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Abstract. Let L/K be a finite Galois extension of number fields. We use complexes arising from
the étale cohomology of Z on open subschemes of Spec Oy to define a canonical element of
the relative algebraic K-group Ko(Z[Gal(L/K)], R). We establish some basic properties of this
element, and then use it to reinterpret and refine conjectures of Stark, of Chinburg and of
Gruenberg, Ritter and Weiss. Our results precisely explain the connection between these con-
jectures and the seminal work of Bloch and Kato concerning Tamagawa numbers. This provides
significant new insight into these important conjectures and also allows one to use powerful tech-
niques from arithmetic algebraic geometry to obtain new evidence in their favour.

Mathematics Subject Classifications (2000). 11R33, 11G40.

Key words. Tamagawa numbers, Stark’s Conjecture, Galois structures.

Introduction

Let L/K be a finite Galois extension of number fields of group G. For any integral
domain R, with field of fractions E, let Ko(R[G], E) denote the Grothendieck group
of the fibre category of the functor — ® g E from the category of finitely generated
projective left R[G]-modules to the category of finitely generated left E[G]-modules.

If M is any motive which is defined over K, then the base change motive
M= h’(Spec L) ®o(speck) M admits a natural left action of Q[G]. In [3] it is shown
that for each prime p the cohomological methods introduced by Bloch and Kato
(cf. [2, 19, 20]) and Fontaine and Perrin-Riou (cf. [15]) allow one to attach to each
motive M (which satisfies certain standard conjectures) a canonical element
T (L/K, M) of Ko(Z,[G], Q,). After making certain additional assumptions on
M (again conjectured to hold in all cases) one can show that TQ’(L/K, M) =0
for almost all primes p and so one can define an element

TQ(L/K. M) :=[ [ TQ(L/K. M) € Ky(Z[G], Q).

p
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As a natural generalisation of the conjectures of [6, 8] the ‘Equivariant Tamagawa
Number Conjecture’ formulated in [3] asserts that in all cases

TQ(L/K, M) = 0 € Ky(Z[G], Q). (1)

For many motives M this equality would be of considerable interest since
TQ(L/K, M) encapsulates information about the G-structure of lattices in the
de-Rham, Betti and motivic cohomology spaces of M. Indeed, it is shown in
[4] that if HO(K, M) = H°(K, M*(1)) =0, then the image of TQ(L/K, M) under
the connecting homomorphism Ky(Z[G], Q) — Ko(Z[G]) of relative K-theory
can be interpreted in the spirit of classical Galois module theory (as surveyed
for example in [9]). Recall that the category Mk of motives which are defined
over K is expected to be semisimple. In principal therefore, to extend the results
of [4] to cover all objects of Mg one need only deal with the motives
Q(0): = h°(Spec K) and Q(1): = h°(Spec K)(1). In addition, for these motives
the conjectural equalities (1) are of particular interest since they are related
to existing conjectures in classical Galois module theory. In this series of papers
we shall discuss these special cases in some detail. In this first paper we focus
on the motive Q(0). By extending the approach of [7, 8] we define a canonical
element TQ(L/K,0) of Ky(Z[G], R) and then reinterpret the Stark Conjecture
(as formulated by Tate in [27]), the Strong Stark Conjecture (as formulated
by Chinburg in [10]), the Q3-Conjecture of Chinburg (cf. [11, 12]) and the recently
formulated Lifted Root Number Conjecture of Gruenberg, Ritter and Weiss (cf.
[17, 18]) in terms of TQ(L/K,0). We also show that if Stark’s Conjecture is true
for L/K, then

TQ(L/K,0) = TQ(L/K, Q(0)) € Ko(Z[G], Q). 2

These reinterpretations provide important new insight into the above ‘classical’
conjectures. For example, the central conjecture of [17, 18] (which is the finest
of the aforementioned conjectures) is equivalent to an equality in Ky(Z[G], Q)
and by comparing this to the equality (2) we are able to give a canonical interpret-
ation (in terms of p-adic étale cohomology) of each p-primary component of the
conjectures of loc. cit. This interpretation is new and likely to be crucial in
any systematic study of the conjectures of loc. cit. (In fact our approach also
leads to alternative proofs of many of the main results of loc. cit. — cf. Remark
2.3.4.) At the same time, the comparison results proved here provide useful
clarification of the rather complicated constructions of [3] and, more concretely,
allow one to interpret the extensive body of work in support of the conjectures
of Chinburg et al. as evidence for the general conjectural equality (1). This is
important since there are still very few explicit examples in which (1) has been
completely verified for any motive (see [1] for some explicit results in this
direction).

In [5] we consider the motive Q(1). More precisely, we relate the conjectural
equality (1) in this case to the Q;-Conjecture formulated in [12], and we use the
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Artin-Verdier Duality Theorem to show that the Q,-Conjecture of loc. cit. arises
naturally when investigating the compatibility of (1) for Q(0) and Q(1) with the
functional equations of the Artin L-functions associated to L/K. In effect, this result
gives an interpretation in terms of arithmetical duality of the ‘remarkable par-
allelism’ of behaviour between ‘additive’ and ‘multiplicative’ results in classical
Galois module theory which has often been commented upon by both Froéhlich
and Chinburg (cf. [9]). In conjunction with results of this paper the results of [5]
also give an affirmative answer to Question 1.54 of [6].

In further papers we will show that the approach described here leads to significant
new evidence in favour of the central conjectures of [10-12, 17, 18], both in the
setting of finite abelian extensions of Q and also in the setting of finite Galois
extensions of global function fields.

The basic contents of this paper is as follows:

1. Algebraic Preliminaries
1.1. Relative Ky-groups and reduced determinants
1.2. Refined Euler characteristics
2. h°(Spec K)
2.1. The definition of TQ(L/K, 0)
2.2. TQ(L/K,0) and the Strong Stark Conjecture
2.3. TQ(L/K,0) and the conjectures of Gruenberg, Ritter and Weiss, and of
Chinburg
2.4. TQ(L/K,0) and the Equivariant Tamagawa Number Conjecture

1. Algebraic Preliminaries

In this section we recall for the reader’s convenience some of the algebraic prelimi-
naries which underlie the constructions to be used in subsequent sections.

Throughout this manuscript, all modules are, unless explicitly stated otherwise,
left modules.

1.1. RELATIVE K,-GROUPS AND REDUCED DETERMINANTS

Let A be a Z-order in a finite-dimensional semisimple (Q-algebra A. For any field
extension F of () we set Ap:=A ®q F, and for each prime p we set 4,:= A@p
and A,;:= A®z Z,. We let B(A) and B(A4r) denote the categories of finitely gen-
erated projective .4-modules and of finitely generated Apg-spaces, respectively.
We write Ko(A) and Ky(A4F) for the Grothendieck groups of the categories B(.A)
and B(A4r), and we let Ky(A, F) denote the Grothendieck group of the fibre category
of the functor — ®7 F from B(A) to B(A4r). (An explicit description of the latter
group in terms of generators and relations is given on p. 215 of [25].) We make much
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use of the following commutative diagram

(At S UAp)*
K - Ki(4p) N kAR Y KA — Kodp)
K — Ki(4) WRAD N KA - KA

L b
1, Ki(4)/Im(i) > 1, Ko(Ay, )
(1.1.1)

In this diagram we have used the following notation: {(R) denotes the centre of any
ring R, nry: Kj(A) — {(A)™ and nry,: Ki(AF) — {(AF)™ are the respective reduced
norm maps, {(4)** and {(4F)*" denote the images of nry and nry, respectively,
nry is the composite of nry and the natural scalar extension morphism
Ki(A) — K(A), 8?4’F([P, g, 0) = (P) — (Q) for each object P and Q of B(A) and
Ap-equivariant isomorphism g:PQF — QQ F, 8}4’F((A" L) =[A", ¢, A"] for
each natural number n and ¢ € Auty,(4%), ¢ is the morphism induced by the maps
(A", §)i— (4, ¢ ® Q,), 14, is the scalar extension morphism Ki(A,) — Ki(4,), o
is induced by the morphisms aj%Qp:Kl (4,) = Ko(A,, Q,) which are defined in
the same way as 8;_((), and y is induced by the morphisms

[P,g. Ql—[P®Zpg® O, OB L]

One knows that y is bijective, that the second and third rows of the diagram are exact
and that ¢ is injective (cf. [25], Th. 15.5).

