fails for such a set. This kind
of problem appears because the spectral measure may put mass on low-dimensional subspaces,
while the data generally do not concentrate on such subspaces. This issue can be circumvented
with sparse regular variation. We replace the study of the sets {x ∈Rd+ : |x|> 1, x/|x| ∈Cβ } by
the study of the sets {x∈Rd+ : |x|> 1, π(x/t) ∈ Cβ}, which enjoy better topological properties.

In this context, many other sets have recently been proposed. [17] defined the truncated
ε-cones as {

x ∈Rd+ : |x|∞ > 1, xi > ε|x|∞ for i ∈ β, xi ≤ ε|x|∞ for i /∈ β}
.

Subsequently, [18] introduced the notion of ε-thickened rectangles:{
x∈Rd+ : |x|∞ > 1, xi > ε for i ∈ β, xi ≤ ε for i /∈ β}

.

[5] relaxed the condition on βc and defined the rectangles{
x ∈Rd+ : xi > 1 for i ∈ β}

,

to focus on groups of variables that may be large together. Similarly to [5], we relax the
condition on β in the definition of the Cβ , which leads to the study of the subsets

{x ∈ Sd−1+ : xi = 0 for i /∈ β} = Sd−1+ ∩Vect(ej, j ∈ β).

https://doi.org/10.1017/apr.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.14


Sparse regular variation 1123

We gather in the following proposition some results regarding the behavior of π(X/t) and
Z on the subsets Cβ and Sd−1+ ∩Vect(ej, j ∈ β). In all of what follows, we write �β, j (resp.
�β, j,+) for

∑
k∈β (�k −�j) (resp.

∑
k∈β (�k −�j)+).

Proposition 2. Let X ∈RV(α,�) and set Z= π(Y�), where Y is a Pareto(α)-distributed
random variable independent of �.

1. For any β ∈P∗d we have

P(π(X/t) ∈Cβ | |X|> t)→ P(Z∈Cβ ) , t→∞ , (3.2)

and
P(π(X/t)βc = 0 | |X|> t)→ P(Zβc = 0) , t→∞ . (3.3)

2. For any β ∈P∗d we have

P(Z∈Cβ )=E
[(

min
j∈βc

�αβ, j,+ −max
j∈β �

α
β, j,+

)
+

]
, (3.4)

and
P(Zβc = 0)=E

[
min
j∈βc

�αβ, j,+
]

. (3.5)

Regarding the behavior of π(X/t), the convergence (2.3) holds for any pair of Borel sets A×
B ∈ (1,∞)× Sd−1+ such that P(Y� ∈ ∂π−1(B))= 0, where ∂π−1(B) denotes the boundary of
the set π−1(B). The first part of Proposition 2 states that the subsets Cβ and Sd−1+ ∩Vect(ej, j ∈
β) satisfy this condition. This implies in particular that the sparsity of Z can be studied through
the projected vector π(X/t). This will be illustrated in Section 4.

The second part of Proposition 2 provides some interesting relations between the sparsity
of Z and that of �. If we consider β = {1, . . . , d}, then we obtain the probability that all
coordinates are positive, which has already been computed in (2.7). It is equal to GZ(0)=
1−E

[
max1≤j≤d (1− d�j)α

]
. Another special case of Equations (3.4) and (3.5) is the one

where β corresponds to a single coordinate {j0}. In this case, since Z belongs to the simplex,
the two probabilities P(Zβc = 0) and P(Z∈Cβ ) are equal. Their common value corresponds to
the probability that Z concentrates on the j0th axis, which is equal to

P(Zj0 = 1)=E
[

min
j �=j0

(�j0 −�j)α+
]

. (3.6)

Then Equation (3.6) can be developed in the following way:

P(Zj0 = 1)=E
[

min
j �=j0

(�j0 −�j)
α+1{�j0=1}

]
+E

[
min
j �=j0

(�j0 −�j)
α+1{�j0<1}

]
= P(�j0 = 1)+E

[
min
j �=j0

(�j0 −�j)
α+1�j0<1

]
≥ P(�j0 = 1) .

This shows that the vector Z is more likely to be sparse than the spectral vector �.

Remark 5. Following Equation (3.5), we write

P(Zβc = 0)≥E
[

min
j∈βc

�α{1,...,d}, j,+1{�βc=0}
]

=E

[( ∑
k≤d

�k

)α
1{�βc=0}

]
= P(�βc = 0) . (3.7)
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This can also be seen as a direct consequence of Property P2; see Section 2.1. This property
also gives

P(Zβ > 0)≤ P(�β > 0) , (3.8)

an inequality which will be useful in some proofs.

3.2. Maximal directions

We focus in this section on the subsets Cβ . A positive value for P(� ∈Cβ ) implies that the
marginals Xj for j ∈ β take simultaneously large values while the ones in βc do not [4, 34, 18].
Our aim is to use Proposition 2 to compare the nullity or not of the probabilities P(�∈ Cβ )
and P(Z∈Cβ ). To this end, it is relevant to focus on the largest group of variables β ∈P∗d such
that P(�∈ Cβ )> 0. This motivates the notion of maximal direction.

Definition 2. (Maximal direction.) Let β ∈P∗d . We say that a direction β is maximal for � if

P(�∈ Cβ )> 0 and P(� ∈C
β
′ )= 0 , for all β ′ � β .

We define maximal directions for Z similarly.

Remark 6. A straightforward but useful consequence of Definition 2 is that each direction β
such that P(� ∈Cβ )> 0 is included in a maximal direction of �. Indeed, if there exists no
β ′ � β such that P(� ∈C

β
′ )= 0, then β is maximal itself. If not, we consider β ′ � β such

that P(� ∈C
β
′ )> 0. If β ′ is not maximal, then we repeat this procedure with β ′. Since the

length of the direction β is finite, the procedure stops and provides γ ∈P∗d such that β ⊂ γ ,
P(� ∈Cγ )> 0, and P(�∈ C

γ
′)= 0 for all γ ′ � γ .

The notion of maximal directions is justified by the following theorem.

Theorem 2. Let β ∈P∗d .

1. If P(� ∈Cβ )> 0, then P(Z∈Cβ )> 0.

2. The direction β is maximal for � if and only if it is maximal for Z.

Theorem 2 implies that we do not lose any information on the extremal directions of β
by studying Z instead of �. But it is possible that the distribution of Z puts some mass on a
subset Cβ while that of � does not. In such a case, the associated direction β is necessarily
non-maximal.

Example 3. In Example 1 we proved that if �1 follows a uniform distribution on (0,1), then
P(Z∈ C{1})= 1/4 while P(�1 = 1)= 0. This proves that the direction β = {1} is non-maximal
for Z.

Example 3 shows there may exist β ∈P∗d such that P(Z∈ Cβ )> 0 and P(� ∈Cβ )= 0. In
this case, Theorem 2 states that the direction β is not maximal for Z since it is not maximal
for �. Following Remark 6, we consider a maximal direction γ of Z such that β ⊂ γ . Then
Theorem 2 states that P(� ∈Cγ )> 0. This means that even if the direction β does not itself
gather coordinates on which extreme values simultaneously occur, there exists a superset of β
which actually contains extremes. Thus, β still gives information on the study of large events.

A natural procedure to capture the extremal directions of X is then the following one. Based
on the Euclidean projection π we identify the subsets Cβ on which the distribution of Z places

https://doi.org/10.1017/apr.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.14


Sparse regular variation 1125

mass. Hopefully, the selected subsets are low-dimensional. Among these subsets we select the
maximal ones which also correspond to the maximal direction for the spectral vector �.

What happens on non-maximal directions? While the study of maximal directions is the
same for Z and �, we develop here some ideas which highlight the use of Z for non-maximal
directions. We consider a direction β ∈P∗d and assume that the associated subset Cβ satisfies
P(Z∈ Cβ )> 0 and P(�∈ Cβ )= 0. Then the direction β is necessary non-maximal for Z and
satisfies the following inequalities:

0< P(Z∈ Cβ )= P(Zβ > 0,Zβc = 0)≤ P(Zβc = 0)= P(π(Y�)βc = 0) .

Following Equation (C.20) we obtain that

0< P(π(Y�)βc = 0)= P
(|β|−1|�β | ≥max

i∈βc
�i + Y−1) . (3.9)

This implies that with positive probability |β|−1 ∑
k∈β �k ≥�i for all i ∈ βc. If we consider

for instance β = {j}, then we obtain that with positive probability �j ≥�i for all i �= j. More
generally, regarding the vector X, Equation (3.9) yields

0< P
(|β|−1|�β | ≥max

i∈βc
�i + Y−1)= lim

t→∞ P
(|β|−1|Xβ | ≥max

i∈βc
Xi + t | |X|> t

)
.

This means that the extreme values of Xβ are likely to be larger than the extreme values of Xβc .
This does not contradict the fact that P(�∈Cβ )= 0, which only implies that it is unlikely
that one will simultaneously observe large values in the direction β and small values in the
direction βc.

Hence, if we detect a maximal direction γ , we first infer that it is likely that the directions in
γ are large together while those in γ c take small values. The marginals in γ form a cluster of
extremal directions for which the relative importance of each direction can be studied via the
identification of non-maximal directions β � γ such that P(Z∈ Cβ )> 0. Indeed, if we detect
such a subset it means that in the cluster γ the directions in β are likely to be larger than the
ones in γ \ β. A deeper interpretation of non-maximal directions is deferred to future work.

