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Introduction.

In the following pages I have developed the theory of matrices
by resolving them into parallel components arranged diagonally,
rather than into the usual rows and columns. This treatment is
natural in view of the fundamental fact that the resolution is
undestroyed when matrices are formed into products (Theorem 2).
It is closely related to the theory of continuants and of continued
fractions. Certain features stand out in such a presentation—the
distinction between the length and range of a diagonal (§ 4), that
between regular and irregular diagonals (§ 6), and the use of
equable partition (§ 7). The exact conditions for the existence of an
rth root of a given singular matrix are examined in § 9 and
summarized under the title', the condition of equability.

The index law of Theorem 1 (§ 1) is capable of extension by the
introduction of secondary diagonal matrices Er, a secondary being
denned as a diagonal perpendicular to a primary Dr. The law
would then assume the form

where — v^.r±s^.v. The further development of this secondary
theory would be useful with a view to its application to symmetric
and Hermitian matrices.

1. Matrices resolved into diagonal matrices.

In the usual notation [Xy] for a square array of elements xg the
suffix i refers to the row and the suffix j to the column of the
typical element ztj. Useful as this is for purposes of addition it
rather obscures the issue when matrices are multiplied; and an
alternative notation, determined not by row and column but by
gnomon and diagonal, has certain advantages.

An example will make this notation clear, and will also serve
to indicate what is meant by gnomon and diagonal. Let

#(0,0) #10,1) #(0,2)

#(0,-1) #(1,0) #tt,l!

#(0,-2) #(1,-1) #(2,0)

and

#00

#10

#20

in brief let

#01

#11

#21

#02

#12

#22
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I shall suppose that, unless the contrary is stated, the suffixes i, j , 7
each take the v +1 values

0,1 ,2 , . . . ,* ,
and that 8 takes the 2v +1 values

S = 0, ±1 , ±2, . . . ,±1/ .
When 8 = 0 the element occupies a position on the leading or
principal diagonal, all other diagonals being numbered in an obvious
way from this zero position. Diagonals which are indicated by
a negative suffix lie below and to the left of the leading, diagonal:
those with a positive suffix lie above and to the right.

In infinite matrices (when v-*- 00 ) each diagonal has an infinite
length: in a finite matrix the leading diagonal is said to have
a length v + 1 ; it possesses v +1 elements. The extreme diagonals
(8= ±v) have length unity (they each possess a single element).
The length of the diagonal in general is given by

l = v+l-\8\.
When 7 = 0 the element occupies a place in the leading gnomon

or T-shaped border of the array, which encloses the next gnomon
(ry = 1)( which iu turn encloses the next, and so on, until a final
single element (7 = v) gives the final (and i>th) gnomon.

Evidently one pair of values i, j defines one pair 7, 8 by the
relations

where 7 is the smaller of i and j when they differ. Conversely the
values 7, 8 define values i, j uniquely.

Next let Ds denote the square array obtained by replacing all
the elements of X by zeros except for those which belong to the
8th diagonal, which are unaltered. If this process is applied for
each value of 8, a set of 2v +1 matrices is obtained whose sum
(according to the addition law of matrices) is X. Thus

x= i DS.
«=-„

For example, in the usual ij notation, if v ~ 2 , then
X = Z>_2 + £-1 + Do + A + D%

# 2 1 ^22

a'02

and the matrix is said to be resolved into its diagonal components.
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The following notation is very useful for denoting one or other
such diagonal component:

Dr - diagr (xiti+r) = diagr (xy),

where the double suffixes indicate row and column, whereas the
single suffix y indicates the gnomon. In particular, if the suffix r
is suppressed, the principal diagonal is indicated:

Z)o = diago (&•«) = diag (a*,-)
= d i a g (a?<x>, « i i , • • •> #«.),

of which the unit matrix is a special example,
I = diago (1) = diago (1,1, . . . , 1), to v +1 terms.

The first over-diagonal is

diagi (xu+i) = diagi (xOi, Xn> • • •, x,-i, ,)•

In particular the matrix

with its v non-zero elements, is called the auxiliary unit matrix.
Again the first under-diagonal is

diag_i (xi, i_i) = diag_a (x10, xa,..., xv, ,,_i);

and in particular the matrix

is called the transposed auxiliary unit matrix.
Transposition is usually indicated by an accent, so that, if

X = [xij], then X' = \xji\.
The Kronecker delta,

fi«=l, 8y = 0 (t+j),

provides a still more compact notation for the diagonal components
of a matrix. Evidently it is legitimate to write S,-,;-_,. if it is under-
stood that i and j still refer to the row and column respectively in
which the element stands. These various diagonal matrices can now
be written

where 0 < i — r < v, 0 ̂ .j — r ^ v, r > 0.
It is evident that, if two matrices X='2,D and Y="2.E are

resolved into their diagonal components Dr and ET, then the sum
X + Y is given by the sum of diagonal components of which the
rth is Dr + Er. There is a corresponding property arising from the
product of two matrices, as the following two theorems shew.
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THEOREM 1. The prodwt of two arbitrary diagonal matrices
Dr and D, is a diagonal matrix ZVn or else is zero, according as

is numerically less than or not less than v.

Proof. From the product law of matrices, [xy] [yy] = [%], where
V

Zij= 2 xnykj, it follows that, if
ft 0

and [yy] = diag, (yit s+i),

then Zij has only one possible non-zero term

where k <= i + r, ji = k + s = i + r + s. Hence

so that Zij is zero unless it is an element upon the (r + s)th diagonal,
in which case

r, i+r+s =

We may therefore write- the result

diagr (snu+r) diags(2/f,i+11)

subject to the obvious conditions

This first theorem asserts the. index law obeyed by products of
diagonal matrices, and it holds for negative as well as for positive
and zero values of r and s.