Let R and E denote either Z and Q, or Z, and Q, for some prime p. If A is an
R-order in a finite dimensional semisimple E-algebra A4, then for any field extension
F of E the map nr,, is injective and we set

Oy pi= Oy ro o, {(Ap)*t — Ko(A, F).

In the case that F = E we shall write 9, and é}4 in place of 8;" r and 5}4_ g Tespectively.

There are two alternative descriptions of the groups Ky(R[G], E) which we shall
occasionally find convenient. To recall the first we let H(R[G]) denote the category
of finite R[G]-modules which have finite projective dimension. Then for any object
X of $(R[G]) there is an exact sequence of R[G]-modules 0 — P~! = P0 —
X -0 with P! and P° objects of B(R[G]), and the association X i—
[P7!, ¢ ®r E, P’] induces a well defined isomorphism

triy: Ko T(R[G])) = Ko(R[G). E) (1.1.2)
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where Ky T'(R[G]) is the Grothendieck group of H(R[G]) (with relations given by short
exact sequences).

To describe the second alternative we need a little more notation. For any field F
of characteristic 0, we fix an algebraic closure F¢ of F and set I'(F):=
Gal(F¢/F). We write Rp(G) for the ring of F-valued virtual characters of G, and
let Rf(G) denote the subset of F-valued characters. We let Detpg: Ki(F [G])—N>
Homrr)(Rpe(G), F¢*) denote the isomorphism induced by

(X, /)1— [x— detpe(f | Hompegy(Vy, FC ®F X)), (1.1.3)

where here X is a finitely generated F[G]-space, f* € Autpig(X), and for each char-
acter y € Rf.(G) we have made a choice of F[G]-space V, which affords .

If A = 7]G], then the map 0 in (1.1.1) is bijective (cf. [13], Rem. 49.11(iv)). Taken
in conjunction with the lower commuting square of diagram (1.1.1), the maps
Detg [g) therefore induce isomorphisms

Homr(g,) (R (G), Q) ~
: 4 i — Ky(Z,[G], 1.14
G.p Deto, 1o (Im(12, 1) o(ZplG], Q) (1.1.4)

and, writing J(Q°) for the group of ideles of Q°, also

Homy (R (G), J(Q)) ~
: 2161, Q). 1.1.5
G HP DetQP[G](Im(ZZF[G])) — KO( [ ] Q) ( )

The numerator of the left hand side of (1.1.5) is the subset of
Homprg)(Ro<(G), J(Q)) consisting of those functions / such that A(y), is a strictly
positive real number for each symplectic character y and archimedean place v of
Q°, and the product in the denominator includes p = oo where one sets
Qo = Zs = R. The ‘Hom-descriptions’ of (1.1.4) and (1.1.5) originate with
Frohlich and can be very useful computationally. More details can be found in [16]
(or, perhaps more conveniently in this instance, in Appendix A of [18]).

We end this section by quickly reviewing the formalism of ‘reduced determinants’
used in [3].

Let E be any field and A4 a finite dimensional central simple E-algebra. For any
A-spaces V and W we let Is4(V, W) denote the set of 4-equivariant isomorphisms
from ¥V to W. For any field extension E’ of E and any A-space V we set
V.=V ®gE'. If E' splits 4, then for any finitely generated A-spaces V and W,
and any indecomposable idempotent ¢ of the E’-algebra A’ we define an E’-line

O4(V', W) :=detg(Homg(Hom(A'e', V'), Homy (A€, W"))).

This line is independent (modulo canonical isomorphisms) of the choice of ¢’ and has
a canonical action of Gal(E’/FE). The E-line

S4(V, W) := HYGal(E'/E), 5 4(V', W)

is then independent of the choice of E'. Moreover, each isomorphism ¢ € Isy(V, W)
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gives rise to an element
0(p, ) € Homp(Homy(A'e', V'), Hom 4 (A'e', W)

which is induced by mapping a homomorphism f to (¢ ®g E’) o f, and the ‘reduced
determinant’ of ¢

dety(¢) := detp(0(¢, €))
belongs to d4(V, W) and is independent of the choices of both E’ and ¢'. We set

SV, W) = {detu($): b € Isa(V, W)} C 54V, W).

If V # 0, then the E-line 6 4(V, V) naturally identifies with E, and we write 6% (V) in
place of &%(V,V)CE. If ae Auty(V), then dety(x) = nrgnq,)(®) and so
(V) ={A)*". In accordance with the usual convention, we set J4({0},
{0}) = E and 07({0}) = {1}.

If V' and W are isomorphic finitely generated 4-spaces, then for each element
tedi(V, W) we write ®(r) for its fibre under the canonical map dety:
Isq(V, W) — 6 (V, W). For any element t € §%(Vy, V2) we write t~! for the element
of 6%(Va, V1) which is equal to det(¢7") for each ¢ € O(1).

Let now V4, V3 and V3 be pairwise isomorphic finitely generated A-spaces. If ¢}
and ¢, are E'-linear maps from Hom,(4'¢, V]) to Homy(A'¢, V}) and from
Homy(A'¢, V}) to Homy(A'e',V3;) respectively, then the association
detp (¢y) ®p detp(¢))— detp(d) o ¢)) induces a Gal(E'/E)-equivariant identifi-
cation

da (Vs V3) ®p da(V], V3) = 00(Vi, V3)

(where Gal(E’/E) acts diagonally on the left-hand side), and, hence, also an identi-
fication of E-lines

84(Va, V3) ®p 34(V1, V2) = d4(V1, V3). (1.1.6)

For any elements 71 € 5%(V1, V2) and 15 € 67(V2, V3) we shall write 1, o 7y for the
element of 6% (V1, V3) which is equal to det (¢, o ¢,) for any choice of isomorphisms
¢, € O(11) and ¢, € O(12). With respect to the identification (1.1.6) one therefore has
Ty @ETI =T20T71].

If 4 is now any finite-dimensional semisimple FE-algebra, then reduced
determinants are defined via its Wedderburn decomposition. To be specific, we sup-
pose that 4 = [[,.; 4; with each 4; a central simple Ej-algebra for a suitable field
extension E; of E. Then the centre {(4) of A4 identifies with the product [, E;,
and the image of the reduced norm map nr, is equal to {(4)*" = [Tier LA)*t.
For any finitely generated A-spaces V' and W there are corresponding
decompositions V =@, V; and W = ®;c;W; and hence also Isy(V, W) =
@icrls4,(Vi, W;). For any isomorphism ¢ € Is4(V, W) we let ¢, denote its component
in Is4,(V;, W;) and then set det,(¢): = [],.; dety,(¢;). We let 5 (V, W) denote the
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image of the set Is,(}/, W) under det4(—), and we write J 4(V, W) for the associated
{(A)-line. A ‘trivialisation’, resp. ‘trivialisation fibre’, of Is4(V, W) is an element
of 6 (V, W), resp. a fibre of the map dety:Isy(V, W) — 5 (V, W). For each
tedi(V,W) we write ®(r) for the corresponding trivialisation fibre of
Is,(V, W), and trivialisation inverses t~' and compositions 7, 07, are defined
componentwise. For any field extension F of E we write 1 ® F for the image of
t under the natural inclusion 6% (V, W) C 6% (V ®¢ F, W ®g F). We recall that
the terminology of ‘trivialisations’ is motivated by ([3], Ex. 1.1.2).

Let R be a Dedekind domain with quotient field £, and let F be a field extension of
E. For each finitely generated R-module, respectively E-module, X we write X for
X ®r F, respectively X ®g F. For any morphism ¢ of finitely generated R-modules,
respectively E-modules, we write ¢ for the associated morphism of F-modules
¢ Qg F, respectively ¢ Qg F.

In the remainder of this section, we let A be a Z-order in a finite dimensional
semisimple (Q-algebra 4, and F a subfield of C. We assume that 4 has a Wedderburn
decomposition [],.; 4; as described above.

LEMMA 1.1.1. Let P and Q be objects of B(A) and t an element oféjF(Pp, Or). Then
there is a unique element [P, 1, Q] of Ko(A, F) which is equal to [P, ¢, Q] for any (and
therefore every) ¢ € ®(1).