Example 4. We consider a regularly random variable X in R+ with tail index α > 0 and a
vector a∈Rd+. We assume that the coordinates of a satisfy the inequality a1 > a2 > . . . >

ad > 0, and we also assume for simplicity that a∈ Sd−1+ . We define the vector X by setting
X= Xa= (a1X, . . . , adX)∈Rd+. Then the vector X is regularly varying with tail index α and
a spectral vector given by �= a a.s. This means that the direction {1, . . . , d} is the only one
on which the spectral measure places mass, and it is a maximal one. Hence, the angular vector
Z satisfies P(Z∈C{1,...,d})> 0. However, it is possible that the distribution of Z also puts mass
on lower-dimensional subsets. Since the Euclidean projection keeps the order of the marginals,
the only possible groups of directions are {1}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d− 1}.

We first consider the direction {1} and compute the probability that Z belongs to the subset
C{1}. Following Equation (C.3), we obtain that

P
(
Z∈ C{1}

)= P
(

min
j≥2

(Y�1 − Y�j)≥ 1
)
= P

(
Y�1 ≥max

j≥2
Y�j + 1

)
.

Then we use the relation �= a a.s., which implies that

P
(
Z ∈C{1}

)= P
(
Ya1 ≥ Ya2 + 1

)= P
(
Y ≥ (a1 − a2)−1)= (a1 − a2)α .

https://doi.org/10.1017/apr.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.14


1126 N. MEYER AND O. WINTENBERGER

Hence, the probability that Z belongs to the first axis depends on the difference between the
first and the second coordinate of a.

More generally, for 1≤ r≤ d− 1, Equation (C.4) implies that Z belongs to the subset
C{1,...,r} if and only if

max
1≤i≤r

r∑
j=1

(Y�j − Y�i)< 1 and min
r+1≤i≤d

r∑
j=1

(Y�j − Y�i)≥ 1 .

Thus, the probability that Z belongs to the subset C{1,...,r} is equal to

P
(
Z ∈C{1,...,r}

)= P

( r∑
j=1

(Yaj − Yar)< 1,
r∑

j=1

(Y�j − Y�r+1)≥ 1

)

= P
(
(ãr − rar+1)−1 ≤ Y < (ãr − ar)−1) where ãr = a1 + . . .+ ar

= (ãr − rar+1)α − (ãr − rar)
α .

If we take α = 1 for the sake of simplicity, then we obtain P(Z∈C{1,...,r})= r(ar − ar+1), and
thus the probability that Z belongs to the subset C{1,...,r} depends only on the distance between
ar and ar+1.

This example emphasizes the use of the vector Z on non-maximal directions. It highlights
the relative importance of a coordinate in relation to the extreme values of a group of directions
this coordinate belongs to.

4. Numerical results

This section is devoted to a statistical illustration of sparse regular variation. We highlight
how our approach manages to detect sparsity in the tail-dependence. We provide a method to
approximate the probabilities P(Z∈Cβ ) and apply it to several numerical results.

4.1. The framework

We consider an independent and identically distributed (i.i.d.) sequence of regularly vary-
ing random vectors X1, . . . ,Xn with generic distribution X ∈ RV(α,�). We set Z= π(Y�),
where Y follows a Pareto(α) distribution independent of �. Our aim is to capture the direc-
tions β ∈P∗d such that P(Z∈Cβ )> 0. Thanks to Proposition 2, the latter probability is defined
through the limit

P(Z∈Cβ )= lim
t→∞ P(π(X/t) ∈ Cβ | |X|> t)= lim

t→∞
P(π(X/t) ∈Cβ, |X|> t)

P(|X|> t)
. (4.1)

The goal is then to approximate this probability with the sample X1, . . . ,Xn. We define the
quantity

Tβ (t)=
∑n

j=1 1{π(Xj/t) ∈Cβ, |Xj|> t}∑n
j=1 1{|Xj|> t} , t> 0 , β ∈P∗d , (4.2)

which corresponds to the proportion of data Xj whose projected vector π(Xj/t) belongs to
Cβ among the data whose �1-norm is above t. Intuitively, the larger the variable Tβ (t), the
more likely the direction β gathers extreme values. The law of large numbers then implies the
following approximation:

Tβ (t)≈ P(π(X/t) ∈ Cβ, |X|> t)

P(|X|> t)
≈ P(Z∈Cβ ) ,
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where the first approximation holds for n large and the second one for t large. This approxi-
mation allows one to classify the directions β depending on the nullity or not of the associated
quantity Tβ (t). Actually, once t is fixed, we can get rid of the denominator in (4.2) and focus
only on

∑n
j=1 1{π(Xj/t) ∈Cβ, |Xj|> t}. The selection of the largest vectors Xj whose norm is

above t then boils down to keeping only a proportion, say k, of vectors. It is customary in EVT
to choose a level k which satisfies k→∞ and k/n→ 0 when n→∞.

Remark 7. (The approach proposed by [18].) In order to detect anomalies among multivari-
ate extremes, [18] propose a similar approach with the �∞-norm based on the ε-thickened
rectangles

Rεβ = {x ∈Rd+ : |x|∞ > 1, xj > ε for all j ∈ β, xj ≤ ε for all j ∈ βc} , β ∈P∗d .

Starting from the sample X1, . . . ,Xn with generic random vector X= (X1, . . . , Xd) with
marginal distribution F1, . . . , Fd, the authors define the vectors Vi = (1/(1− F̂j(X

j
i)))j=1,...,d

for i= 1, . . . , n, where

F̂j : x �→ 1

n

n∑
i=1

1
Xj

i<x

is the empirical counterpart of Fj. This rank transformation provides standardized marginals to
the vectors Vi. Denoting by �̃∞ the nonstandard spectral vector with respect to the �∞-norm
and by Cβ,∞ =

{
x ∈ Sd+,∞, xi > 0 for i ∈ β, xi = 0 for i /∈ β}

the associated subsets, [18] use
the approximation

Tβ (k, ε)= 1

k

n∑
i=1

1Vi∈(n/k)Rεβ
≈ c P(�̃∞ ∈ Cβ,∞) , c> 0 ,

for k large and ε close to zero (the ratio n/k plays the role of the large threshold t; see [20]).
The authors propose an algorithm called DAMEX whose goal is to identify the subsets Cβ,∞
such that P(�̃∞ ∈Cβ,∞)> 0.

Remark 8. (On the choice of the norm.) After some calculations we observe that if the spectral
vectors �̃ and �̃∞ correspond to nonstandard regular variation (with α = 1), then they satisfy
the relation

P(�̃ ∈ B)= E
[|�̃∞|1{�̃∞/|�̃∞|∈B}

]
E[|�̃∞|]

(4.3)

for all B∈ Sd−1+ . Since �̃∞/|�̃∞| ∈Cβ if and only if �̃∞ ∈Cβ,∞, we obtain the equivalence

P(�̃ ∈Cβ )> 0 if and only if P(�̃∞ ∈ Cβ,∞)> 0 .

Hence, the directions in which extremes gather are the same regardless the choice of the norm.
This means that after a standardization of the marginals we can compare the performance of
our method with that of [18]. This is what we do in the first numerical example below.

Note that if X is regularly varying with tail index 1, then Xq is regularly varying with tail
index 1/q and Equation (4.3) implies that the corresponding spectral measures concentrate on
the same subsets Cβ (see also Remark 11).

https://doi.org/10.1017/apr.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.14


1128 N. MEYER AND O. WINTENBERGER

Remark 9. At the end of the procedure we obtain a group of directions β such that Tβ (t)> 0.
Since we deal with non-asymptotic data, we obtain a bias which provides a difference between
some directions β for which Tβ (t) takes small values while the theoretical quantities P(Z∈ Cβ )
are null. We follow the idea of Remark 4 in [18] to deal with this issue. We define a threshold
value under which the empirical quantities Tβ (t) are set to 0. We use a threshold of the form
p/|C|, where C = {β, Tβ (t)> 0} and where the hyperparameter p≥ 0 is fixed by the user. It
is of course possible to set p to 0, which boils down to selecting all directions β such that
Tβ (t)> 0. In this case the number of selected β is still much smaller than the total number
2d − 1. We do not detail further the choice of p, deferring this issue to future work.

Taking this hyperparameter p into account, we are now able to introduce the algorithm used
to study the dependence structure of sparsely regularly varying random vectors.

Algorithm 1: Extremal dependence structure of sparsely regularly varying random vectors.

Data:X1, . . . ,Xn ∈Rd+, t> 0, p≥ 0
Result:A list C of directions β
Compute π(Xj/t), j= 1, . . . , n;
Assign to each π(Xj/t) the subsets Cβ it belongs to;
Compute Tβ (t);
Set to 0 the Tβ (t) below the threshold discussed in Remark 9;
Define C = {β, Tβ (t)> 0}.

4.2. Experimental results

In this section we consider two different cases of numerical data for which we apply
Algorithm 1. For each case we generate data sets of size n∈ {104, 5 · 104, 105}, we compute
the quantities Tβ (t), and we repeat this procedure over N = 100 simulations. Regarding the
outcome C = {β, Tβ (t)> 0} of our procedure, two different types of errors could arise. The
first one corresponds to the occurrence of a direction β that theoretically should not appear.
Such an error will be called an error of type 1. The second type of error corresponds to the
absence of a direction β that theoretically should appear. Such an error will be called an error
of type 2. The results correspond to the average number of each error among the N simulations.
The code can be found at https://github.com/meyernicolas/projection_extremes.