THEOREM 2. The product of any two matrices X and Y may be
expressed in terms of diagonal components each of which is linear
in those of both X and Y.

V V

Proof. For if X = 2 Z>,., Y= S Er are two such matrices, then
r=—v r—-v

their product can be written
=Z= 2 Fr,

r=-v

where, by Theorem 1, the expression

Fr = D.v+rEv + ... + Di Er-i + ... + D.Er_v

is the sum of terms all of which belong to the type Dr. Hence Fr
is a diagonal component of the product X Y, for each value of r.
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2. Continuants.

Two particular types of matrix which commonly occur are the
continuant,

C = D_1 + D0 + D1, (1)

and the classical canonical form,

In the first of these examples it will be seen that there are three
consecutive diagonal components placed on and adjacent to the
principal diagonal. Thus

b0 Ci • • .

C =
d.% c2

c3 (2)

This is the matrix which underlies the theory of continued fractions,
as indeed is implied by a remark of Sylvester (l), relative to the
leading element in the reciprocal matrix of C. If this element is
denoted by/", then it is a fact that

(3)

where
^ bo— bx — b2 —'"— bv

It is interesting to notice that the suffixes of the letters appear in
a gnomon pattern in the matrix C, whereas they follow the natural
order in the continued fraction. The letters themselves indicate the
diagonals of G.

This gnomon pattern is, however, the reverse of that which was
earlier introduced, and provides an equally useful way of analysing
matrices. If the present is called the T" pattern, then the funda-
mental analysis by diagonal or by gnomon may be visualized as
follows:

0

1

2

0

1

2

r"
VOL. XXIX. PART III.
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Matrices of this continuant type have also arisen in quantum
algebra, and for this, apart from the earlier, reason they invite
further examination. Evidently the sum or difference of two con-
tinuant matrices is itself a continuant matrix; but this property
does not necessarily hold for the product or quotient. It is inter-
esting, therefore, to find out the requisite conditions, an enquiry
which in fact has been suggested to me by Professor E. T. Whittaker,
namely:

To find necessary and sufficient conditions for the product of two
continuants to be a continuant.

These follow readily enough by forming the product PQ of two
continuants

Since PQ = ZDrEt = '2lFr+a, where Fr+I is a diagonal component,
it follows that necessary and sufficient conditions are

DlE1 = 0 = D_iE_1,
these being the only terms in the product PQ which contribute
anything beyond the requisite three diagonals. Now each of these
four matrices contains exactly v possible non-zero elements. Let
them be written as

Dx = diagi(d0,d\,dz,...,d^), D_i = diag_i(di),
Ei = diag! (e0, d, ea,..., e,-\), E_x = diag_i (e/).

Then the condition DiEi = 0 is equivalent to the v—1 equations

while a similar set of v — 1 equations holds for D-\E-i, It follows
that at least p^-1 elements, one from each of the pairs (di, e^i),
must be zero; and that at least v — 1 elements, one from each of
the pairs (<£/, e'»_i), must also be zero. In other respects the elements
may be arbitrary: in particular the first of Ei and the last element
of Z>i are arbitrary.

Evidently there are exactly 2"~x different alternative ways of
stating the minimum requirements for satisfying each of these sets
of conditions; among which the most elegant is that wherein all
elements with odd suffixes are zero. In this case both P and Q are
of the type

Ot fh
fii «3 •

A'
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that is, a matrix in which a set of arbitrary binary matrices (each
consisting of four elements with a possible residual single element
#„„ if v is even) is disposed along the diagonal. More succinctly one
may write

Evidently, too, when each of P and Q is of type R, so is the
alternative product QP. Thus by satisfying the 2 (v — 1) conditions

da+i = d'at+i = eg,-+i = e'21+1 = 0

both products PQ and QP are continuants.
Conversely, if both PQ and QP are. continuants, then all the

4 (p — 1) equations
diei+i = 0, eidi+1 = 0, d,'e'i_i = 0, - e/d'i_i = 0

must be satisfied. These conditions can be stated in graphical
form, by means of two rectangular matrices

o _ f̂ O' di, ..., d,,_i~| _,_ frfo', di, ..., d'
. Leo. ei, ;y>.e~i]' Uo'. e\ eV-i

which must be such that each diagonal of two letters must include
a zero element, the diagonals being either primary (parallel to that
of rfo^i) or secondary (parallel to that of eodi). The minimum re-
quirements are now attained by inserting the fewest possible zeros
according to these cited rules, and this leads to an interesting
theorem.

THEOREM 3. When each of the continuants P and Q has an even
number of rows and columns, the minimum requirements for
ensuring that both PQ and QP are also continuants are satisfied
only if both P and Q are of type R.

Proof. In such matrices v is odd, and a possible scheme for
both S and T is the following,

[X • X • X . . . • X~]

X • X • X . . . • X j '

which evidently belongs to type R, where the dots occur in alternate
columns and denote zeros, in total v — 1, there being v + 1
arbitrary elements (x) in the residual columns.

Furthermore, any other possible scheme must be of one of the
following types,

• • I . . « J ' 8 * L X x •••
fx . x . . . . 1 T . x . . x . . . 1

23-2
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or a combination of these types such as [$2, :, 83], [S2, S$], etc.
Here 82 contains consecutive crosses throughout the top row, and
83 throughout the bottom row. In [Sg, S6] and all such combinations
the total number of columns is understood to be v. Eut in all these
there are at least v zeros. Hence Si alone satisfies the minimum
condition; which proves the theorem.

In this case it is further verifiable that all the matrices P ±Q,
PQ, QP, PQr1, QrxP are of type R, provided that Q is non-
singular.