Proof. Let ¢ and ¢' be any elements of Isy,.(Pr, Qr), and set ¢":=
¢ o™ € Auty,(OF). In Ko(A, F) one has

[P’ (b/’ Q] - [P9 ¢v Q] = [Qv ¢H’ Q]
= 3 ,(QF, §")
= 3!y p(det, (¢)).

The commutativity of diagram (1.1.1) implies that this element is O if and only if
dety,(¢") belongs to Im(nry) C {(Ar)**. This implies the stated result since
dety, (¢") = dety,(¢') @, dety, (¢)' with respect to the identifications (1.1.6). []

LEMMA 1.1.2. Let F be any subfield of R.

(1) For any finitely generated isomorphic A-spaces V and W one has
0% Ve, We)N oV, W) =65(V, W).

(i1)) Let P and Q be objects of B(A), and t an element of 5jf‘(PF, Or). Then [P, 1, Q]
belongs to Ko(A, Q) if and only if 7 belongs to 54(Pg, Qo).

Proof. Claim (i) is a straightforward consequence of the Hasse—Schilling—Maass
Norm Theorem, and is proved in ([3], Lem. 1.1.1(v)).

To prove (ii) we assume first that 7 € (5JATF (Pr, Or) N 04(Po, Qo). Then (i) implies
that 7 € 6%(Po, Qp) and so we may choose an isomorphism ¢ € Is4(Pg, Op) such
that det4(¢) = 7. Using Lemma 1.1.1 we deduce that [P, 1, Q] = [P, ¢, O], and this
element clearly belongs to Ky(A, Q).
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To prove the converse we choose ¢ € ®(r) and assume that the element
[P, ¢, O] € Ko(A, F) belongs to the subgroup Ky(A, Q). Then ([25], Lem. 15.6)
implies that there are objects P and Q of B(A) and an isomorphism
@' € Is4(Pyy, Q) such that [P, ¢, O] = [P', ¢', O] € Ko(A, F). By Lemma 15.8 of loc.
cit. this equallty implies that there are objects N and N’ of B(A), isomorphisms
0:P®N—->P ®N and 0,:0®N—>Q &N in B(A), and an Ap-equivariant
automorphism p of (Q @ N)p such that det 4, (1) = 1 and the following diagram com-
mutes

olp®(1n)r]
PaN), " Qe N,

lel,p lou (1.1.7)

(¢’ ®1y)p
PoN)y —" (Q&N).

The isomorphisms 6; and 0, together induce a commuting diagram

35(Po. Qo) —> 4P, O)

E E (1.1.8)

5 (P, QF) —5 &% (Pr, Q)

in which the vertical maps are the natural inclusions, the map 1, is the bijection
induced by mapping

det(g)1—> det, (020 (g® 1n) 0 01_1) = dety(g")

where here g € Is4(Pg, Qp) and g’ is any element of IsA(PQ, ») which makes the
stated equality valid, and the bijective map 14, is defined similarly. Since
dety,(u) =1 the commutativity of (1.1.7) implies that 14, (dety,(¢)) =
dety(¢') € 51 (Pp,, ’@) The commutativity of (1.1.8) now implies that
dety,(¢p) € % (Po, Qp), and this completes the proof of (ii). O

Choose ¢ €Is4(Qo, Pp) and 1€ d4,(Pr, Or). Then 1 ®qu,) dety(¢) €
04,(QF, Or) = {(AF) and 7t € d4(P, Q) if and only if 7 ®u,) dets(¢) is fixed by
the natural action of Gal(F/Q) on {(4r) = {(4) Qo F. In addition, if E’ is any field
extension of E;, then there is a natural Gal(C/Q)-equivariant inclusion

E®yFCE®,C—[]C
S(EY)

where X(E’) denotes the set of embeddings of £’ into C. Forany 4 = (4,), € E' ®¢ C
and w € Gal(C/Q) one has (wl), = w(A,-1,5) for each o € £(E"). Putting this all
together gives the following useful criterion:

LEMMA 1.1.3. Let E' be any subfield of C which contains splitting fields for the
central simple E;-algebra A; for each i€ l, and F any subfield of C. Let
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T € 04,(Pr, OF) and ¢ € 1s4(Q0p, Po), and set

1(P) 1= T ®ay) deta(¢) € 04,(Or, OF) = {(AF) = HEf ®o F C HE/ ®p C.

iel iel

Thent € 64(Pg, Qo) if and only if ©(P); oy = 0(1($); ;) foreachie I, o € Z(E') and
w € Gal(C/Q). O

1.2. REFINED EULER CHARACTERISTICS

In this section we review the Euler characteristic construction introduced in [3]. We
let R be a Dedekind domain with quotient field £, and A an R-order in a finite
dimensional semisimple E-algebra A.

Let C* be a complex of A-modules. In each degree i we write B/(C*), Z/(C*) and
Hi(C*) for the A-modules of coboundaries, cocycles and cohomology, and write
d'(C*): C' — B*1(C*) for the corresponding differential. In each degree i there
are tautological exact sequences

0 Z(C = S ey > 0
7'(C*)

0 — B(C*) = ZI(C*) = HI(C*) — 0,

and so, after choosing A-equivariant sections ¢’ and g’ to d(C*) and n/(C*®)
respectively, one obtains an isomorphism

0(c’, 1'): BYH(C*) & H'(C*) & B(C*) = (x, ¥, 2) 1= 0i(x) + w;,(y) + z.

For any field extension F of E, we set

=Pt =

i€Z, ieZ
H(C}) =P H*™'(Cp) and  HY(C}) := P HY(C}).

i€, i€

For each morphism of complexes of Ar-modules 0: Cy, — D* we set

H°(0) := [ [H**'(0) and H(0) := [ [ H*(0).
i€Z i€Z,

For each ¢ € Is4, (H’(Cy), H(Cy)) we let ¢(o°, u®): C%: > Cf denote the Ar-module
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isomorphism which is obtained as the composite of

@9(0'2i+1, MZH—l);l: C; _N) @B2i+2(C}) D HZH—I(C}) D BZH—I(C;-),
i€Z i€?Z,

P BACH @ B (Ch @ B —~ <EB B%C;)) ® H’(C})

i€?, JEZ

1o ¢: <EB B/’(c;)> @ H(C)—~ (@ Bf(c;)> ® H*(C})

=4 V=4

<€B B (c;>) ® H(Ch) — (D B (Ch) & HY(C}) & B*(C})

JEL i€Z

and

P o™, e P B(Ch) @ H(Cp) © BY(Cp) — C,
i€?Z i€?Z,
(where the second and fourth listed isomorphisms are the obvious ones).

We assume now that C* is a bounded complex of finitely generated 4-modules.
Then for any element 7 of 5L(H"(C;), H¢(Cy)) there is a unique element t(Cy)
of 5jF(C§’,-, Cf) which is equal to dety,(¢(c®, u*)) for any ¢ € ®(r) and any choice
of sections {d', /};; as above (cf. [3], Lem. 1.1.3). If 7; and 7, both belong to
6% (H°(Cy), H*(C})), then one has

1(Cp) o ta(C) =17 010 € (AF)". (1.2.1)

In particular, if C* is acyclic, then there is a unique element 1(Cy) of 5jF(C", Cy)
which is obtained in this manner. We recall that if 4 is commutative, then these
constructions can be interpreted in terms of the determinantal formalism of
Grothendieck, Knudsen and Mumford as introduced in [21] (cf. [3], Rem. 1.1.4).

For any ring A we let D(A) denote the derived category of the homotopy category
of bounded complexes of A-modules, and we write D7/ (A) for the full triangulated
subcategory of D(A) which consists of those complexes which are perfect. We
say that a A-module X is ‘perfect’ if the associated complex X[0] belongs to D7 (A).

Any bounded complex of finitely generated projective .A-modules P* has a natural
Euler characteristic y 4P* in Ky(A) which, following [6, 7, 8], we normalise in the
following way

AP =) (=1)(P) € Ko(A).

i€?,

The mapping cone of any quasi-isomorphism is acyclic, and so the assignment
P*1— y 4P* induces a well-defined map from D7 (A) to Ko(A).
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We now recall the definition and basic properties of the Euler characteristic con-
struction of [3].

PROPOSITION 1.2.1. Let P* be a bounded complex of finitely generated projective
A-modules. Let F be a field extension of E, and t an element of 5jF(H"(P;),
H¢(P})). Set yyp(P*,7):=[P°, 1(P}), Pl € Ko(A, F).