The purpose of the experiments is to study the procedure given in Algorithm 1 and see
how it manages to detect the sparsity in the extremes. We also analyze the influence of the
tail index α by choosing different values for this parameter. This is done by considering the
random vector Xα = (Xα1 , . . . , Xαd ) whose tail index is 1/α for X ∈ RV(1,�).

Remark 10. (Choice of the parameters.) It is common in EVT to define a level of exceedances
k= nP(|X|> t) and to work with k instead of t. For our simulations, we choose k=√n, fol-
lowing [18], who also suggest choosing ε of order k−1/4, that is, of order n−1/8. This choice
of ε is based on theoretical results [18, Theorem 1], but the authors then recommend instead
choosing ε = 0.01, which gives better results in their simulations. In order to have a large scale
of comparison, we consider ε ∈ {0.05, 0.1, 0.5}. Finally we consider p= 0.3, which is larger
than the value chosen in [18] but leads to better results for both methods.
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Remark 11. Assume that π(X/t) ∈ Cβ . This implies that for all j ∈ β we have Xj >maxi∈βc Xi

and |Xβ | −maxi∈βc Xi > t; see (C.4). Hence for k ∈ β and q≥ 1 we obtain

|Xq
β | −max

i∈βc
Xq

i = Xq
k −

(
max
i∈βc

Xi
)q + |Xq

β\{k}|

= (
Xk −

(
max
i∈βc

Xi
)) q∑

l=0

Xl
k

(
max
i∈βc

Xi
)q−l−1 + |Xq

β\{k}|

≥ Xk −
(

max
i∈βc

Xi
)+ |Xβ\{k}| = |Xβ | − (

max
i∈βc

Xi
)≥ t ,

as soon as we assume that all marginals satisfy Xj > 1. The relation |Xq
β | −maxi∈βc Xq

i implies
that π(Xq/t)βc = 0; see (C.3). In other words, it means that π(Xq/t) belongs to Cγ for γ ⊂ β.

In particular, if the spectral measure of X only concentrates on the axis, these directions
can be more easily detected through the study of π(Xq/t), q≥ 1, than through that of π(X/t).

Asymptotic independence. Let N1, . . . ,Nn be an i.i.d. sequence of random vectors in R40

with generic random vector N whose distribution is a multivariate Gaussian distribution with all
marginals following a univariate standard Gaussian distribution and the correlations less than
1: E[NiNj]< 1 for all 1≤ i �= j≤ d. We transform the marginals with a rank transform which
consists in considering the vectors X1, . . . ,Xn such that the marginals Xj

i of Xi = (X1
i , . . . , Xd

i )
are defined as

Xj
i =

1

1− F̂j(N
j
i )
, 1≤ j≤ d ,

where F̂j is the empirical version of the cumulative distribution function of Nj ∼N (0, 1). This
provides a sample of regularly varying random vectors X1, . . . ,Xn, and the assumption on
the correlation leads to asymptotic independence, i.e. P(�∈ Cβ )= P(Z∈Cβ )= 1/d for all β
such that |β| = 1 (see [33]). The aim of our procedure is to recover these 40 directions from
among the 240 − 1≈ 1012 directions.

Regarding the multivariate Gaussian random vectors N1, . . . ,Nn, the simulation of these
vectors depends only on their covariance matrix. We proceed as follows. We generate a matrix
�′ with entries σ ′i,j following independent uniform distributions on (− 1, 1). Then we define
the matrix � as

� =Diag
(
σ ′−1/2

1,1 , . . . , σ ′−1/2
d,d

)
·�′T ·�′ ·Diag

(
σ ′−1/2

1,1 , . . . , σ ′−1/2
d,d

)
,

where Diag(σ−1/2
1,1 , . . . , σ

−1/2
d,d ) denotes the diagonal matrix ofMd(R) whose diagonal is given

by the vector (σ ′−1/2
1,1 , . . . , σ ′−1/2

d,d ). This provides a covariance matrix with diagonal entries
equal to 1 and off-diagonal entries less than 1. A given matrix � then provides a depen-
dence structure for N and thus for X. We generate Nmodel = 20 different matrices �, and for
each of these dependence structures we generate N = 100 sample N1, . . . ,Nn. We summa-
rize in Table 1 and in Table 2 the two types of errors averaged among the N · Nmodel = 2000
simulations.

In this case, the standard spectral vector � and the non-standard one �̃ coincide. Hence it
is possible to compare � and �̃∞ (see Remark 8), which is done by computing the quantities
Tβ (k, ε) as well as the two types of errors for the DAMEX algorithm. We only study the effect
of α for our approach, since the DAMEX algorithm is not sensitive to marginals.
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TABLE 1. Average number of errors of type 1 in an asymptotic independence case (d= 40).

Errors of Eucl. proj. Eucl. proj. Eucl. proj. DAMEX DAMEX DAMEX
type 1 α = 1 α = 1/2 α = 2 ε = 0.05 ε = 0.1 ε = 0.5

n= 104 22.62 21.76 2.50 3034.70 2899.05 987.63
n= 5 · 104 19.43 6.49 69.9 6972.52 4646.43 271.87
n= 105 1.83 0.65 99.79 8401.21 4813.46 235.80

TABLE 2. Average number of errors of type 2 in an asymptotic independence case (d= 40).

Errors of Eucl. proj. Eucl. proj. Eucl. proj. DAMEX DAMEX DAMEX
type 2 α = 1 α = 1/2 α = 2 ε = 0.05 ε = 0.1 ε = 0.5

n= 104 0.07 0.02 40.00 39.43 13.76 0.00
n= 5 · 104 0.00 0.00 4.89 3.69 0.01 0.00
n= 105 0.00 0.00 0.41 0.07 0.00 0.00

For the Euclidean projection with α = 1 we observe that our algorithm manages to cap-
ture almost all d= 40 directions regardless the value of n, and the number of errors of type
2 decreases when n increases. On the other hand, our algorithm still captures some extra direc-
tions, especially for n= 104 and n= 5 · 104. This may be a consequence of the choice of p
in Remark 9, which is probably too high and for which a deeper study should be conducted.
The number of errors of type 1 is then much lower for n= 105. We observe that for α = 1/2
we obtain better results, while the number of errors is higher for α = 2. Since the extremal
directions are in this case only one-dimensional, this numerically confirms the observations of
Remark 11.

Regarding the DAMEX algorithm, a large ε theoretically leads to more mass assigned on
the axis. This explains why in our simulations choosing a large ε reduces the number of errors
of type 2. With ε = 0.5 the algorithm manages to capture all d= 40 axes; however, the number
of errors of type 1 is quite large, regardless of the choice of n. Hence it seems that our procedure
leads to the best compromise between the two types of errors.

A dependent case. We now consider a dependent case where extremes occur on lower-
dimensional directions. In order to include dependence we recall that a vector P(k)= (P1, P1 +
P2, . . . , P1 + Pk) ∈Rk+ with Pj following Pareto(αj), α1 <αj for all 2≤ j≤ k, is regularly
varying with tail index α1 and spectral vector �= (1/k, . . . , 1/k). For our simulations we con-
sider s1 = 10 independent copies P1, . . . , Ps1 of P(2)∈R2+ with α1 = 1 and α2 = 2 and s2 = 10
independent copies R1, . . . ,Rs2 of P(3)∈R3+ with α1 = 1 and α2 = α3 = 2. We aggregate
these vectors and form a vector X in R50+ which is then regularly varying with a discrete spec-
tral measure placing mass on the points (ej + ej+1)/2 for j= 1, 3, . . . , 17, 19 and on the points
(ej + ej+1 + ej+2)/3 for j= 21, 24, . . . , 45, 48. As discussed after Proposition 1, in this case
the angular vector Z and the spectral vector � are equal a.s. Our aim is to recover the s1 = 10
two-dimensional directions (ej + ej+1)/2 for j= 1, 3, . . . , 17, 19 and also the s2 = 10 three-
dimensional directions (ej + ej+1 + ej+2)/3 for j= 21, 24, . . . , 45, 48, based on a sample of
i.i.d. random vectors X1, . . . ,Xn with the same distribution as X. Hence we would like to
recover s= s1 + s2 = 20 directions from among the total of 250 − 1≈ 1015 directions.
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TABLE 3. Average number of errors of type 1 and 2 in a dependent case (d= 50).

Errors of type 1 Errors of type 2

α = 1 α = 1/2 α = 2 α = 1 α = 1/2 α = 2

n= 104 8.22 0.01 26.23 0.76 0.74 7.78
n= 5 · 104 0.32 0.00 59.31 0.04 0.08 1.11
n= 105 0.04 0.00 78.97 0.03 0.01 0.35

TABLE 4. Average number of directions recovered by Algorithm 1 (d= 60).

Three-dim. Two-dim. One-dim. Other
directions directions directions directions

n= 104 13.16 12.28 17.92 14.96
n= 5 · 104 18.40 18.04 19.91 17.35
n= 105 17.95 17.39 19.92 0.68

As for asymptotic independence, we remark that the number of errors decreases when n
increases for almost all cases. For α = 1 and α = 1/2 our algorithm not only is able to detect
all s= 20 directions on which the distribution of Z puts mass, but also does not identify any
extra directions. These results are all the more accurate since the identification of the s=
20 directions is done among a very large number of directions, in this case 250 − 1≈ 1015.
However, the fact that we obtain better results for the errors of type 1 in the case α = 1/2 than
in the case α= 1 cannot be explained by Remark 11. We defer this question to future work.