The case of continuants of an odd order (when v is even) is
more complicated. It is impossible to have fewer than v zeros;
and inspection shews that the only cases when there are exactly
v zeros are as follows,

82, /S5, [S2, Ss], [Si, Sz], [S3, t , S3],

where each 8i has an even number of columns, and each of these
eight schemes has exactly v columns. For example, when v = 10
one of the arrangements of S2, S5 is

* x l
. xj'

where the number of arbitrary elements belonging to $2 is any even
number less than v. Similar remarks refer to the matrices T. By
combining these in all possible ways the various types to which
P and Q may belong are ascertained. Of these the most interesting
are those when S and T are of type #4 or 85. For then P and Q are
each of the same type, chosen from among the following possi-
bilities:

x x
X X

X X

X X

x_

X X

X X

X X

X X

X •

X X X

• X

X X X

• X

X X

• X •

X X X

X •

X X

Here the first two types are like R but with an extra diagonal
element x added at one or other end of the diagonal, to provide
the necessary odd total number of rows and columns. In each case
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P±Q, PQ, QP, PQ~\ QTXP are all of the same type: so that we
have now obtained, in all, five types R, Ri, R2, i?3, Rt of continuant,
each of which defines a field: namely that all matrices belonging
to any one such type may be combined by addition, subtraction,
multiplication and division into further matrices still of the same type.

This however is not the case with matrices P and Q, which are
derived from the alternative schemes S2, S3 or [Si, $,]. It is how-
ever interesting to note that the schemes S3 and S3 lead to products
PQ which have actually arisen in the matrix treatment of continued
fractions. Apart from the trivial case when P or Q is merely a
diagonal matrix, the characters of P and Q derived from taking S
and T to be of types S2 and S3 are

x x
X X

• X X , Q-
X X *

X X

But these are exactly the types of factors whose product PQ has
been used by E. T. Whittaker(2) in his exposition of the work of
Stieltjes upon the expansion of a continued fraction in the form of
a power series.
3. Classical canonical forms.

The type P which has just been stated can be written as
Bo + Di, which also is the type assumed by reducing any given
square matrix X to its classical canonical form (Ref. (3), 58). Thus
if the characteristic equation

| X - X / | = | ^ - \ ^ | = 0 (1)
is solved, then the resulting v + 1 values of A. are called the
latent roots of the matrix X, and equally of its canonical form C.
These latent roots, grouped according to possible repetitions, con-
stitute the v+1 elements of the diagonal Do: let us say

• i>0 = diag(Xi) = diag(a,a, ...,a, 0, 0, . . . ,7 , ...). (2)
The over-diagonal Bi is then not arbitrary but is determined as a
sequence of v elements, each equal to unity or to zero, according
to the Segre characteristic of the original matrix X (or of its
canonical form). An actual example makes this clearer. A possible
canonical form of a five-rowed matrix with latent roots a, a, a, fi, /3 is

C=HXH~1 =
• a •
• • a
. . •

where Bo = diag0 (a, a, a, 0, 0), Bx = diagi (1, 0, 0, 1). (3)
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This canonical matrix consists of three latent matrices placed
diagonally and of orders 2, 1, 2 repectively. Each such latent
matrix is either a single element (a latent root a) when its order /*
is unity, or else is of order fi > 1 and of type

, (4)
where naturally al contains a diagonal of /J. equal elements a, while
U contains p — 1 units upon the over-diagonal. If a 4= ft the Segre
characteristic is written [{21} 2], but if a = fi it is {212}. The
numbers enclosed in brackets {}, or else standing separately, are
called the exponents of the elementary divisors of X with regard to
the latent root involved: or briefly they are the exponents of the
latent root a. Evidently they are the orders of the respective
latent matrices involving a.

The matrix X may of course possess but one latent matrix, in
which case its canonical form is Cv+i (a), and Di simply becomes
the auxiliary unit matrix U. Or again X may possess v + 1 latent
matrices, in which case D\ is entirely zero. Between these extremes
come the more typical cases when D\ is a diagonal possessing runs
of consecutive non-zeros interspersed with zero gaps.

I have introduced this term latent matrix deliberately, for it
seems to be the most natural term to meet a want which certainly
exists in the accepted nomenclature.

4. Length and range.

The length of a diagonal has already been defined in the obvious
way, but it will be useful to add a further definition, that of the
range: namely, the range is the number of elements in a sequence,
counted from the first non-zero to the last non-zero element inclusive.
Length and range may apply not only to diagonal but also to row
or column or sequence of any such kind.

For example, the sequence 0,1, 5, 0, 2, 0 has a length six and a
range four. Or again, in a continuant the sequence of diagonals
•D-i. Do> Di n a s a range three, when at least one non-zero element
occurs in X)_i and at least one in Di.

Manifestly the range p cannot exceed the length I of a sequence.
"When p = l\et the sequence be called complete, when p < I, incomplete.
Further, when no zero gap occurs within the range let it be
called unbroken or close, and when a gap or gaps occur, broken
or open.

These ideas enable us to formulate the varieties of behaviour
when the product of any two diagonal matrices Dr and D, is
formed according to Theorem 1, where, as before, r and s may be
positive or negative.
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THEOREM 4. If rs ^ 0, the product Dr+, of two complete
diagonals Dr, D,, when non-zero, is complete, the length I and range p
of the product being given by

= p.

Proof. In the notation of Theorem 1 let the single-term element

zq at the ijth. position in the product be now denoted by f J),
where k = i + r, j = k + s. If rs > 0, then k must lie between i and
j . If rs = 0, then k must equal i or j . In either case the resultant
(r + s)th diagonal is completely filled, provided that the original
diagonals Dr, Ds are complete and that —

For example, if v = 9, r = 2, s = 5, then

(Y)=(y). (Y). (V)-
The number of terms is I or p, and is determined by the steps from
the initial position (0, 7) to the final (2, 9). The above formula
will be seen to include all cases whenever rs > 0. Hence the theorem
is proved.