(i) & (u(P*. D) = 74P* € Ko(A).

(i1) For any element 1" of 5jF(H0(P;), H¢(P})), one has y  p(P*,7) — 4 p(P*,7) =
élqu(r_] o 7).

(iii) Let Q° be any bounded complex of finitely generated projective A-modules and
p: P* — Q° an A-equivariant quasi-isomorphism. If t, denotes the unique element
of 5L(H"(Q;), H®(Q%)) which is equal to det 4, (H(pp) o ¢ o H"(pF)_l) for any
$ € ®), then 74 p(P*.7) = 1.4 (0" 7).

(iv) If E= Q and F C R, then the following conditions are equivalent.

(a) T belongs to the subspace d 4 (H °(PY), He(Pb)) of 04, (H(Py), H(P})).

(b) todety,(¢p) € {(4) for any choice of isomorphism ¢ € Is4(H*(PY),
H°(PY)).

© 74x(P*.7) € Ko(A, Q).

Proof. Claim (i) is obvious, and (iii) is an immediate consequence of ([3], Th.
1.2.1(i1)). The equivalence of (iv)(a) and (iv)(b) follows from the remarks made prior
to Lemma 1.1.3, and that of (iv)(a) and (iv)(c) follows from Lemma 1.1.2(ii) and the
fact that t(P}) is constructed using sections ¢’ and ' which are defined over Q. We
note finally that claim (ii) follows from the equalities

xar(P, ) — Yar(P*,17)
= [P°, 7(P}), Pl = [P°, ©(Py), P]
= [P°, T (P}), P]+ [P, «(P})", P
=[P, «(P}) " o T(P}), P’]
= O (P 0 T(P)
= 5}4’1;(‘5’1 o),

where the last equality here is a consequence of (1.2.1). O

Let C* be an object of D*/(A) and 7 an element of 5ZF(H”(C;), H*¢(Cy)). Then
Proposition 1.2.1(iii) allows one to unambiguously define an element y 4 (C*, 1)
of Ky(A, F). We refer to the pair (C*, 1) as a ‘trivialised perfect complex’, and to
y4r(C®, 1) as its ‘refined Euler characteristic’. Given an isomorphism
0 € Is4,(H°(Cy), H°(Cy)) we shall often write (C*, 0) in place of (C*, dety,(0)).

We now suppose given trivialised perfect complexes (C7, 7)) for j € {1, 2,3}, and a
distinguished triangle in "7 (A)

> C— C. (1.2.2)
1 2 3
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Let A} denote the long exact sequence of cohomology which is associated to the
triangle in ©"/(Ar) obtained by applying the exact functor — ®z F to (1.2.2).
Set H; p:=H'(C})p, Hp:=H(C})p and H;p:= H(C})p for each ie 7 and
Jj €{1,2,3}. We regard A}, as an acyclic complex, with H?’F placed in degree 0. Then
there are natural isomorphisms of A4g-spaces

Ap=Hlp®Hyp @ Hyp, Ay =Hi ©H;p®Hsp
and these isomorphisms together induce an identification of {(A4r)-lines
04 (A, Ap) 22 64, (HY g, HY 1) ® 04, (H5 . H ) ® 6.4, (HS f, H5 p).
If, with respect to this identification, one has
AN =115 @1, (1.2.3)
then we say that there exists a ‘distinguished triangle of trivialised perfect complexes’
(C1, 1) = (G5, 12) = (C3, 13) (1.2.4)
which refines the triangle (1.2.2).

PROPOSITION 1.2.2 (cf. [3], Th. 1.2.7). For any distinguished triangle of trivialised
perfect complexes (1.2.4) one has

Yar(Cr 1) = xa (G5, 12) + 24 (€5, 13) = 0 € Ko(A, F). O

Remark 1.2.3. In certain cases the compatibility condition (1.2.3) is straight-
forward to verify. For example, if each complex C7 is acyclic outside degrees 0
and 1 and A}, takes the form

0 3 s
0 H S H, L H, S, S, S a0,
then the trivialisations t; satisfy (1.2.3) if there exists a commutative diagram

1 v 1 4 1
0 — Hy — Hy; — Hy; — 0

l‘/’] l‘/’z l‘//s
B

0 — H?,F — HS,F — Hg)’F — 0
with ; € ®(z;) for each j € {1, 2, 3}.

If A=7]G] for a finite group G, then we shall always abbreviate BLLF(—),
§ (). 2ar(— =) and £4(=) 10 ;1 (=), 8 (). 76,#(~, —) and 16(~) respectively.
If F:AQ, then we shall further abbreviate 810@(—), 810@(—) and yo(—, —) to
9g(—), 95(—) and ys(—, —) respectively.
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2. h°(Spec K)

Let L/K be a finite Galois extension of number fields. In this section we apply the
constructions of Section 1 to complexes arising from étale cohomology of the con-
stant sheaf 7 in order to define a canonical element of Ky(Z[Gal(L/K)], R). We then
reinterpret conjectures of Stark, of Chinburg, of Gruenberg, Ritter and Weiss and of
the author in terms of this element.

For any (Q-algebra 4 we write M(A) for the full subcategory of M consisting of
those motives which admit a left action of 4.

At the outset we fix a finite group G, set A: = Q[G] and write 4 = [],; 4; for the
associated Wedderburn decomposition. For each index i € I we fix an identification
of {(4;) with a subfield E; of Q°. Having fixed such identifications each component
A; corresponds to a unique irreducible E;-valued character y; of G in the following
way: if E] is any field extension of E; such that the algebra A): = A4; @, E! is split,
and e} is any indecomposable idempotent of A/, then the character y; of the simple
E/[G]-module V;:= Ale; is E;-valued and independent of the choices of both E]
and ¢. For any irreducible Q“-character y of G there is a unique index 7 such that
% = ooy, for some o € T'(Q). In particular, if £’ is any subfield of Q¢ which contains
splitting fields E] for each index 7, then for each Q-character y there is an E’-space V,
which realises . To each such space V,, there is associated an object [y] of Mg(E")
(depending, to within isomorphism, only on y) as described explicitly in ([14], 5.3).
Each motive [y] has pure weight 0 and Hodge type (0, 0).

We now assume that Gal(L/K) can be identified with G. Having fixed such an
identification, we fix an embedding 1: L — K¢ and let n:I'(K) — G denote the
surjection defined by y1(4) = i(n(y)(4)) for all 1 € L and y € I'(K). Then the motive
Q(0),: = h°(Spec L) has an induced structure as an object of Mxg(A). Moreover,
if 4% denotes the G x I'(K)-module which consists of 4 with G x 1 acting via left
multiplication and 1 x I'(K) via the surjection 7 and the contragredient right action
of G on A, then the actions of G x I'(K) on each of the realisations of Q(0),
can be described explicitly in terms of 4%. For example, the /-adic realisation
H;((Q(0);) can be identified with Q;[G] as a left G-module. In this identification
the (left) action of y € I'(K) is given by

y(x) = xn(p7Y), x e QJG]. (2.0.1)
The decomposition A4 =][,;4; in turn induces a decomposition Q(0), =

®ierQ(0) ; with Q(0), ; an object of Mg(4;) such that there is a natural identifi-
cation in Mg(E")

e(00),; ® E') = 7], (2.0.2)

where here 7; denotes the contragredient of y; (and occurs because I'(K) acts via
(2.0.1)).
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For any number field F we write S(F), Soo(F) and Sy(F) for the set of all places, all
Archimedean places and all non-Archimedean places of F respectively. For each
v € S(K) we write S,(L) for the set of places of L which lie above v.

Let S be a finite subset of S(K) which contains S..(K). To each object of Mg(A4),
one can associate an S-truncated 4-equivariant L-function (cf. ([14], 2.12) and [3]).
We now recall the explicit description of this function for the motive Q(0),.

For each v € S¢(K) we fix an embedding K — K¢ and use this to regard I'(K,) as a
subgroup of I'(K). We let K!" denote the maximal unramified extension of K, in K,
and write G, and [, for the images of I'(K,) and I'(X") in G under the surjection
n:I'(K) — G. We write f, for the image of the (arithmetic) Frobenius element in
G,/I,. For each v € S/(K) and s € C we set

&u(s) == deteyq (1 — £, '(N) ™ | H(1,, 4% @0 Q).