4.3. Sparse regular variation and non-maximal directions

In this section we illustrate some interpretations of the vector Z in relation to extremal
directions in non-maximal directions (see the discussion in Section 3.2). We consider a vec-
tor a ∈ Sr−1+ as in Example 4 and a Pareto(α)-distributed random variable P, and define Pa=
(a1P, . . . , arP)∈ RV(α, a). Then, combining this device with that of the dependent case, we
consider P= (a1P, a2P+ P2, . . . , arP+ Pr) ∈RV(α, a), where P2, . . . , Pr are i.i.d. random
variables following a Pareto distribution with parameter α′ >α. Hence the degenerate spectral
vector �= a places mass only in the direction {1, . . . , r}, which is thus maximal, while the
vector Z places mass in all non-maximal directions {1}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d− 1};
see Example. In our simulations, we choose α = 1, α′ = 2, and r= 3, and we consider a
vector a= (7, 6, 4)/|(7, 6, 4)|. We then aggregate s= 20 i.i.d. copies Pk of the vector P and
obtain X= (P1, . . . , Ps)∈ RV(1,�) with � placing mass on the three-dimensional maximal
directions {j, j+ 1, j+ 2} for j ∈ J = {1, 4, 7, . . . , 58}, while the angular vector Z places mass
on the aforementioned maximal directions but also on s= 20 two-dimensional and s= 20
one-dimensional directions.

The aim of the simulations is to see to what extent our procedure manages to recover the
40 non-maximal directions aforementioned. The columns of Table 4 give the average number
of directions recovered by our algorithm, depending on their size. Recall that for each type of
direction, the theoretical number of these directions that should appear is s= 20. Finally, the
last column deals with the number of directions that theoretically should not appear. All the
results are averaged across the N = 100 simulations.
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For n= 104 we observe that the procedure manages to identify most of the one-dimensional
directions, while the average number of two-dimensional directions is much smaller than the
theoretical one. The same occurs for the maximal directions, for which we only manage to
recover two-thirds of the theoretical ones. We also obtain a non-negligible number of extra
directions which should not be identified. For n= 5 · 104, the three types of directions are quite
well recovered by our algorithm, with once again very good results for the one-dimensional
ones. The number of extra directions is still relatively high. For n= 105, we keep a high level
of accuracy in identifying all three types of directions, while the number of extra directions
drastically decreases.

This example highlights the relevance of our approach not only to identifying clusters of
directions that are simultaneously large, but also to studying the relative importance of the
coordinates in a given cluster. This second aspect provides a deeper interpretation of Z in
terms of extremes.

5. Conclusion

The notion of sparse regular variation that is introduced in this paper is a way to tackle the
issues that arise in the study of tail-dependence with the standard concept of regular variation.
Replacing the self-normalized vector X/|X| by the projected one π(X/t) allows us to capture
the extremal directions of X. Our main result is the equivalence between the two concepts of
regular variation under mild assumptions.

Regarding extremes values, the vector Z enjoys many useful properties. This vector is
sparser than the spectral vector �, which means that it seems more suitable to identify extremal
directions, especially in high dimensions. Indeed, large events often appear due to simultane-
ous extreme behavior of a small number of coordinates. This similarity between extreme values
and the vector Z appears even more with the subsets Cβ , which highlight the tail-dependence
of X. Proposition 3.1 provides a natural way to capture the behavior of Z on these subsets and
proves that the Euclidean projection manages to circumvent the weak convergence issue which
arises in the standard definition of regularly varying random vectors.

Practically speaking, Section 4 illustrates the advantages of our approach for the study of
large events. First, using the Euclidean projection allows us to study tail-dependence without
introducing a hyperparameter. By contrast, the introduction of ε-thickened rectangles in [18]
requires one to identify a suitable ε. Hence, our procedure reduces algorithmic complexity by
avoiding the need to run the given code for different values of ε. Since the projection can be
computed in expected linear time, the study of extreme events can then be done in reason-
able time in high dimensions. More generally, the numerical results we obtain highlight the
efficiency of our method to detect extremal directions. Future work should address the ques-
tion of the threshold t, or equivalently the level k, and the bias issue introduced in Remark 9.
Moreover, a comparison between Z and � on non-maximal directions is also a crucial point
to tackle. To this end, a deeper study of the behavior of Z on these kinds of subsets should be
conducted.

Appendix A. Algorithms

We introduce here two algorithms which compute the Euclidean projection πz(v) given
v ∈Rd+ and z> 0.

Algorithm 2 emphasizes the number of positive coordinates ρv,z of the projected vector
πz(v):

ρv,z =max
{

j= 1, . . . , d :μj − 1

j

( ∑
r≤j

μr − z
)
> 0

}
, (A.1)
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Algorithm 2: Euclidean projection onto the simplex.

Data: A vector v ∈Rd+ and a scalar z> 0
Result: The projected vector w= πz(v)
Sort v in μ : μ1 ≥ . . .≥μd;
Find ρv,z as in (A.1);
Define λv,z = 1

ρv,z

(∑ρv,z
r=1 μj − z

)
;

Output: w s.t. wi =max (vi − λv,z, 0).

where μ1 ≥ . . .≥μd denote the order coordinates of v; see Lemma 2 of [10]. In other words,
a coordinate j satisfies πz(v)j > 0 if and only if

vj − 1∑
k≤d 1vk≥vj

( d∑
k=1

vk1vk≥vj − z

)
> 0 . (A.2)

The integer ρv,z corresponds to the �0-norm of πz(v) and thus indicates the sparsity of this
projected vector. For z= 1 we simply write ρv.

A major remark is that Algorithm 2 allows us to compute πz(v) as soon as we know the
set β of positive coordinates of this vector. Indeed, if β = {j≤ d : πz(v)j > 0}, then πz(v)j =
vj − (|vβ | − z)/|β| for j ∈ β.

Algorithm 3 is an expected linear time algorithm based on a median-search procedure.

Algorithm 3: Expected linear time projection onto the positive sphere Sd−1+ (z).

Data: A vector v ∈Rd+ and a scalar z> 0
Result: The projected vector w= π(v)
Initialize U= {1, . . . , d}, s= 0, ρ = 0;
while U �= ∅ do

Pick k ∈U at random;
Partition U: G= {j ∈U : vj ≥ vk} and L= {j ∈U : vj < vk};
Calculate �ρ = |G|, �s=∑

j∈G vj;
if (s+�s)− (ρ +�ρ)vk < z then

s= s+�s;
ρ = ρ +�ρ;
U← L;

else
U←G \ {k};

end
end
Set η= (s− z)/ρ.;
Output: w s.t. wi = vi − η.
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Appendix B. Continuation of Example 1

Recall that �1 is uniformly distributed on (0,1) and that the distribution of Z1 is given by
δ0/4+ δ1/4+U(0, 1)/2.

We first check that Equation (2.5) holds for β = {1} and β = {1, 2}. For β = {1} we have
Gβ (x, 0)= P(Z1 = 1)= 1/4 while E[(�1 −�2)+]= ∫ 1/2

0 (1− 2u) du= 1/4. For β = {1, 2},
consider x1, x2 in (0,1) such that x1 + x2 < 1. On the one hand the quantity Gβ (x1, x2) corre-
sponds to P(Z1 > x1, Z2 > x2)= P(x1 < Z1 < 1− x2)= 1/2− (x1 + x2)/2. On the other hand,
if we assume that x1, x2 < 1/2, then a calculation similar to that of Example 1 leads to

E
[(

1−
(2�1 − 1

2x1 − 1

)
+ ∨

(2�2 − 1

2x2 − 1

)
+

)
+

]

=E
[(

1−
(1− 2�1

1− 2x1

)
+ ∨

(2�1 − 1

1− 2x2

)
+

)
+

]

=
∫ 1/2

0

(
1− 1− 2u

1− 2x1

)
+ du+

∫ 1

1/2

(
1− 2u− 1

1− 2x1

)
+ du

=
∫ 1/2

x1

u− x1

1/2− x1
du+

∫ 1−x2

1/2

1− x2 − u

1/2− x2
du

= [1/4− x1 + x2
1]/2

1/2− x1
+ [(1− x2)2 − (1− x2)+ 1/4]/2

1/2− x2

= 1/2− x1

2
+ 1/2− x2

2

= 1/2− (x1 + x2)/2 .

This proves that Equation (2.5) holds.
Moving on to Equation (2.6), we first consider β = {1, 2} and x= (x1, x2) with x1, x2 > 0.

Since � is uniformly distributed on (0,1) we obtain that P(�∈ Ax)= P(x1 <�< 1− x2)=
1− (x1 + x2). On the other hand we already proved that P(Z∈ Ax)= 1/2− (x1 + x2)/2. We
now have to compute the differential of Hβ,β (x)=Gβ (x). For ε > 0 we obtain

Gβ (x1 + ε, x2)−Gβ (x1, x2)=−P(x1 < Z1 ≤ x1 + ε, Z2 > x2)

=−P(x1 < Z1 ≤ x1 + ε, Z1 < 1− x2)

=−P(x1 < Z1 ≤ x1 + ε) for ε small enough

=−ε/2 .