THEOREM 5. If rs< 0, the product of the two complete diagonals
is incomplete but unbroken, and such that its length and range
satisfy the relation

l = v +1 - \r + s\> p.

Proof. If rs < 0, either r = — r' < 0 and s > 0 or else r > 0 and
s = - s' < 0. The typical term of the product diagonal is then
given by

(i j\ /k + r' k + s\ (k-r k-s'\
( * ) - ( * ) ° r ( * )'

where in each case k does not lie between i and j . In the former
of these cases k takes successive values from zero upwards until
the larger of i and j attains the value v. The range is then unbroken
but incomplete, since a complete range necessarily would have
started with a zero value of the smaller of i and j . For example,

' (V)=(6o2). (V). (V). (V). (V).
and the positions where (i, j) = (3, 0), (4, 1) are necessarily filled
with zeros. Such a diagonal is indicated by

• • x x x x x (k <i, k<j, p<l).

https://doi.org/10.1017/S0305004100016406 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100016406


358 Mr Turnbull, Diagonal matrices

Again, in the latter of these cases k may take successive ascending
values but concluding with the value v\ and the argument is
analogous. For example, v = 9, r = 2, s = — 5,

(V)-(35°). (7). (V). (V). (Y).
and the two final positions ((», j ) = (8, 5), (9, 6)) upon this third
negative diagonal (r + s = — 3) must contain zeros. Thus

x x x x x • • (k>i, k >j, p< I).

It will be seen that the deficiency I — p is equal to the smaller of
\r\ and \s\.

Corollaries. If px and lx denote the range and length of
Dr — diagr (x), while py and ly denote those of D, = diag, {y), and if

Px== 'xi Py — *yi

then (i) px > p, py> p, when rs > 0;

(ii) px>p = py, when r = 0, s=£0;

(iii) px = p<py, when r^O, s = 0;

(iv) /jj; > p, /3tf > p, when rs < 0.

These are easily verified.
It is also to be noted that a principle of duality underlies this

theory of ranges, as may be seen by attaching to each suffix group
i, j , k a dual group i', f, k', such that

i + %' = j + f = k + k' = v + 1.

Similar rules can also be formulated for continued products
such as

diagr (x). diag, (y). diag, {z)... = diagr+8+t+... (w).

5. Intensity.

By the intensity of a diagonal will be meant the actual sequence
of values of its elements. Such elements form a vector, let us say

u=(a, b, c, d, ...), (1)

consisting of p elements. If Dr = diagr (it), Ds = diag, (w), then
Dr and D, will have the same intensity. A sequence of p con-
secutive elements of a diagonal whose length exceeds p is called
a 8iibdiagonal of length p. Evidently two such subdiagonals lying
in the same or in parallel lines may have equal intensities.

From a principal diagonal matrix Do = diag (a;,) further diagonal
matrices may be derived by forming its powers. They will usually
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differ in intensity but will not change position. For this reason it
is useful to call this the static diagonal. For example,

Do* = diag0(xffi, atf, ..., «.«), (2)

and, if f(xi) is a scalar function of a single argument #,•,

/(Do) = diag0(f(x0), f(xx), ..., f{x,)), (3)

as may easily be verified.
From an adjacent diagonal D±1 further and parallel diagonal

matrices may be obtained by forming its powers. The diagonal
changes position as well as intensity in the following characteristic
way,

Xx =diag±i0ro, xu x2, ...) \
Xj2 = diag±i! (xox!, XiXi, x2x3, ...) J-, (4)
Xt

s = diag±3(a;o#i#2. «i#2#3> x2x3xt, ...) J
etc., where the same sign is taken throughout: Xiq is then a diagonal
whose typical element contains exactly q consecutive elements a;,- as
factors, until q^v + 2, when Xtf = 0. The intensities, formed in
this way, all consist of close-range products of the #*.

Once more, from further diagonals Z)±r(r > 1, or r < — 1), the
various powers can be evaluated thus:

Xr =diag±r(a;o,
Xr

2 = diag±2r(xp
V. (5)

Xri = diag±?r (xoxrxir...xiq_1}

Also if q is so large that (q — l)r exceeds each suffix of x, then
X,.i = 0. The suffixes of a typical element in a power of X are in
arithmetical progression with common difference r exceeding unity;
and these intensities are said to be formed from open-range products
of the Xi.

Now let there be two arbitrary diagonal matrices

D = Dr = dia.gr(x0,x1 xh) (r=±r')t

DB = diagg(y0, yi, ..., yk) (s = ± «').

where r' > 0, s' > 0 and where v — r' = h,v-s' = k. Certain properties
which are useful can now easily be verified.

(i) The product of two close-range diagonals is either close-range
or else zero.

This means that all the non-zeros among the xt are consecutive,
as also among the y<.
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(ii) The matrices Dr, D, commute identically for all xt and y{

if and only ifr = s = 0. That is,

diago (x) diago (y) = diag0 (xt y{) == diag0 (y) diag0 (x);

diagr (x) diag, (y) £ diag, (y) diagr (x) (r' + s'> 0).

Next let r' be positive and not zero, and let p be an integer such
that

Then it follows that

(iii) -ZV^O, D / s O (+r = r '>0) .

This follows from the relations (5) above. Again

(iv) The latent roots of Dr (r =jt 0) are all zero: and D,v is called
the reduced characteristic function of Dr.

It is well known (Ref. (3), 48), and is here easily verified, that
Dr can satisfy no polynomial relation of degree lower than p. On
the other hand the latent roots of a principal diagonal Do are the
elements themselves.