If V is any Q[G]-module, then we set V°: = HY(G,, V) and V!: = H(1,, V). For each
Q[f;]-module U we write U* for the contragredient module (that is, U* = U as
-module but f,(u*) = f;"!(u) for each u € U).

For any function g(s) of a complex variable s which has algebraic order d at a point
S0 we set g*(so): = limy_, (s — 50) “g(s).

LEMMA 2.0.1. For each v € Sy(K) and s € C one has

en(s) = [ [detpg,c(1 = ANV | V!, ®¢ C) € (CIG).

iel
This function (of the complex variable s) satisfies

£5(0) = [ Jaogvw)y ™= Vi detp (1 — £, V1,/V?P,) € L(CIGD*.

iel

Proof. For each index i we let ¢,(s); denote the 4;-component of ¢,(s) according to
the decomposition Q(0); = ®;c;Q(0), ;. Then for each s € C one has

&,(s); = detpg,c(1 — £, (Nv)™* | Homg(V;, indg E'[G,]}") ®0 C)
= detgg,c(l =/, ' (Nv)™ | Homg,(V;, E'[G)])) ®¢ C)
= detpg,c(1 —fi(W) ™ | V), ®p C)

where the last equality follows because the E'[f,]-spaces Homg,(V;, E’[Gv]},#) and
(I/ifv)# are naturally isomorphic. This explicit formula proves the first assertion.
In conjunction with the tautological exact sequence

0 1 1,10
0= Vi, = Vi,=>Vi,/Vi, =0
it also implies that

£(8); = (1 — (W) ) "o U ety o (1 = AN | (V1 V2) @0 C).

https://doi.org/10.1023/A:1014502826745 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014502826745

EQUIVARIANT TAMAGAWA NUMBERS AND GALOIS MODULE THEORY 1 217

By considering Laurent expansions of these expressions at s = 0 we obtain the stated
formula for &}(0). O

For each finite subset S of S(K) which contains S.(K), the S-truncated
G-equivariant L-function of the motive Q(0); is defined by the formal product

Ls(s) := l_[ e(s)7".

veS(KN\S

From Lemma 2.0.1 it follows that

Ls@) =[] [[ Lscox.s)e]]E®0cC, (2.0.3)

icl ceX(E;) icl

where for each y € R¢(G) we write Lg(y, s) for the Artin L-function of y as defined in
([27], Chap. 0,§4) and then truncated by removing Euler factors corresponding to
places in S. (The formula (2.0.3) is compatible with (2.0.2) because each function
Ls(x, s) is defined using the elements f, rather than f,!).

We end this preliminary section with some comments concerning linear duality.
For any commutative ring R the ring R[G] is Gorenstein and so if X is a projective
R[G]-module, then Homgz(X, R) is a projective R[G]-module (when endowed with
the contragredient action of G). The functor RHomg(—, R) thus restricts to give
a functor on ©"”/(R[G]), and we write D(-) and D,(—) for the restricted functor
with respect to R =7 and R =7, respectively. We write ¢, and yg , for
the involutions on Ko(Z[G], R), Ko(Z[G], Q) and Ko(Z,[G], Q,) which are induced
by D(-), D(-) and D, (—) respectively. For example, if [P1, ¢, P»] € Ko(Z[G], R), then

V5P, ¢, Pa]) = [Homy(Py, Z), ¢, Homy (P2, Z)] (2.0.4)

with ¢?: = Homg(¢p, R)™".

Assume now that R is a field. Then RHomg(—, R) = Homg(—, R) and whenever R
is clear from context we write this more simply as —*. Let V; and ¥V, be finitely
generated isomorphic R[G]-spaces. Then for each element 7 € 5;?[0](1/1, V,) we write
v and t” for the elements of 0y (V3. Vi) and O (Vi, V3) which are equal to
detgg)(¢*) and detR[G](c],’)D ) for any (and therefore every) isomorphism ¢ € ®(7).

Let E be a field extension of R which splits R[G], and write xi— x* for the E-linear
involution of E[G] for which g# = g~! for each g € G. If V is any finitely generated
R[G]-space, then for each idempotent e of E[G] there is a canonical identification
of E-spaces

Homg)(E[Gle, (E ®r V)*) = Hompg(E[Gle", E ®g V)"
These identifications imply that for each 7 € 0 (V) S {(R[G)*" one has

=1, P =@ (2.0.5)
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2.1. THE DEFINITION OF TQ(L/K,0)

For any finite subset S of S(K) we let Y5 denote the free Abelian group on the set of
places of L lying above those in S, and we write X for the kernel of the natural
augmentation map Ys — Z. Both Yg and Xg have natural G-actions. If S contains
So(K), then we let Oy s denote the subring of L consisting of those elements which
are integral at all places which do not lie above those in S, and we write Ug for
the unit group of Op . In case S = Soo(K) we write U, Y and X in place of
Us, Ys and Xg respectively. We say that a finite subset S of S(K) is ‘admissible
for L/K’ if it contains S, (K) together with those places which ramify in L/K
and is in addition sufficiently large that Pic(Oy ) is trivial.
For each v € Sy(K) we set Y,:= Y},, and let C; denote the complex

(1, ZI6) 5 11, Z{G))

where here the modules are placed in degrees 0 and 1. If w € S,(L) is the place which
is induced by the fixed embeddings L — K¢ — K¢, then for each i € {0, 1} there is a
natural isomorphism of G-modules

HI(C? > Y, 2.1.1)

which is induced by (x)=#G,) 'xw for each xe H%G,, Z[G]) and
11(x) = (#1,)'xw for each x € H'(I,, Z[G)).

For any complex of Abelian groups C we write C¥ for its Pontryagin dual
Homy(C, Q/Z). We write 7 for the profinite completion of Z.

The following result is proved in [7] by using the Artin—Verdier Duality Theorem.

PROPOSITION 2.1.1 (cf. Prop. 3.1 and 3.2 of [7]). If S is admissible for L/K, then
there exists an exact sequence of G-modules

0— Us— ¥§ - PL — X5 — 0 (2.1.2)

with the following properties:

(i) W% and Wy are Z[G)-perfect.
(ii) Let Y% denote the complex ‘{’g — ‘Pg — Xs.0, where the maps are induced by
those in (2.1.2) and ‘Pg is placed in degree 0. Then there is a map
¥§ — RUA(OLs, 2)'[-3] in D(ZI[G)) which induces an isomorphism on H'(—)
Jfor i # 0 and the inclusion of Us into Us @7 7 for i = Q
(iii) Let Y denote the naive truncation in degree 1 of W% If T is any finite set of places
which is disjoint from S, then there is a distinguished triangle in D(Z[G])

¥y - Y —> P (2.1.3)
veT
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whose long exact cohomology sequence splits into two short exact sequences

0— Us — Usur — Yy — 0 (2.1.4)

0= Xs— Xsur —> Yr—>0 (2.1.5)

in which all maps are the natural ones (in particular, v is given by taking valuations).
Here we have used the maps (2.1.1) together with (2.1.2) (for Sand S U T) to identify
the cohomology modules of (2.1.3). O

For each w € S(L) we let | — |,, denote the canonically normalised absolute value
of w (cf. [27], Chap. 0, 0.2). For any finite subset S of S(K) which contains
Seo(K) we let Rg: US,R—X Xsr denote the R[G]-equivariant isomorphism which
satisfies Rs(u) = — >, cqq)log |l uly -w for each u € Us. (The normalisation of
Rs chosen here is motivated by the following result and the computations of [8, 18].)

THEOREM 2.1.2. (i) There exists an element A of {(Q[G])* such that
A~ L0y € ((RIG)* (2.1.6)
for all finite subsets S of S(K) which contain Sy(K). For any such 1 the element
TQL/K. 7, 0) = Y5160 (V5. Rs") + 5 1 (AL50))) € Ko(ZIG), R)

is independent of the choice of S which is admissible for L/K.

(i) Let x € {(Q[G])* and, for each prime p, let x, denote the image of x in
{Qy6h* = Im(nrg (G). Then the element Tg(x):=], %p[G](xp) belongs to
Ko(Z]G], Q). If A satisfies (2.1.6), then the element

TQ(L/K,0):= TQL/K, ,0) — y5(T6(A) € Ko(Z[G], R)

depends only upon the extension L/K.