Thus the differential of Gβ satisfies the relation

dGβ (x1, x2) · (x1 − 1/2, x2 − 1/2)= (1/2− x1 + 1/2− x2)/2= 1/2− (x1 + x2)/2 .

Hence the relation (2.6) is satisfied. Now for β = {1} and for x ∈ (0, 1) we have P(�1 >

x)= 1− x and P(Z1 > x)= P(Z1 > x, Z2 = 0)+ P(Z1 > x, Z2 > 0)= 1/4+ (1− x)/2. Hence
we have to prove that the sum in (2.6) adds up to −1/4+ (1− x)/2. For γ = β we obtain
that Hβ,β (x, u)= P(Z1 + Z2 > x, Z2 ≤ u)= P(Z2 ≤ u), which is constant with respect to x and
satisfies

Hβ,β (x, ε)−Hβ,β(x, 0)= P(0< Z2 ≤ ε)= ε/2 .
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This implies that dHβ,β(x, 0)(x− 1,−1/2)=−1/4. For γ = {1, 2} we have the relation
Hβ,γ (x, u)= P(Z1 > x, Z2 > u)=Gγ (x, u), which has already been studied above for the case
β = {1, 2}. This found that dGγ (x, u)= (− 1/2,−1/2), and thus dGγ (x, 0)(x− 1/2,−1/2)=
(1− x)/2. Hence we proved that

dHβ,β(x, 0) · (x− 1,−1/2)+ dHβ,{1,2}(x, 0) · (x− 1/2,−1/2)=−1/4+ (1− x)/2 .

Appendix C. Proofs

C.1 Some results on the projection

We start with this section with three lemmas which gather some useful properties satisfied
by the projection π .

Lemma 1. (Iteration of the projection.) If 0< z≤ z′, then πz ◦ πz′ = πz.

Proof of Lemma 1. The proof of this result relies on the relation πz(v)= zπ(v/z) and on the
characterization (A.2).

First we simplify the problem via the equivalences

∀ 0< z≤ z′, ∀ v ∈Rd+, πz(πz′(v))= πz(v)

⇐⇒∀ 0< z≤ z′, ∀ v ∈Rd+, zπ(z−1πz′(v))= zπ(v/z)

⇐⇒∀ 0< z≤ z′, ∀ v ∈Rd+, π(z′z−1π(v/z′))= π(v/z)

⇐⇒∀ a≥ 1, ∀ u ∈Rd+, π(aπ(u))= π(au) .

So we fix a≥ 1 and u ∈Rd+, and we prove this last equality by proving first that ρaπ(u) = ρau
and second that the positive coordinates of the two vectors π(aπ(u)) and π(au) coincide.

STEP 1: We prove that ρaπ(u) = ρau.
The characterization (A.2) entails that a coordinate j satisfies π(aπ(u))j > 0 if and only if

aπ(u)j >
1∑

k≤d 1aπ(u)k≥aπ(u)j

( d∑
k=1

aπ(u)k1aπ(u)k≥aπ(u)j − 1

)
. (C.1)

Since a≥ 1 this assumption holds only if π(u)j = u− λu > 0. Hence, since π preserves the
order of the coordinates, we obtain that (C.1) is equivalent to

a(uj − λu)>
1∑

k≤d 1auk≥auj

( d∑
k=1

a(uk − λu)1auk≥auj − 1

)
. (C.2)

The terms with λu vanish and (C.2) is then equivalent to π(au)j > 0. Hence the vectors
π(aπ(u)) and π(aπ(u)) have the same positive coordinates, i.e. ρaπ(u) = ρau.

STEP 2: We prove that π(aπ(u))= π(au).
Let us denote by γ the set of coordinates j such that π(aπ(u))j > 0. Step 1 ensures that

this corresponds to the set of coordinates j such that π(au)j > 0. We prove that these two
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components coincide. Recall that for k ∈ γ we have π(u)k = uk − λu > 0. Then the result
follows from the equalities

π(aπ(u))j = aπ(u)j − |aπ(u)γ | − 1

|γ | = a(uj− λu)− |auγ | − aλu|γ | − 1

|γ |
= auj − |auγ | − 1

|γ | = π(au)j ,

for j ∈ γ . �

In the following lemma we compare the behavior of the vectors u/|u| and π(u/t) on the
sets Ax.

Lemma 2. (Euclidean projection and self-normalization.) Let t> 0, ε > 0 small enough, γ ∈
P∗d , and x∈ Bd+(0, 1). We consider u ∈Rd+ such that |u|/t ∈ (1, 1+ ε] and π(u/t) ∈ Cγ .

1. If u/|u| ∈ Ax, then π(u/t) ∈ Ax−ε/|γ |. In particular, this holds only for {j : xj > 0} ⊂ γ .

2. If π(u/t) ∈ Ax(1+ε), then u/|u| ∈ Ax.

Proof of Lemma 2.

1. The assumption π(u/t) ∈Cγ implies that λu/t = (|uγ |/t− 1)/|γ |, so that for any j≤ d
we have

π(u/t)j =max (uj/t− λu/t, 0)≥ uj

t
− |uγ |/t− 1

|γ | >
uj

|u| −
|u|/t− 1

|γ | ≥ uj

|u| −
ε

|γ | ,

where we used that 1< |u|/t≤ 1+ ε. Then the assumption u/|u| ∈ Ax concludes the
proof.

2. If π(u/t) ∈ Ax(1+ε), then we have the inequality

uj

|u| =
t

|u|
uj

t
≥ 1

1+ ε π(u/t)j ≥ xj , 1≤ j≤ d . �

For γ ∈P∗d recall that the function φγ : Sd−1+ →Rd+ is defined by

φγ (u)j =
⎧⎨
⎩

uj + |uγ c |
|γ | , j ∈ γ ,

uj + |uγ c\{j}|
|γ |+1 , j ∈ γ c .

Also, we have defined the quantities vβ, i =∑
j∈β (vj − vi) and vβ, i,+ =∑

j∈β (vj − vi)+ for

v ∈ Sd−1+ , β ∈P∗d , and 1≤ i≤ d.

Lemma 3. (Euclidean projection and sparsity.) Let β ∈P∗d .

1. For v ∈Rd+ we have the equivalences

π(v)βc = 0 if and only if 1≤min
i∈βc

vβ, i,+ (C.3)

and

π(v) ∈Cβ if and only if

{
maxi∈β vβ, i < 1 ,

mini∈βc vβ, i ≥ 1 .
(C.4)
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2. For x ∈Xβ , γ ⊃ β, u ∈ Sd−1+ , and a≥ 1 we have the equivalence

π(au) ∈ Ax ∩Cγ if and only if

⎧⎪⎪⎨
⎪⎪⎩
φγ (u)j ≥ 1

a

(
xj + a−1

|γ |
)
, j ∈ β ,

minj∈γ \β φγ (u)j >
a−1
a|γ | ,

maxj∈γ c φγ (u)j ≤ a−1
a(|γ |+1) .

(C.5)

Proof of Lemma 3.1.

1. The characterization (A.2) ensures that π(v)i = 0 if and only if

vi − 1∑
k≤d 1vk≥vi

( ∑
k≤d

vk1vr≥vi − 1

)
≤ 0 ,

which can be rephrased as

1≤
d∑

k=1

(vk − vi)1vk≥vi .

This proves (C.3).
For (C.4) the assumption π(v)∈ Cβ can be rephrased as follows:

∀i ∈ β, vi = π(v)i +
(|vβ | − 1

)
/|β| and ∀i ∈ βc, vi ≤ (|vβ | − 1

)
/|β| .

On the one hand, since π(v)i > 0 for i ∈ β, the first equality is equivalent to
maxi∈β

∑
j∈β (vj − vi)< 1. On the other hand, the second equality is equivalent to

mini∈βc
∑

j∈β (vj − vi)≥ 1. This proves (C.4).

2. By definition of the projection π the following equivalence holds:

⎧⎪⎪⎨
⎪⎪⎩
π(au)j ≥ xj , j ∈ β ,
π(au)j > 0 , j ∈ γ \ β ,
π(au)j = 0 , j ∈ γ c ,

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

auj − |auγ |−1
|γ | ≥ xj , j ∈ β ,

auj − |auγ |−1
|γ | > 0 , j ∈ γ \ β ,

auj ≤ |auγ |−1
|γ | , j ∈ γ c .

Then, if we write a|uβ | = a− a|uβc |, the former conditions are equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

auj + a|uγ c |
|γ | ≥ xj + a−1

|γ | , j ∈ β ,
auj + a|uγ c |

|γ | >
a−1
|γ | , j ∈ γ \ β ,

auj + a|uγ c |
|γ | ≤ a−1

|γ | , j ∈ γ c .

We conclude the proof by writing uβc = |uβc\{j}| + uj for j ∈ γ c. �
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C.2. Proof of Proposition 1

This proof is a consequence of Lemma 1. Indeed for r≥ 1, t> 0, and A⊂ Sd−1+ we have

P
(
π(X/t) ∈ A, |X|/t> r | |X|> t

)
= P

(
π(X/t) ∈ A | |X|/t> r

)P(|X|> tr)

P(|X|> t)

= P
(
π(rX/(tr))∈ A | |X|/t> r

)
P(|X|> tr | |X|> t)

= P
(
rπ1/r(X/(tr))∈ A | |X|> tr

)
P(|X|> tr | |X|> t)

= P
(
rπ1/r(π(X/(tr)))∈ A | |X|> tr

)
P(|X|> tr | |X|> t) ,

where the last equality results from Lemma 1. Then, when t→∞, the continuity of π1/r and
π implies that

P(Z∈ A, Y > r)= P(rπ1/r (Z) ∈ A)P(Y > r) ,

and again applying Lemma 8.1 concludes the proof.