6. Subdiagonals of an open-range diagonal.

The following notation is convenient for the purpose of repre-
senting the most general type of non-zero diagonal matrix:

D ^ d i a g , . ^ , AP1, 0^, AP2, OU8> .. . . AP(i, 0wJ, (1)

where, for each value of i, 0a{ denotes a sequence of &>* zeros, and
A^ a sequence of pi non-zeros. The diagonal is now said to be
resolved into /M close-range subdiagonals, where / 0 1 . The suffixes
are such as to satisfy the relations

ii, (2)

which are in keeping with the existing definitions of the length
I and the range p. As before it is useful to write

±r = r'^0. (3)

It now appears that there are two distinct types of diagonal matrix,
the regular and the irregular, which are defined as follows. In
the regular case either r = 0 or, when /t > 1,

r ' « W i ( i = l , 2, ...,(/*-1)), (4)

and in the irregular case r' exceeds at least one of the suffixes a>i
belonging to intermediate runs of zeros. The case when /J, = 1 has
no such intermediate run of zeros, and is classed as regular.
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THEOREM 6. The powers of a regular diagonal are found by
powering each of its subdiagonals independently.

Proof. The case when r = 0 is obvious. Next assume that
0<r'^pi for each subdiagonal and that r '^wf as in (4). Then
evidently

where Ap-^ denotes the second power of App for each of the yx values
of pt, and where each of the intermediate null ranges is swelled by
an addition of r' zero elements. Powers of this open diagonal
Dr accordingly proceed by powering each separate subdiagonal—
shortening its length by / elements at a time, and increasing the
intermediate null elements a like amount. If r > 0, the leading
element of each close-range APj remains in its own row of the
matrix (and, if r< 0, in its own column) until a power is reached
when the particular subdiagonal is annihilated. Put another way,
ifr>0, each leading element of a close-range moves horizontally to
the right when Dr is powered, while the final element of the same
close-range moves at a constant inclination upwards to the right.

Next, the provisional condition, that r'^/jf, may be removed.
For suppose that at the (q + l)th power APJ is annihilated whereas
the adjacent APl and APJ are not. Then the gaps 0Ml and 0Ua are
merged in a larger gap

In such a case
OUo, Ap,-^., 0^, APs_,/r.,

and the original properties of the still existing non-zero sub-
diagonals are preserved. Hence condition (4) alone is essential to
the case: and this proves the theorem.

Thus it will be seen that all regular diagonals (excepting the
case when r = 0) tend to lose range when powered. Irregular
diagonals may however increase range under this same process;
but the rule is exceedingly complicated in general. Consider, for
example, the matrix

Z)r = diag,.(03, A4, 02,A3, Oj),

where there are two subdiagonals, A4 and A3, in an open-range
9 within a length 13. This diagonal is regular if r^2, but
irregular when r exceeds the suffix of Oj. Now let Dr

2 be formed.
According to the rule for the regular case A3 should disappear
when r = 3, yet here it becomes Ai. For r = 4, 5, 6, 7, 8 there is
but one subdiagonal in Dr

2, and its range is 2, 3, 3, 2,1 respectively.
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7. Invariant factors of a close-range diagonal.

By an equable partition of a positive integer N into r parts is
meant the unique partition

((n + 1), (n + 1), ...,n,n, .... n), (1)
each part being equal either to n or to n + 1. Here

N=nr + s (s<r), (2)

so that s is the remainder when N is divided by r. There are con-
sequently s parts equal to n + 1 and r — s parts equal to n. For
example (3, 2, 2), (2, 2, 2) are the equable partitions of 7 and 6
respectively into three parts. This definition is very useful as a way
of specifying the canonical form of a given close-range diagonal
matrix, all of whose elements are non-zero:

Dr = diagr (u0, «i up_i), (3)

where r > 1, all «»4s 0, r + p = v + 1 .
Such a matrix has all its i»+l latent roots equal to zero,

and, in such a case, a certain process of chain formation which is
due to a remark of A. C. Aitken (Ref. (3), 66, 76) leads at once to
the following theorem.

THEOREM 7. The Segre characteristic of a complete non-principal
diagonal D& is identical with the equable partition of the integer
v + 1 into r parts.

Proof. Let (i, j) denote the element of Dr which occupies row
i and column j . Then the p non-zero elements are given by

(t,j) = ( 0 , r ) , ( l , r + l ) , ...,(p-l,r + p-l). (4)
Now let every rth element, counted from (k, r + k), be selected and
set down as a chain called 0k. Thus

6k = ((k, r + k), (r + k,2r+ k), (2r + k,Sr + k), ...). (5)

In this way r chains, 90, 8i, . . . , 0r-i, can be formed, including all
the non-zeros of Bt without repetitions, each chain having a + 1
or else a members, where.

is the equable partition of p into r parts. Take therefore
p = r<r + s (0<s< r). (6)

It then follows from the remark of A. C. Aitken that au identity
exists of the following form,

vii, uT, v^., . . . , % „ , 0, ut 0, ut, ..., ...),

which may be written still more simply as

A = diagi (0o, 0, 0i, 0, . . . , 0, *,_,), (8)
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where Hr is a suitably chosen non-singular matrix which operates
by bringing this ?-th diagonal to the over-diagonal position. But
the Segre characteristic of Dr is given by that of Dlt which in turn
is obtained by adding unity to the number of each set 8k of non-
zero elements:

This proves the theorem.
It will be seen that the length of the diagonal Di is p +1— 1 = v,

as it should be, there being p non-zeros equably partitioned, and
r — 1 intermediate zeros. The length of Dr is p, and that of the
principal diagonal v + 1.