Proof. Let T denote complex conjugation. One has {(C[G]) = [[;¢; [ [,e5E,) C and,
with respect to this decomposition, an element x = [];; [[,ex(g) Xio Of (e
belongs to {(R[G])*, respectively ((R[G])*", if and only if t(X;,) = X; 0, for all i
and o, respectively x € {(R[G])* and x;, is a strictly positive real number whenever
%; 18 symplectic.

For each finite subset S of S(K) which contains S,,(K), each character y € Rc(G)
and each s € R, one has Lg(t o 3, s) = t1Ls(x, s). The formula (2.0.3) therefore implies
that L:’;(O)# € {(R[G))*. The existence of an element A € {(Q[G])* which satisfies
(2.1.6) for any given set S is therefore a simple consequence of the Weak Approxi-
mation Theorem.
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We now choose v € S(K) \ S and set S": = S U {¥'}. Combining Lemma 2.0.1 with
the equality Lg(s) = Ls(s)e,(s) gives

(L5 (0 /L50)%), = (Qog(W) ™ Vi gdetp (1 = £ | VE/VE))  @17)

for each i € I and ¢ € Z(E;). Also, if V; is symplectic, then the eigenvalues of f, on
Vi VSV/ are equal to —1 or else occur in complex conjugate pairs. Hence (2.1.7)
implies that L*/(O)#/Lg(O)# € {(R[G])*". This implies that any element /i chosen
as above automatically satisfies (2.1.6) for all finite subsets S of S(K) which contain
Soo(K).

To prove the rest of (i) we assume that S is admissible for L/K and verify that
TQ(L/K, A,0) does not change if one replaces S by §'. After taking into account
(2.1.7), we must prove that

7or(Py, RG) — 16.2(P%, R

A j - 2.1.8
= .x (l_[(log(zvv/»“”mf’va')deta(1 — 1NV Vi) 1). (218

iel

To compute the left-hand side of this expression we use the following lemma.

LEMMA 2.1.3. Set Cy:=C; and Yo:=Y,. Choose w' € Sy(L) and let
HI(C(;,R) — HO(C(;,R) denote the isomorphism which is induced by the identifications
(2.1.1) and scalar multiplication by (log(Nw')) ™! on Yo.r. Then there is a distinguished
triangle of trivialised perfect complexes

(Y3, Rg') — (¥%. R') — (C5. ¥0) (2.1.9)

which refines the triangle (2.1.3) with T = {V'}.
Proof. This result follows by using the criterion of Remark 1.2.3 in conjunction
with the natural morphism of short exact sequences

0 — Xsr — Xgr — Yor — O
lR;‘ lR;‘ L(log(sz/»*'
0 — Usp — Ugr — Yor — 0O,
where the upper and lower rows are induced by (2.1.5) and (2.1.4) with T = {¥'}
respectively. O

Set 19: = detgrjg)(¥) and %o:=19(Cy ). Then, since CJ = Cj(= Z[G]), one has
%6.:(C3. o) = 06 r(30). Applying Proposition 1.2.2 to (2.1.9) therefore gives an
equality

1or (Yo Ry = 16.r (Y5 Ry') = élG,R(%o)- (2.1.10)

To compute this we set ey=) g for some place we Sy(L). Then

geGy,
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R[G] = R[Gley @ R[G](1 — ¢p) and, with respect to this decomposition (and the
identifications (2.1.1)), the fibre ®(7() contains the map ¢, which is defined by

(x, ) 1= G (log(Nw) ~'x, (1 = £ 7! y) = ((ogNv) ™' x, (1 = £,7)71y).

Now 79 = detrg)(¢) and a straightforward computation shows that

detrg(do) = [ JdogWw) ™™=V dety (1 — 71| V), /V0,) ™ € LRIG*.
iel
The required equality (2.1.8) is therefore a consequence of (2.1.10). This completes
the proof of ().

The proof of (ii) is now easy. Since x, € {(Z,[G])* = ker(%p[cl) for almost all pitis
clear that Tg(x) belongs to Ko(Z[G], Q). To prove that TQ(L/K, 0) depends only on
L/K, it suffices to show it does not depend on the choice of A. But if A’ is any other
element of ((Q[G])* which satisfies (2.1.6), then A2~ € ((Q[G])** and hence

0% (2 Ls(0)) — 3L o (AL50)%) = a5(2'27")
= Te(X 27
= Te(X) — Te(A). ]

The element TQ(L/K,0) can in fact be described naturally in terms of Fitting
Ideals of finite perfect Z[G]-modules (cf. [1]), but we shall have no need of this
description here. In subsequent sections we use TQ(L/K, 0) to reinterpret and refine
several well known conjectures, but to end this section we now describe its basic
functorial properties.

We let R be any Dedekind domain, and F a field extension of the quotient field of
R. For each subgroup H of G we let p% denote the restriction of scalars functor
from B(R[G]) to B(R[H]), and we let pg ,: Ki(FIG]) — K\(F[H]) and pf, ,:
Ky(R[G], F) — Ko(R[H], F) denote the morphisms which are induced by the
assignments (V, ¢)i— (p%V, p$¢) and [P, ¢, Oli— [p% P, p% b, p% 0], respectively.
If J is a normal subgroup of G, then we write X” for the (projective) R[G/J]-module
H'(J, X), and we let n§; ;2 Ki(F[G]) = Ki(F[G/J]) and 7§, ,,: Ko(R[G], F) —
Ko(R[G/J], F) denote the morphisms which are induced by the assignments
(V,d)— (V’, ¢7) and [P, ¢, O] — [P/, ¢’, O’], respectively.

PROPOSITION 2.1.4. Let H be a subgroup of G.

(i) pY y(TQ(L/K,0)) = TQ(L/L", 0) € Ko(Z[H], R).
(ii) If H is normal in G, then ng; ,;(TQ(L/K, 0)) = TQ(LY /K, 0) € Ko(Z[G/H], R).

Proof. We first give interpretations of the maps PE;,H and n"G’G/H for i € {0, 1} in
terms of the diagram (1.1.1).

Let F be an algebraically closed field of characteristic 0, and for each finite group I
let Irz(I") denote the set of irreducible F-valued characters of I'. Then {(F[I']) can be
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naturally identified with [[;, ) #. For any subgroup A of T' we Ilet
pgz L(FIT]D* — L(F[A]) denote the composite homomorphism

KI'
(FIT) = [] F*—= ] F* = UFIAa)”,
Irp(I) Irp(A)
where (Kg(x))¢: [Tyinatgx, for each x=(x)cir, )y and ¢ €lIrp(A). This
homomorphism is equivariant with respect to the action of Gal(F/E) for any subfield
E of F, and hence maps ((E[T'])* to {(E[A])*. If A is a normal subgroup of I we let ep
denote the idempotent 75 >"5.2 0 € {(C[T']) and write np. ,: {(C[T])* — {(C[T/A]*
for the surjective homomorphism induced by multiplication by ex.

LEMMA 2.1.5. Let R denote either Z or Z,, and let F be a field extension of the
quotient field of R. Let H, respectively J, be a subgroup, respectively normal
subgroup, of G. Then there are commutative diagrams

0 0
Po.n GGl

Ko(R[G]. F) —  Ko(R[H], F) Ko(R[G]. F) —  Ko(R[G/J]. F)

al al al 1
T[)R[G],F T[)R[H],F TdR[G],F TaR[G/l],F

K(FIG) "5 K(FIH) K(FIG) <% K(FIGI)
lan[G} ‘ lnr F[H] lan[G] lan[G/J]
(FIGYS D EH) CFIGYS B LFIGL).

Proof. Commutativity is clear except for the lower square of the left-hand
diagram. In this case the commutativity can be proved by reducing to the case that
F is algebraically closed, and then using the arguments of ([13], (52.9), (52.22)). [J

We now need to be precise about field extensions and so shall write V7 (g,
Urs, Xrs and Ry s in place of W, Us, X5 and Ry respectively.