C.3. Proof of Corollary 1

Let a∈ Sd−1+ be such that P(Z= a)> 0, and define β = {j : aj > 0}. The goal is to prove that
a= e(β)/|β|.

Since P(Z= a | Y > r)→ P(Z= a) when r→ 1, there exists r0 > 1 such that P(Z= a | Y >
r)> 0 for all r ∈ (1, r0). Proposition 1 and Lemma 3 then imply that for all r< r0 we have

0< P(π(rZ)= a)= P
(

Zj − |Zβ ||β| =
aj − 1/|β|

r
for j ∈ β, Zj − |Zβ ||β| ≤

−1

|β|r for j ∈ βc
)

.

If there exists j such that aj �= 1/|β|, then the quantities

aj − 1/|β|
r

are all distinct when r varies in (1, r0). This contradicts the fact that Z has a discrete
distribution. Hence we have aj = 1/|β| for all j ∈ β.

C.4. Proof of Theorem 1

C.4.1. The distribution of Z in terms of � We consider β ∈P∗d and x ∈X 0
β such that xj �= 1/|β|

for all j ∈ β. We define the quantities Bj = [(|β|�j− |�β |)/(|β|xj− 1)]+ for j ∈ β. Then we
obtain that

Gβ (x)= P(π(Y�)β > x, π(Y�)βc = 0βc )

= P(Y�j − (Y|�β | − 1)/|β|> xj for j ∈ β, Y�j ≤ (Y|�β | − 1)/|β| for j ∈ βc).

For j ∈ β+ the condition Y�j − (Y|�β | − 1)/|β|> xj is equivalent to Bj > 1/Y, whereas for
j ∈ β− it is equivalent to Bj < 1/Y. Moreover, for j ∈ βc the condition Y�j ≤ (Y|�β | − 1)/|β|
is equivalent to |�β | − |β|�j ≥ 1/Y. All in all we obtain that Gβ (x) is equal to

P
(
Y−α < Bαj for j ∈ β+, Y−α > Bαj for j ∈ β−, Y−α ≤ (|�β | − |β|�j)α+ for j ∈ βc) .
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Since the random variable Y−α follows a uniform distribution on (0,1) and is independent of
�, we obtain the desired result:

Gβ (x)=
∫ 1

0
P
(

u<min
j∈β+

Bαj , u>max
j∈β−

Bαj , u≤min
j∈βc

(|�β | − |β|�j)α+
)

du

=
∫ 1

0
P
(

max
j∈β−

Bαj < u<min
j∈β+

Bαj ∧min
j∈βc

(|�β | − |β|�j)α+
)

du

=E
[(

1∧min
j∈β+

Bαj ∧min
j∈βc

(|�β | − |β|�j)α+ −max
j∈β−

Bαj
)
+

]
.

C.4.2. Equivalence of regular variation and sparse regular variation. The proof of this result is
divided into two steps. The first one consists in characterizing regular variation via the conver-
gence of P(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t) when t→∞ and ε→ 0. This result is stated
in the following lemma.

Lemma 4. Let X be a random vector on Rd+ and α > 0. The following assumptions are
equivalent:

(1) X is regularly varying with tail index α.

(2) a. |X| is regularly varying with tail index α.

b. For all β ∈P∗d and λβ -almost every x∈Xβ the quantities

(αε)−1 lim sup
t→∞

P
(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t

)
(C.6)

and
(αε)−1 lim inf

t→∞ P
(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t

)
(C.7)

have a common limit l(Ax) when ε > 0 converges to 0, and the function x �→ l(Ax) is
continuous at x.

In this case, l extends to a unique probability measure on B(Sd−1+ ) which coincides with the
spectral measure of X.

The second step then consists in proving that under Assumption (A) of Theorem 1 the
second assumption of Lemma 4 holds.

Proof of Lemma 4. We first prove that (1) implies (2). If X ∈ RV(α,�), then |X| is regularly
varying with index α, and the portmanteau theorem ensures that

lim
t→∞ P

(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t
)= P(Y ≤ 1+ ε)P(�∈ Ax) (C.8)

= (1− (1+ ε)−α)P(�∈ Ax) ,

for ε > 0, β ∈P∗d , and x ∈Xβ such that P(� ∈ ∂Ax)= 0. Since P(�∈ ∂Ax)≤∑
i∈β P(�i =

xi), the set of all x ∈Xβ for which the convergence (C.8) does not hold is at most countable
and thus is λβ -negligible. After dividing both sides of (C.8) by αε and taking the limit when ε
converges to 0 we obtain the convergence to P(�∈ Ax).

We now prove that (2) implies (1). We consider β ∈P∗d and denote by X̄β the set of all
x ∈Xβ such that the common limit l(Ax) of (C.6) and (C.7) exists and is continuous. We also
define X̄ = {x ∈ Bd+(0, 1) : (xβ, 0βc) ∈Xβ for all β}.
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For ε > 0 and u> 1 we decompose the interval (u,∞) as follows:

(u,∞)=
∞⊔

k=0

(
u(1+ ε)k, u(1+ ε)k+1] ,

where
⊔

denotes a disjoint union. Then we obtain, for x ∈ X̄ and t> 0,

P
(|X|/t> u, X/|X| ∈ Ax | |X|> t

)
(C.9)

=
∞∑

k=0

P

( |X|
tu(1+ ε)k

∈ (1, 1+ ε], X/|X| ∈ Ax

∣∣∣∣ |X|> t

)

=
∞∑

k=0

P

( |X|
tu(1+ ε)k

≤ 1+ ε, X/|X| ∈ Ax

∣∣∣∣ |X|> tu(1+ ε)k
)
P(|X|> tu(1+ ε)k)

P(|X|> t)
.

Fatou’s lemma and the fact that |X| is regularly varying with tail index α together imply the
two following inequalities:

lim inf
t→∞ P

(|X|/t> u, X/|X| ∈ Ax | |X|> t
)

≥
∞∑

k=0

(
u(1+ ε)k)−α lim inf

t→∞ P

( |X|
tu(1+ ε)k

≤ 1+ ε, X/|X| ∈ Ax

∣∣∣∣ |X|
u(1+ ε)k

> t

)

=
∞∑

k=0

(
u(1+ ε)k)−α lim inf

t→∞ P
(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t

)

= u−α

1− (1+ ε)−α
lim inf

t→∞ P
(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t

)
,

and

lim sup
t→∞

P
(|X|/t> u, X/|X| ∈ Ax | |X|> t

)

≤
∞∑

k=0

(
u(1+ ε)k)−α lim sup

t→∞
P

( |X|
tu(1+ ε)k

≤ 1+ ε, X/|X| ∈ Ax

∣∣∣∣ |X|
u(1+ ε)k

> t

)

=
∞∑

k=0

(
u(1+ ε)k)−α lim sup

t→∞
P
(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t

)

= u−α

1− (1+ ε)−α lim sup
t→∞

P
(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t

)
.

Finally, we use Equations (C.6) and (C.7) and the relation 1− (1+ ε)−α ∼ αε, which imply
that

u−αl(Ax)≤ lim inf
t→∞ P

(|X|/t> u, X/|X| ∈ Ax | |X|> t
)

≤ lim sup
t→∞

P
(|X|/t> u, X/|X| ∈ Ax | |X|> t

)≤ u−α l(Ax) .

This proves that

lim
t→∞ P

(|X|/t> u, X/|X| ∈ A | |X|> t
)= u−α l(A) (C.10)
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for all A= Ax such that x ∈ X̄ . The convergence also holds for A= Sd−1+ (resp. A=∅)
with l(Sd−1+ )= 1 (resp. l(∅)= 0). Then, by inclusion–exclusion we obtain the convergence
of P

(
X/|X| ≤ x | |X|> t

)
for all x ∈ X̄ , and we denote by F(x) this limit, which is continu-

ous at any point x ∈ X̄ . In particular this implies the convergence P(Xj/|X| ≤ x | |X|> t)→
1− l(Axej) =: Lj(x) for almost every x ∈ (0, 1]. The functions Lj are non-decreasing and con-
tinuous at almost every x ∈ (0, 1]; thus we extend it to a right-continuous function on [0,1].
Then F is continuous from above (see the definition on page 177 in [2]). For a< b ∈ X̄ we
have the inequality P

(
a<X/|X| ≤ b | |X|> t

)≥ 0, which implies that

�(a,b]F :=
∑

u∈V (a,b)

sign(u)F(u)≥ 0 , (C.11)

where V(a, b) denotes all the vertices of (a, b], sign(v)= 1 if uk = ak for an even number of
values of k, and sign(v)=−1 if uk = ak for an odd number of values of k. Since F is continuous
from above, the inequality (C.11) holds for all a< b ∈ Bd+(0, 1). Theorem 12.5 of [2] then
ensures that there exists a measure S on Rd such that S((a, b])=�(a,b]F. It is straightforward
to see that S is a probability measure with support in Sd−1+ and that its restriction to Sd−1+
coincides with l. Thus Equation (C.10) can be rewritten as

P
(|X|/t> u, X/|X| ∈ · | |X|> t

) d→ u−α l( · ) , t→∞ , u> 1 ,

and therefore proves that X is regularly varying with tail index α and spectral measure l( · ). �
Our aim is now to prove that the condition (2) holds for a sparsely regularly varying random

vector which satisfies Assumption (A).