The same result may be obtained directly by constructing the
matrix Ur which produces this reduction. In fact, let Hr be formed
by inserting in a blank matrix exactly v +1 units in the positions

(0, 0), (r, 1), (2r, 2), . . . . (vr, v\ mod(v + 1), (9)

by which is meant that each index i is always taken to be less than
u + 1 by subtracting, if necessary, a suitable multiple of v+1.
Such a process may naturally be called the equable distribution of
units at a gradient r within the matrix, and it is said to form a
unit matrix of gradient r. For example, if v = 6, r = 2, then

(10)

The units lie upon r parallel oblique lines whose common falling
gradient is r. Such a matrix is obviously non-singular and ortho-
gonal ; hence its transposed is equal to its reciprocal matrix. Thus

Hi-^U2' = Hh (11)

where the last suffix indicates a gradient of \, which is actually the
case. It is easy to verify the identity by calculating the product
matrices in the form

Alternatively the matter may be treated by the methods of
linear transformations, which are well illustrated by the case when
v = 6, r = 2. Beginning with the substitution

/0 1 2 3 4 5 6N
\0 4 1 5 2 6 V' K '

https://doi.org/10.1017/S0305004100016406 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100016406


364 Mr Turnbull, Diagonal matrices

as suggested by the column succession in the matrix Hg, let us
form the following relations:

= ^ 2 = ^ 4 = & •

= y* = *«=(;»,
= 2/6 = 0, (13)

These are merely the expanded statement of certain matrix
equations, .

y = Drx, x = Hr%, y-Hrv, (14)
holding between four sets of variables x, y, f, t), each with v + 1
components, and each treated as a column vector. These equations
between x and y clearly assert, the matrix equation y = Drx. The
further equations between x and fare derived directly from the
above substitutional scheme (as inspection will shew). In this way
Hr is derived, and in turn the relations between y and 17.

But the equations (13) shew at once that f and t] are connected
by a relation of the form

V = Af,
while the matrix equations (14) shew that

v = Ur-
lDrHrt

This yields the desired identity, which reduces Dr to Dt. In this
illustration each non-zero element w,- of Dr has been taken to be
unity, but there is no difficulty in writing down the corresponding
results when the non-zeros are arbitrary.

THEOREM 8. A regular diagonal matrix D±r (r > 0), whose sub-
diagonals have ranges pt, may be brought to a canonical form D%
whose subdiagonals are derived by equable partition of each p< into
r parts.

The Segre characteristic of D& is the set of positive integers ob-
tained from the equable partition of p,- + r into r parts, applied to
each separate subdiagonal of D&-, and supplemented if necessary by
units.

Proof. The second part of the enunciation is merely an
alternative version of the first. Each separate non-zero range p of
D\ contributes an exponent p' + 1 to the Segre characteristic. When
the sum £ (/>' +1) falls short of v + 1 the supplementary unit
exponents are necessary.
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The actual values of the p' follow at once from the preceding
investigation by the process of chain formation. For each sub-
diagonal gives rise to separate chains, it being impossible for a
chain to bridge the gap between adjacent non-zero subdiagonals
when the whole diagonal is regular. The actual reduction is effected
as follows:

If Dr = diagr(0<O0, APl, OUl, APl, ..., 0^),
where r > 1, r < cot, then take H to be of the form

H = diagb(/«0, HiH+r), I^r, #(<>,+»•), •••, 1^),
where H^ is a unit matrix of gradient r and having i rows and
columns, and where /{is a unit matrix having i rows and columns.
The suffixes of these subdiagonals / are necessarily non-negative
in the regular case: if they are zero the corresponding letters / are
merely suppressed.

This matrix H leads, by what has already been proved, to a
formula of the type

where Z>i possesses the properties stated in the enunciation of the
theorem.

Kinematically, this matrix H may be regarded as the operation
which draws each leading non-zero of the subdiagonals APf hori-
zontally leftwards on to the first over-diagonal. The chains inherent
in each Ap< are thereby disentangled equably and become non-zero
sets separated by single zeros (along the over-diagonal) as in (8).
Between the last such set in APl and the first in
number of zeros will be o>i — r + 1.

Example. When X ••

let JH"=diag0(l,F(4);l). Then
# - i X # = diagl (0,1,0, 1,0),

a matrix whose Segre characteristic is evidently {2, 2, 1, 1}.
In full we have

[-1

1 • • •
• • 1 •
• 1 • •

) ()
APJ the actual
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So far the reductions have applied to an upper diagonal Dr for
which r > 0. The negative case which reduces Z>_r to D_i is
analogous, it being only necessary to transpose every matrix in the
above work. The further reduction in the negative case from D_j
to Z>i is effected by the identity

where J (= J"1) is the secondary unit matrix. For example,

r . •

J= . 1

The cases when r = — 1, 0, 1 need no consideration.

8. Canonical form of an irregular diagonal.

The process of chain formation yields the exact canonical form
of any given diagonal matrix, but it is only possible in the regular
case (when zero gaps cannot be bridged) to state a simple general
rule. To illustrate the irregular case let us consider a range

x x x » » x x » » x (1)

of length ten and possessing two zero gaps each of two elements.
The method used in forming 0t of §7 (5) is available; namely,

chains of non-zeros selected at equal intervals r must be formed.
When this is actually done—and all the six ndi-zeros of the given
range (1) are exhausted—the result may be tabulated as follows:

r=±l 3,2,1,
r = ± 2 2, 1, 1, 1, 1,
r = £ 3 2, 2, 1, 1,
r=±4 3,2,1,
r=±5 2 ,2 ,1,1,
r = ± 6 2,1 ,1 ,1 ,1 ,
r = + 7 2 ,1 ,1 ,1 ,1 ,

r = + 8 2 ,1 ,1 ,1 ,1 ,

r = ± 9 2,1 ,1 ,1 ,1 ,

r = + 1 0 , ±11, etc. 1,1,1,1,1,1.