To prove (i) we let S’ denote the set of places of L which lie above those in S. It is
then clear that S’ is admissible for L/L, and that the obvious identifications
p5 ¥ ks = Y1, s and pfiRL s = Ry combine to give an equality

p%,H(XG,R(Ti/K,S’ RZ,IS)) = XH,R(‘{'i/L",SH RZ,IS’)' (2.1.11)

On the other hand, by using the left-hand diagram of Lemma 2.1.5, one has

P61 (@5 5 (AL5O))) = 0 5(Ta(2) = 8y 1 (P(DPFHLFOF) = Tr(pfy(2)
= Oy  (PHALSO)) = Tu(pFi(2).
Here we write LY, (0) for the leading term at s = 0 of the §’-truncated L-function of
h°(Spec L) considered as an object of M;#(Q[H]). The last displayed equality

follows because p%(L%(0)) = L%(0) as a consequence of the inductivity property
of L-functions, and implies in particular that pG(2)L%(0)* € ((R[H])*T (that is,
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p% () satisfies (2.1.6) for the extension L/L). Proposition 2.1.4(i) now follows upon
combining this equality with (2.1.11).

To prove Proposition 2.1.4(ii) we let J be a normal subgroup of G and set
Q:= G/J. Taking advantage of Theorem 2.1.2, we increase S if necessary so that
it is also admissible for L /K. Writing Lg s(s) for the S-truncated L-function of
h°(Spec L’) considered as an object of Mx(Q[Q]), one has esL5(0) = L ;(0).
The second commuting diagram of Lemma 2.1.5 therefore implies that

7%, 0(06, 1 (ALE0)")) — 1%, o(T6(2) = gy g (es 4. L% ,(0) — To(es2)

(so that, in particular, e;A.L} J(O)# € {(R[Q])™T). On the other hand, since ¥§ JK.S
consists of perfect Z[G]-modules one has

16.006.r (Pl k.50 R.s)) = 2o.r(Homzpn(Z, W7 i o), (R )",

and hence it suffices to prove that
Lo r(Homz(Z, W5k o). (R = 102 (¥} k.5 R 5)- (2.1.12)

Set T;:= dejg € Z|[G]. Following ([27], Chap. I, §6.5) we embed X;; ¢ as a
submodule of X;s via the mapping induced by wi— T;w' for each
ve S, we S,(L7)and w' € S,(L). Via this embedding one has X;, ¢ = Ty X, s. Using
the fact that S is admissible for both L/K and L//K one computes that
Homy;(Z, Y5 /k.s) 18 acyclic outside degrees 0 and 2 and has cohomology
(UL,S)J and (T, X; s) ® Q/7Z in these respective degrees. Furthermore, in the course
of proving ([7], Lem. 11) it is shown that there exists a D(Z[Q])-isomorphism

0: Homzy(Z, \i‘i/K,S) - ‘i’if/x,s

which induces the natural identifications (UL,S)" =Up g and (T;X.s)®Q/7 =
X s®Q/7Z on cohomology. Let F denote either L or L/ and set H:=
Gal(F/K). Since Xr s ® Q is an injective Z[H]-module and Hl(‘i’}/K’S) =0 there
is a canonical identification

Homyzim)(Xr,s ® Q)[-2], ¥} ¢ o) = Homp(Xp.s ® Q, H* (¥} 4 5))
(cf. [7], Lem. 7(b)). In particular, there exists a distinguished triangle in D(Z[H])

in which the first morphism corresponds to the natural projection map
Xrs® Q — Xps® Q/7Z. Consider now the diagram in D(Z[Q])

(Xs®Q)Y[-2] — Homyn(Z, ¥} x5) — Homyy(Z, V]« )

l L7

X s®@OQ-2] — 17/K.S - 1/ /K.s"
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The rows of this diagram are the distinguished triangles coming from (2.1.13), and
the left hand vertical map is the composite (XL,S®<Q))J =(T;XLs)®0Q =
X s ®Q. The square commutes on the level of cohomology and hence in
D(Z[Q]). By completing the diagram to a morphism of triangles one deduces that
there exists a Q-equivariant quasi-isomorphism 0: Homz;(Z, \Pz/K,S)_N) Vi ks
such that the following diagram commutes

—1\/
L,S)

(R
Xrs®R)Y — (U s®R)

lHl Or R lHO((?)R

L.

XLJ’S®R — ULJ’S®R.

The required equality (2.1.12) now follows by applying Proposition 1.2.1(iii) to the
morphism 6. O

2.2. TQ(L/K,0) AND THE STRONG STARK CONJECTURE

In this section we use TQ(L/K, 0) to reinterpret the Stark Conjecture (as formulated
by Tate in [27]) and the Strong Stark Conjecture (formulated by Chinburg in [10]).
Throughout we regard L/K as fixed, and write TQ for TQ(L/K, 0).

For each character y € R{(G) we choose a C[G]-space ¥V, which affords . For any
finite subset S of S(K) which contains S, (K) we choose an injective G-morphism
¢s: Xs — Us, and for each y € R{(G) we set

detc(Rs o ¢g r | Homg(V7, Xs.0))

e C*.
L(x, 0)

A(pS(X) =

CONJECTURE 2.2.1 (The Stark Conjecture, ([27], Chap. 1, 5.1)). For each
1 € RE(G) and o € Gal(C/Q) one has A, (w0 y) = o(Ap (7).

We write O for the ring of integers of E’. By replacing E" with a larger field if
necessary, we may assume that for each y € RE(G) there exists an O[G]-lattice
T, such that V, = T, ®o C. If Conjecture 2.2.1 is true, then each complex number
Ay (x) belongs to £’ and, assuming this to be the case, the Strong Stark Conjecture
predicts the fractional O-ideals which are generated by 4, (x) for any set S which
is admissible for L/K. To recall the precise conjecture, we let o (Ty) denote the
complex of O-modules

Hy(G, Homo(T, Xs ®2 0)) - H(G, Homo(T, Us ®7 O))

where the modules are placed in degrees 0 and 1, and the differential is induced by the
composite morphism ¢g o (deG g). We set

Gy (1) 1= charo(H"(C; (T)))~'charo(H' (C; (T)))
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where, for any finite O-module N we let charp(N) denote the ideal of O with the
property that (charo(N)),, = (g,)(’)@)l"”g’h%% for each maximal ideal g of O.

CONIJECTURE 2.2.2 (The Strong Stark Conjecture, ([10], Conj. 2.2)). Assume the
validity of Conjecture 2.2.1. If S is admissible for L/K, then A, ()0 = q,(¥)
for each y € RE(G).

Remarks 2.2.3. (1) The Stark and Strong Stark Conjectures are formulated in terms
of complex numbers A;,S (x) which are defined just as 4,,(y) but with Rg replaced by
—Rg. It is however easy to check that the original conjectures involving Aéas(;{) are
equivalent to the above stated conjectures.

(i1) Conjecture 2.2.1 is independent of the choice of set S and embedding ¢ ([27],
Chap. I, 7.3 and 6.2). Conjecture 2.2.2 is independent of the choices of S, ¢g
and each lattice 7, (cf. [10] or ([23], §7)). Conjecture 2.2.2 was first motivated
by the partial verification of Conjecture 2.2.1 described by Tate in ([27], Chap.
II, 6.8), and is related to an earlier conjecture of Lichtenbaum (cf. [22]).

(iii) Since O is a regular ring, each ideal ¢, (y) can be described using the
determinantal formalism of [21]. Indeed, for any finite O-module N one has
charp(N) = detpN[0] and, hence, g,.(x) = det@C('ﬂS(Tx) for each y € RE(G) (where
here we have normalised the determinant functor as in [6,7,8] rather than [21]).

We are now ready to state the main result of this section.

THEOREM 2.2.4. TQ belongs to Ko(Z|G], Q) if and only if Conjecture 2.2.1 is true
for L/K. If this is the case, then TQ has finite order if and only if Conjecture 2.2.2
is true for L/K.

Before proving Theorem 2.2.4, we introduce a little more notation.