Proof of Theorem 1.
We consider a random vector X ∈ SRV(α,Z) which satisfies Assumption (A). For β ∈P∗d

and x ∈Xβ we decompose the probability P
(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t

)
as follows:

∑
γ⊃β

P
(|X|/t≤ 1+ ε, X/|X| ∈ Ax, π(X/t) ∈ Cγ | |X|> t

)
,

where the restriction of the sum to the directions γ ⊃ β is a consequence of the first part
of Lemma 2. Moreover, for γ ⊃ β, Lemma 8.1 then ensures that the probability P

(|X|/t≤
1+ ε, X/|X| ∈ Ax, π(X/t) ∈ Cγ | |X|> t

)
is bounded above by

P
(|X|/t≤ 1+ ε, π(X/t) ∈ Ax−ε/|γ | ∩Cγ | |X|> t

)
, (C.12)

assuming that ε > 0 is small enough so that the vector x− ε/|γ | has positive coordinates, and
bounded below by

P
(|X|/t≤ 1+ ε, π(X/t) ∈ Ax(1+ε) ∩Cγ | |X|> t

)
. (C.13)

In order to deal simultaneously with both probabilities in (C.12) and (C.13), we write

P
(|X|/t≤ 1+ ε, π(X/t) ∈ Aψε (x) ∩Cγ | |X|> t

)
, (C.14)

where ψε (x) is equal either to x− ε/|γ | or to x(1+ ε).
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The proof is then divided into two steps. The first step consists in proving that these two
probabilities (C.12) and (C.13) converge when t→∞ for λβ -almost every x ∈Xβ . Then the
goal is to prove that after division by ε these two limits converge to the same quantity when
ε→ 0. We extract the first step as a separate lemma.

Lemma 5. For all β ⊂ γ ∈P∗d , for λβ -almost every x ∈Xβ , for almost every ε > 0 we have
the following convergence:

lim
t→∞ P

(
π(X/t) ∈ Aψε (x) ∩Cγ , |X|/t> 1+ ε | |X|> t

)= P(Z∈ Aψε (x) ∩Cγ , Y > 1+ ε) .

(C.15)

Proof. We use Proposition 1, which implies that the right-hand side in (C.15) is equal to

P(Z∈ Aψε (x) ∩Cγ , Y > 1+ ε)= P(Z∈ Aψε (x) ∩Cγ | Y > 1+ ε)P(Y > 1+ ε)

= P(π((1+ ε)Z) ∈ Aψε (x) ∩Cγ )(1+ ε)−α .

The left-hand side in (C.15) can be rewritten as follows:

P
(
π(X/t) ∈Aψε (x) ∩Cγ , |X|/t> 1+ ε | |X|> t

)
= P

(
π(X/t) ∈ Aψε (x) ∩Cγ | |X|> t(1+ ε)

)P(|X|> t(1+ ε))

P(|X|> t)
.

The ratio P(|X|> t(1+ ε))/P(|X|> t) converges to (1+ ε)−α when t→∞ since |X| is reg-
ularly varying with tail index α. Furthermore, the probability P

(
π(X/t) ∈ Aψε (x) ∩Cγ | |X|>

t(1+ ε)
)

converges when t→∞ if and only if P
(
π((1+ ε)X/t) ∈ Aψε (x) ∩Cγ | |X|> t

)
con-

verges when t→∞, and then both probabilities have the same limit. We use Lemma 8.1 and
the relation πz(v)= zπ(v/z) for v ∈Rd+ and z> 0, which imply that

π((1+ ε)X/t)= (1+ ε)π1/(1+ε)(X/t)= (1+ ε)π1/(1+ε)(π(X/t))= π((1+ ε)π(X/t)) .

Hence the convergence in Equation (C.15) holds if and only if

P
(
π((1+ ε)π(X/t)) ∈ Aψε (x) ∩Cγ | |X|> t

)→ P(π((1+ ε)Z) ∈ Aψε (x) ∩Cγ ) , t→∞ .
(C.16)

The equivalence (C.5) then implies that the former convergence holds if and only if the
probability

P

(
φγ (π(X/t))β ≥ ψε(x)

1+ ε +
ε

(1+ ε)|γ | , min
i∈γ \β φγ (π(X/t))i >

ε

(1+ ε)|γ | ,

max
j∈γ c

φγ (π(X/t))j ≤ ε

(1+ ε)(|γ | + 1)

∣∣∣∣ |X|> t

)

converges to

P

(
φγ (Z)β ≥ ψε (x)

1+ ε +
ε

(1+ ε)|γ | , min
i∈γ \β φγ (Z)i >

ε

(1+ ε)|γ | ,

max
j∈γ c

φγ (Z)j ≤ ε

(1+ ε)(|γ | + 1)

)

when t→∞.
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For γ ⊃ β, the set of all ε > 0 for which

P
(

min
i∈γ \β φγ (Z)i = ε

(1+ ε)|γ |
)
> 0

or for which
P
(

max
j∈γ c

φγ (Z)j = ε

(1+ ε)(|γ | + 1)

)
> 0

is at most countable, so that for almost every ε > 0 we have

P
(

min
i∈γ \β φγ (Z)i = ε

(1+ ε)|γ |
)
= P

(
max
j∈γ c

φγ (Z)j = ε

(1+ ε)(|γ | + 1)

)
= 0

for all γ ⊃ β. Let us denote by Eβ the set of all these ε > 0. The same argument implies that
for λβ -almost every x ∈Xβ we have

P
(
φγ (Z)j = ψε (x)j

1+ ε +
ε

(1+ ε)|γ |
)
= 0 for all j ∈ β , γ ⊃ β, and ε ∈ Eβ .

Let us denote by X̄β the set of all these x. We have proved that for all ε ∈ Eβ and x ∈ X̄β we
have the convergence

lim
t→∞ P

(
π(X/t) ∈ Aψε (x) ∩Cγ , |X|/t> 1+ ε | |X|> t

)= P(Z∈ Aψε (x) ∩Cγ , Y > 1+ ε) .

This concludes the proof of the Lemma 5. �

End of the proof of Theorem 1.
We use the same notation X̄β and Eβ as in the proof of Lemma. We start with the following

decomposition:

P
(
π(X/t) ∈ Aψε(x) ∩Cγ , |X|/t≤ 1+ ε | |X|> t

)
= P

(
π(X/t) ∈ Aψε(x) ∩Cγ , |X|/t≤ 1+ ε2 | |X|> t

)
+ P

(
π(X/t) ∈ Aψε(x) ∩Cγ , |X|/t ∈ (1+ ε2, 1+ ε] | |X|> t

)
.

The introduction of the term with ε2 on the right-hand side follows from the fact that the proba-
bility P

(
π(X/t) ∈ Aψε (x) ∩Cγ | |X|> t

)
may not converge. The latter probability is bounded by

P
(|X|/t≤ 1+ ε2 | |X|> t

)→ 1− (1+ ε2)−α = o(ε).

Moreover, Lemma 5 ensures that

P
(
π(X/t) ∈ Aψε(x) ∩Cγ , |X|/t ∈ (1+ ε2, 1+ ε] | |X|> t

)
→ P

(
Z∈ Aψε (x) ∩Cγ , Y ∈ (1+ ε2, 1+ ε]

)
,

when t→∞ for ε, ε2 ∈ Eβ and x∈ X̄β . Hence we obtain

lim
t→∞P

(
π(X/t) ∈ Aψε (x) ∩Cγ , |X|/t≤ 1+ ε | |X|> t

)
= lim

t→∞ P
(
π(X/t) ∈ Aψε (x) ∩Cγ , |X|/t ∈ (1+ ε2, 1+ ε] | |X|> t

)+ o(ε)

= P
(
Z∈ Aψε(x) ∩Cγ , Y ∈ (1+ ε2, 1+ ε]

)+ o(ε)

= P
(
Z∈ Aψε(x) ∩Cγ , Y ≤ 1+ ε)+ o(ε) .
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Then Proposition 1 implies that

P
(
Zβ ∈ Aψε(x) ∩Cγ , Y ≤ 1+ ε)
= P

(
Z ∈ Aψε (x) ∩Cγ

)− P
(
Z ∈ Aψε (x) ∩Cγ | Y > 1+ ε)(1+ ε)−α

= P
(
Z ∈ Aψε (x) ∩Cγ

)− P
(
π((1+ ε)Z) ∈ Aψε (x) ∩Cγ

)
(1+ ε)−α

= [
1− (1+ ε)−α

]
P
(
Z∈ Aψε (x) ∩Cγ

)
(C.17)

+ (1+ ε)−α
[
P
(
Z∈ Aψε(x) ∩Cγ

)− P
(
π((1+ ε)Z)∈ Aψε (x) ∩Cγ

)]
. (C.18)

The sets Aψε (x) decrease when ε→ 0 and satisfy ∩ε>0Aψε(x) = Ax. Hence the term in (C.17)
divided by ε converges to αP(Z ∈ Ax ∩Cγ ). For the term in (C.18) we use (C.5), which states
that the event {π((1+ ε)Z)∈ Aψε (x) ∩Cγ } corresponds to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φγ (Z)j ≥ ψε (x)j

(1+ε) + ε
|γ |(1+ε) , j ∈ β ,

minj∈γ \β φγ (Z)j >
ε

|γ |(1+ε) ,

maxj∈γ c φγ (Z)j ≤ ε
(|γ |+1)(1+ε) .