In explanation of this table it will be noted that the non-zeros of
the range occur at positions 1, 2, 3, 6, 7, 10. When, for instance,
r = ± 4, the subchains can only be (2, 6, 10), (3, 7), 1, obtained by
arranging the position numbers in arithmetical progression with
common difference 4 (which is equivalent to the rule of Dr Aitken).
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The number of elements in each chain is noted: here such numbers
are 3, 2, 1. This means that the Segre characteristic of the matrix
£±4 whose range is given by (1) would be {4,3, 2}, which is obtained
as before (cf. Ref. (8), 67) by adding unity to each of the integers
just found.

The regular cases (when r > 2 or < — 2) are here tabulated.
They illustrate the equable partition of the three given non-zero
subdiagonals each into one, or each into two parts. The irregular
case is illustrated in the table by the rise in value of the integers
on the third line.

It is obvious that, if the specification (1) is given, then for all
values of r' (= + r), equal to or greater than the length I of the
range (1), each of the m non-zero elements in (1) is isolated and
implies the existence of an elementary divisor whose exponent is
equal to 2. Also the rank of such a matrix D& is m^.1. This
establishes the curious theorem:

THEOREM 9. / / r' ^ I, the canonical form of any open or close
diagonal matrix Dr whose length is I and whose rank is m^.1 con-
sists of exactly m latent matrices of the type

9. The rth root of a matrix.

As an illustration of the foregoing principles I shall now
consider the problem of finding the necessary and sufficient con-
ditions for a matrix to possess an rth root. That such a problem
exists may easily be shewn by attempting to find the square root

of the matrix , which has no square root of its own type.

By this is meant that it is impossible to find four real or complex
numbers xlt cr2, x3, #4 such that

x21 \\j

x3 xt] L_0 0

In fact, on expanding the left-hand expression, the resulting
equations

= 0, xxx2 + x2xt = 1, x3xi + xtxa = 0, xzx2 + xt
2 = 0

are incompatible. On the other hand it is easily verified that

. . 1"

. 1 .

. 1 .-

• • •

so that the matrix on the right has a square root.
VOL. XXIX. PART HI. 24
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The problem before us is to determine when it is possible to
solve the equation

X' = A, (1)

where A is a given matrix(4). In the first place, if A is non-singular,
so that all its latent roots are non-zero, then an rth root exists—
as Frobenius(5) has shewn. Next, if A is singular, let its classical
canonical form be C, where

H-*AH=C= diag (Co, CO, (2)

Co involving zero latent roots entirely, and d non-zero latent roots
(if any exist). Let Co contain a, and G\ /t latent matrices.

Now suppose that X exists and therefore possesses a classical
canonical form Y, given, let us say, by the relation

K~1XK=Y. (3)

Then, by iteration, K-xXrK = Yr; that is K~XAK= Yr, so that

PCP-1 = Y\ (4)

where P = K~lH, all of P, K, H being non-singular. Hence the
four matrices A, G, Xr, Yr are equivalent, and therefore possess
exactly the same sets of latent roots and elementary divisors. Also
these latent roots are rth powers of those of X: consequently X
must have as many zero latent roots as Co has, and as many non-
zero latent roots as Cx has. It will therefore be convenient to write
the canonical form Y in analogous fashion as

F=diag(F 0 , Y1), (5)

so that Yr = diag (Fo
r, Fir), where the latent roots of Fo are all

zero, and of Fi all non-zero. Furthermore Fo
r is now equivalent to

Co and FX
T to Cx.

Next suppose that Fi possesses exactly //. latent matrices of
which any one is selected for consideration: let this have a latent
root a and an exponent e. Then, by the general theory (Ref. (3), 75).
Fir will have exactly /x latent matrices, of which the corresponding
one has a latent root aT and an exponent e (since a 4= 0). But Yir

is equivalent to Ci: it follows immediately that the yu exponents
e must coincide with those of Ci and that the p expressions aT

must coincide with the latent roots of C\. Thus, from the given
submatrix C1( which is conveniently expressed as

Gl=S(a1, d; a2) e2; ...; aM, e j , (6)
we deduce the matrix

F1 = S ( V ^ ) e i ; fa, e2; ...; ^ , eM), (7)
where each latent root is indicated along with its appropriate
exponent. Among these fi non-zero latent roots a* there may of
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course be repetitions: if they are all distinct there will then be /xr

distinct values of Yi none of which are equivalent, since all the rth
roots of all the a; will differ. The same will happen if, when
ar = as, er=)=e«.

In general, if there are exactly fii equal roots a-i of which exactly.
/in possess the same exponent e\, then this distribution gives rise
to mn different values of Ylt where evidently mu is the number
of homogeneous products of r things taken /xu at a time. For this
will enumerate all the essentially distinct values of Fi, as far as
these cited repetitions are concerned.

If, further, exactly yua2 of the a-i possess a new exponent e2, they
give rise to a similar number m^ of values—in all to nium^ distinct
values. And so on, until all such subclasses among the repetitions
of the roots a and of their exponents e are dealt with.

In this way the exact number of distinct (non-equivalent)
matrices Yi is obtained, as rth roots of a given non-singular
matrix C\.

We turn now to the purely singular matrix Co, which may
conveniently be specified in terms of its Segre characteristic by

Co = <S'o(ei, e%, ..., ea) (ex> e2> ••• >ea >0), (8)
where a is the number of its latent matrices. Since all the latent
roots of Co are zero, this canonical form can alternatively be
denoted by

Co = diagl (/ei_i, 0, /»,_!, 0, ..., Ie^u Oa), (9)

that is, by.a range of e\ — 1 units followed by a zero, then by
e2 — 1 units, then a zero, and terminating with possibly to zeros.
(This 0u will not occur if ea > 1, but is needed if one or more of
the ea are equal to 1.)