Hence the difference of probabilities in (C.18) corresponds to the difference

Hβ,γ
(
ψε(x), 0, 0

)−Hβ,γ
( ψε (x)

(1+ ε)
+ ε

|γ |(1+ ε)
,

ε

|γ |(1+ ε)
,

ε

(|γ | + 1)(1+ ε)

)
.

After a division by ε this difference converges to

dHβ,γ (xβ, 0, 0) · (xβ − 1/|γ |,−1/|γ |,−1/(|γ | + 1)) , ε→ 0 ,

for ψε (x)= x/(1+ ε) and ψε (x)= x− ε/|γ |.
All in all, we have proved that for λβ -almost every x∈Xβ , both limits

lim
ε→0

lim inf
t→∞ ε−1P

(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t
)

and

lim
ε→0

lim sup
t→∞

ε−1P
(|X|/t≤ 1+ ε, X/|X| ∈ Ax | |X|> t

)
exist and are equal to

l(Ax)=
∑
γ⊃β

αP(Z ∈ Ax ∩Cγ )+
∑
γ⊃β

dHβ,γ (xβ, 0, 0) ·
(

xβ − 1

|γ | ,−
1

|γ | ,−
1

|γ | + 1

)

= αP(Z ∈ Ax)+
∑
γ⊃β

dHβ,γ (xβ, 0, 0) ·
(

xβ − 1

|γ | ,−
1

|γ | ,−
1

|γ | + 1

)
.

Then Assumption (A) ensures that for λβ -almost every x ∈Xβ , the function x �→ l(Ax) is
continuous at x, and Lemma 4 allows us to conclude.
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C.5. Proof of Proposition 2

Recall that we have defined the quantities θβ, i =∑
j∈β (θj − θi) and θβ, i,+ =∑

j∈β (θj −
θi)+ for θ ∈ Sd−1+ , β ∈P∗d , and 1≤ i≤ d.

1. We prove only the convergence (3.2) (the proof of (3.3) is similar). For β ∈P∗d , Lemma 3
ensures that π(Y�) ∈Cβ if and only if maxi∈β �β, i < 1/Y and mini∈βc �β, i ≥ 1/Y. Hence
(3.2) is equivalent to

P
(
(|X|/t,X/|X|) ∈Dβ | |X|> t

)→ P((Y,�)∈Dβ ) , (C.19)

with

Dβ =
{
(r, θ )∈ (1,∞)× Sd−1+ : θβ, i < 1/r for i ∈ β, and θβ, i ≥ 1/r for i ∈ βc} ,

and this convergence holds if P((Y,�)∈ ∂Dβ )= 0. The boundary ∂Dβ satisfies the inequality

P((Y,�) ∈ ∂Dβ )≤
d∑

i=1

P(�β, i = Y−1) ,

and all the terms of the sum are null since Y is a continuous random variable independent of
�. Thus P((Y,�)∈ ∂Dβ )= 0, which implies that the convergence (C.19) holds and then that
the convergence (3.2) holds as well.

2. Following Lemma 3, the probability that Z belongs to Cβ is equal to

P(Z∈ Cβ )= P
(

max
j∈β

∑
k∈β

(Y�k − Y�j)< 1, min
j∈βc

∑
k∈β

(Y�k − Y�j)≥ 1
)

= P
(

max
j∈β �αβ, j,+ < Y−α, min

j∈βc
�αβ, j,+ ≥ Y−α

)

=
∫ 1

0
P
(

max
j∈β �

α
β, j,+ < u≤min

j∈βc
�αβ, j,+

)
du

=E
[(

min
j∈βc

�αβ, j,+ −max
j∈β �

α
β, j,+

)
+

]
.

Similarly, Equation (3.5) is also a consequence of Lemma 3 since we have the relations

P(Zβc = 0)= P
(
1≤min

j∈βc

d∑
k=1

(Y�k − Y�j)+
)= P

(
Y−α ≤min

j∈βc
�αβ, j,+

)
(C.20)

=
∫ 1

0
P
(
u≤min

j∈βc
�αβ, j,+

)
du=E

[
min
j∈βc

�αβ, j,+
]

.

This proves (3.5) and concludes the proof of the proposition.

C.6. Proof of Theorem 2

We first state an inequality which will be used to prove both results of Theorem 2.

Lemma 6. For β ∈P∗d we have the inequality

P(�∈ Cβ )≤ P
(

max
j∈β �β, j,+ < 1

)
. (C.21)
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Proof of Lemma 6. The relation in (C.21) is equivalent to

P
(

max
j∈β �β, j,+ = 1

)≤ P(� /∈Cβ ) .

The probability on the left-hand side can be rewritten as

P
(

max
j∈β �β, j,+ = 1

)= P
( ∑

k∈β
(�k −min

j∈β �j)= 1
)
= P

( ∑
k∈β

�k = 1+ |β|min
j∈β �j

)
.

Since � ∈ Sd−1+ , the equality
∑

k∈β �k = 1+ |β|minj∈β �j holds only if there exists k ∈ β
such that �k = 0. Thus we obtain the inequality

P
(

max
j∈β �β, j,+ = 1

)
≤ P(�k = 0 for some k ∈ β)≤ P(� /∈Cβ ) ,

which concludes the proof. �

We now move on to the proof of Theorem 2. The proof of these results relies on Equation
(3.4) and Lemma 6 above.

1. If β ∈P∗d is such that P(�∈ Cβ )> 0, then Equation (3.4) implies that

P(Z∈Cβ )≥E
[(

min
j∈βc

�αβ, j,+ −max
j∈β �

α
β, j,+

)
+1�∈Cβ

]

=E
[(

1−max
j∈β �

α
β, j,+

)
1�∈Cβ

]

=E
[(

1−max
j∈β �

α
β, j,+

)
|� ∈Cβ

]
P(�∈ Cβ ) . (C.22)

The expectation is positive by Lemma 6, and the probability P(�∈ Cβ ) is positive by
assumption. This shows that P(Z∈Cβ )> 0.

2. We prove the two implications separately.
We first consider a maximal direction β of �. The first part of the theorem ensures that

P(Z∈ Cβ )> 0. In addition, if β ′ � β, then Equation (3.8) gives

P(Z∈C
β
′ )≤ P(Z

β
′ > 0)≤ P(�

β
′ > 0) ,

and this last probability equals zero since β is a maximal direction for �. This proves that β is
a maximal direction for Z.

We now consider a maximal direction β of Z. We claim that for β ′ � β, P(� ∈C
β
′ )= 0. If

not, the first part of the theorem implies that P(Z∈C
β
′ )> 0, which contradicts the maximality

of β for Z.
Secondly, Equation (3.4) implies that

P(Z∈ Cβ )=E
[(

min
j∈βc

�αβ, j,+ −max
j∈β �

α
β, j,+

)
+

]
=E

[(
min
j∈βc

�αβ, j,+ −max
j∈β �

α
β, j,+

)
+1�∈Cβ

]
(C.23)

+E
[(

min
j∈βc

�αβ, j,+ −max
j∈β �

α
β, j,+

)
+1�/∈Cβ

]
= E1 + E2 . (C.24)
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The first term E1 has already been calculated in (C.22). It is equal to

E1 =E
[
1−max

j∈β �
α
β, j,+ |� ∈Cβ

]
P(�∈ Cβ ) .

For the second term E2, the assumption � /∈Cβ implies that there exists l ∈ β such that�l = 0,
or that there exists r ∈ βc such that �r > 0. We then decompose E2 into two terms:

E
[(

min
j∈βc

�αβ, j,+ −max
j∈β �

α
β, j,+

)
+1�/∈Cβ

]

≤E
[(

min
j∈βc

�αβ, j,+ −max
j∈β �

α
β, j,+

)
+1∃l∈β,�l=0

]

+E
[(

min
j∈βc

�αβ, j,+ −max
j∈β �

α
β, j,+

)
+1∃β′�β,�∈C

β
′
]

.

The first expectation is then equal to

E
[(

min
j∈βc

�αβ, j,+ −
( ∑

k∈β
(�k)+

)α)
+1∃l∈β,�l=0

]

and thus vanishes. The second expectation is smaller than P(�∈ C
β
′ for some β ′ � β), which

is equal to zero. Indeed, if P(�∈ C
β
′ for some β ′ � β)> 0, then by Equation (3.4), we also

have P(Z∈C
β
′ for some β ′ � β)> 0, which contradicts the maximality of β for Z. All in all

this proves that E2 = 0.
Going back to Equation (C.23), we have proved that

P(Z∈Cβ )= E1 =E
[
1−max

j∈β �
α
β, j,+ |� ∈ Cβ

]
P(� ∈Cβ ) .

By Lemma 6 we know that the expectation is positive. Hence, the assumption P(Z∈Cβ )> 0
implies that P(�∈ Cβ )> 0, which proves that β is a maximal direction of �.
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