It will now be shewn that Co possesses an rth root when, and
only when, the integers ei satisfy certain properties depending upon
the equable partition of an integer into r parts.

To shew this let

Fo = -So (*', *', .... «,') (ei >ei'>...>eq'>0) (10)
be the canonical form of the supposed rth root of Co, so that each
lateut root of Yo is necessarily zero. Then this matrix can evidently
be written in the alternative form

Yo = diagi(Iei-i, 0, /,,_!, 0, ..., 0, / , , .^) , (11)
where each I^^\ denotes a range of ek' — 1 units if ek' > 1, but is
entirely omitted if ek' = 1. The q — 1 zeros here indicated are all
present whether or not an / is omitted. Now let the rth power of
Yo be formed. If none of the e/ exceeds r, this power is zero. We
infer that, if Co is the null matrix of s rows and columns, then its

24-2
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most general rth root is equivalent to the above matrix Fo, where the
positive integers e{ are chosen subject only to the'conditions

ei + ea' + ... + eq' = s,
...zeq' >0. (12)

In all other cases some, let us say p (^ q), of the exponents e{
will exceed r. The rth power of Fo will now take the form

Fo' = diagr (Ie._r, Or, / „ ._ , • • •, Or, Iep'-r, Oj), (13)
where there are p — 1 sets Or each consisting of r consecutive
zeros, and a final set of o> zeros. But this is evidently a regular
diagonal matrix, and, according to Theorem 8, its canonical form
will have exponents e\', e^", ..., obtained by adding r to each of
the p suffixes of the I's, and then partitioning each of the p resulting
integers e{ equably into r parts, and finally attaching just enough
unit exponents (ek" = 1) as shall make the total sum of all exponents
equal to s, the order of the matrix Fo. But Fo is a perfectly
general matrix, all of whose latent roots are zero. Hence every such
matrix (other than the null matrix) which is a perfect rth power
must have for its exponents numbers of this particular type e": and
this applies to the exponents of Co. In other words, the a exponents
et of C'o must be capable of being distributed into sets each of which
is an equable partition of the sum of the exponents within the set,
and such that each set which does not possess exactly r members
must consist entirely of unit exponents.

This, which may be referred to as the condition of equability, is
evidently both necessary and sufficient for Co to possess an rth root.
It includes the case when Co = 0.

The significance of these results can best be seen by actual
examples:

(i) Co= . Here C'o=iSo(2), which has a single exponent

other than unity. It is incapable of equable distribution, and
therefore possesses neither square, cube nor higher root.

r« i «"i r« • r
(ii) Co = • • • possesses a square root, . Here

and (2, 1) is an equable distribution of an integer into two parts.
There is neither cube nor higher root.

(iii) Co = 8o(*, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1). This singular
matrix, containing twenty-eight zero latent roots and fourteen
exponents, has square, cube, fourth and fifth but neither sixth nor
higher roots. The possible fifth roots are governed by the equable
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groupings (4, 3, 3, 3, 3) and (2, 2, 2, 1, 1), followed by all possible
partitions of the number (1 + 1 + 1 + 1). There are exactly five
essentially non-equivalent fifth roots,

#0(16,8,4),
So (16, 8, 3, 1),
5,(16, 8, 2, 2),
50(16,8,2,1,1),
So (16, 8,1, 1, 1,1).

The sixth root is excluded since the six highest exponents do not
form an equable grouping. There are eleven distinct non-equivalent
square roots, four arising from the equable distribution (4, 3), (3, 3),
(3, 2), (2, 2), and four more from the distribution (4, 3), (3, 2), (3, 2),
(3, 2), and again three more from (4, 3), (3, 3), (3, 2), (2, 1), (2, 1).
For example, these last three are

So(7, 6, 5, 3, 3, 2, 2),
5o(7,6, 5, 3,3, 2,1,1),
5o(7, 6, 5, 3, 3, 1, 1, 1, 1).

When Co satisfies the condition of equability let the number of
its distinct (non-equivalent) rth roots be N. Evidently this number
can be evaluated, as above, in any definite example. Further, let
the number of distinct rth roots of Ci be M, as already found.
Then the number of distinct (non-equivalent) rth roots of C (and
equally well of A) is evidently MN.

In such a case it is possible to write down the most general
matrix X which satisfies the equation

For X is given by X = KYK~\ where K=HP~1 (by (4)). Also
PC = YrP may be regarded as an equation to determine P, which
can be solved in its most general form. If A is a given matrix,
then H may also be regarded as given, so that the matrix X is
determined by

X = HP-1YPH~l. (14)

Here Fcan take any of its MN distinct values; and P contains
a definite and known number (let us say «) of arbitrary constants:
P - 1 will involve the same arbitrary constants, while H and Y have
none. At first sight it might be supposed that X consequently has
n arbitrary constants. Unfortunately this is not the case, since
some or all of them may cancel out of this product expression. As
far as I am aware, this matter has never been completely settled,
and the problem of finding the exact number of arbitrary constants,
even in the solution of the equation X* = A, still awaits treatment.
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10. Complex matrices.
It is possible by a very simple device to arrange that every

matrix should possess an rth root. All that is necessary is to
prescribe that each element of the matrix should be regarded as
a scalar matrix of r rows and columns. For example, the square

root of may be found by interpreting this

and the matrix itself as

" • II

non-zero unit

element as

This device automatically places the non-zero elements upon the
second over-diagonal (in general the rth); consequently a square
root exists, namely

" 1

1

This may be re-written as x , where

Thus the square root of * is r 1 6z , where the elements

«i» e2
 a r e n o longer scalar. In this way the condition of equability

may be evaded, without modifying any of the other conditions.
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