Recall that Q[G] has a Wedderburn decomposition [[,.; 4;. For each index i let
Lg(O)? denote the component of L*S‘(O)# which corresponds to the 4;-component
Q0),,; of Q(0);. If 4;Xg o =0, then ([27], Chap. I, 3.4 and Chap. 11, §1) together
imply that L}(0)! € EX ¢ (E' ® C)*. Taking this into account, we shall henceforth
suppose that the element 1 =[],.; 4 in (2.1.6) is chosen so that 4,L%(0)f =1 if
AiXs0=0. For any such /1, one has ALL(0) e 0k (Xsr), and we set
t5(2): = detrig(Rs") o (AL5(0)%) € 0% (Xs.r» Us,r). If S is admissible for L/K, then
Proposition 1.2.1(ii) implies

TQL/K, 4,0) := ¥t (Y5, t5(2)- 22.1)

Using this equality, the first assertion of Theorem 2.2.4 follows from Proposition
1.2.1(iv) together with the following lemma:

LEMMA 2.2.5. Let S be any finite subset of S(K) which contains Sx(K), and /. any
element of Q[G]* as above. Then Conjecture 2.2.1 is true for L/K if and only if

ts(4) € 5&5[0](/\/&@ Us.0)-
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Proof. In {(R[G])* one has equalities

t5(A)" ®cra) detrig)(@s.x)
= (AL5(0)") ' detgq (Rsopsp | Xsr)

“TI 11 detc(Rs o @5 | Homg(4je; ®p o C, X5.0))
iel GeS(E) o(Z) L (0)-

. 1—[ 1—[ detc(Rs o @ | Homg(Vooy,. Xs.0))

iel cex(E) o(4i)L(o 075, 0)

where the last equality follows from (2.0.3) and the fact that, for each i € I and
o € X(E;), the C[G]-module A/} ®p , C is isomorphic to V., . Taken together,
Lemmas 1.1.2(i) and 1.1.3 therefore imply that tg(1)~! € 55[61(Us,@7 Xs ) if and
only if

det@ (RS °Ps R | HomG( Vu)oaox,a XS,C))
woa(A)Li(woaoy;,0)

_ (detc(Rs o @5 | Homg(Veoy,, Xs.0))
B o(Z)L(o 075, 0)

for each i € I, 0 € X(E;) and w € Gal(C/Q). These equalities are obviously equiv-
alent to the truth of Conjecture 2.2.1. I

We now assume that 7Q belongs to Ko(Z[G], Q) and for each prime p we let TQ,
denote its projection into Ko(Z,[G], Q,). We say that Conjecture 2.2.2, is true if
the support of the fractional O-ideal A(ps(;()*lq(,,s(y) is coprime to p for each
1 € RE(G).

Conjecture 2.2.2 is true if and only if Conjecture 2.2.2, is true for all primes p, and
TQ has finite order if and only if 7€, has finite order for all primes p. To prove the
second assertion of Theorem 2.2.4 we may therefore restrict to consider p-primary
behaviour for each prime p. In this way, the proof of Theorem 2.2.4 is completed
by the following two lemmas.

For each prime p we let C,(L/K) denote the set of extensions L'/K’ such that
KCK CL CL,L/K iscyclic and p J[L:K'].

LEMMA 2.2.6. (i) T, has finite order if and only if TQ(L'/K',0), =0 for all
extensions L' /K" in C,(L/K).

(ii) Conjecture 2.2.2, is true for L/K if and only if it is true for all extensions in
C)(L/K).

Proof. This type of reduction step is certainly well known, but we shall neverthe-
less quickly sketch a proof.

Let Z be a I'(Q,)-module which is Z-torsion-free. If f € Homr(Qp)(R@;(G), Z),
then Artin’s Induction Theorem on characters implies that f = 0 if and only if
f () =0 for all characters of the form y = indflinfg/clp with C and H subgroups
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of G such that C < H, H is cyclicand p J[H: C], and y € R}.(H/C) (cf. the proof of
([23], Prop. 11(b))). We refer to this general criterion as ‘Artin reduction’.

To prove (i) we let Z, denote the valuation ring of Q) and set Z: = Q7 /Z *. The
isomorphism  hg, of (1.1.4) restricts to give a surjection from
Homr(Qp)(R@;(G), ZI‘;X) to the torsion subgroup of Ko(7Z,[G], Q,) and so elements
of the torsion-free quotient of Ky(7Z,[G], Q,) can be parametrised by elements of
Homrg,)(Rgs(G), Z). Claim (i) follows by applying Artin reduction to an element
of Homr(@p)(R@;(G), Z) chosen to represent 7, modulo torsion, and then using
Proposition 2.1.4 and the functorial behaviour of the isomorphisms /¢, as G varies
(cf. the proof of ([8], Lem. 4(iii))).

To prove (ii) we fix an embedding j: Q° — QC and let O; denote the valuation ring
of the completion E] of E” atj. For each 7 € RJr (G) wesetyi=joy € R+ (G). Welet
Z denote the group of fractional O;-ideals and define /' € Homr(g, )(R@( (G), Z) by
setting f(1,): = j(Aps (1) 4p5(D))O; for each y e R{(G). The function f behaves
functorially with respect to change of extension (cf. [27] Chap. II, proof of Th. 6.8)
and so (ii) can be proved by applying Artin reduction to f. OJ

LEMMA 2.2.7. If G is abelian and p } #G, then TQ, = 0 if and only if Conjecture
2.2.2, is true for L/K.

Proof. We regard p as fixed, and write 9'(—) and y(—, —) in place of 5}2,,[G],@,,(_) and
17,061.0,(— —) respectively. For any finitely generated G-module N we set
N,:= N ® Z,, and we use similar notation for complexes of G-modules.

We fix a finite set of places S which is admissible for L/K and a G-equivariant
injection ¢g: X5 — Us, and set ¢ ,;:= @5 ® Q,. Since G is Abelian the condition
(2.1.6)0is satisfied by 4 = 1, and we set 7: = 15(1) ® Q,. Let H* denote the complex
[Us, — Xs p] where the modules are placed in degrees 0 and 1. Since Z,[G] is a reg-
ular ring, there is a 7Z,[G]-equivariant quasi-isomorphism 0:¥5 , — H* which
induces the identity map on cohomology. Combining equality (2.2.1) (with
A =1) together with Proposition 1.2.1(iii) (applied to #) and Proposition 1.2.1(ii)
we obtain

Vo (TQ) = 1(¥5,. 1)
= 1(H*,7)

= 1(H*, ¢5,) + ' (detg g (@s,) " 0 1),

and, hence, 7Q, = 0 if and only if y(H*, g ,) = Ao detg 61(¢s))-

We now revert to the notation introduced in the proof of Lemma 2.2.6(ii), and
write I(Ejf) for the group of fractional O;-ideals. We set G*:= Hom(G, (E')).
For each y € G*, we let Oy, respectively Oy , denote the G-module consisting of
O, respectively O;, upon which G acts via , respectively lp] Since p f #G, the product
functor [ [ 6-(— ®016) Op,) induces an isomorphism O;[G] = [ [. O;. In addition, in
this case the map ¢ in diagram (1.1.1) implies that the functor detp,(—) induces a
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natural isomorphism Ko(0;, Q) = 1 (E}). Hence one has a composite injection

1: Ko(Z,[G], Q) — Ko(O}[G], Q,) = HI(E;)
G*

where the first morphism is induced by scalar extension — ®z, O; (and is injective
since p / #G). For each ¢ € G* we write x, for the ¢-component of any element
x of [[g I(E)). R

Now for each ¢ € G* one has 1(3'(c™" o deto,(1(¢s,))y = J(Aeg($)O;, whilst
1(x(H®, ¢5 )4 1s equal to the O;-determinant of the complex

Ps
H’(G,Homg,(0y,, Xs,, ®2, 0)) — H*(G, Homo,(Oy,, Us,, ®z, )

with the modules placed in degrees 0 and 1. In addition, Oy ®o C = V4 and, since
p V#G, the above complex is naturally isomorphic to 5. (0g) ®0 O; in o’ V((’)j).
Hence i1(x(H*, ¢g,))y = (det@C;,s((%))(’)j, and this is equal to g, (¢)O; by Remark
2.2.3(ii1).

We have now proved that 7Q, = 0 if and only if ¢, ($)O; = j(A4 @))(’)j for each
¢ € G* and each embedding j: Q° — Q;, and it is clear that this is true if and only
if Conjecture 2.2.2, is true for L/K. O

This completes the proof of Theorem 2.2.4.

2.3. TQ(L/K,0) AND THE CONJECTURES OF GRUENBERG, RITTER AND WEISS,
AND OF CHINBURG

In this section we reinterpret the conjectures of [10, 11, 17, 18] in terms of the element
TQ(L/K,0). We continue to use the notation of Section 2.2.

In the remainder of this article we shall assume, often without explicit comment,
that Conjecture 2.2.1 is true for the extension L/K. Following Theorem 2.2.4
and Lemma 2.2.5, it follows that TQ(L/K,0) and TQ(L/K, ,0) belong to
Ko(Z]G], Q), and that t5(4) € 56[0](XS,©7 Us. o) for each finite subset S of S(K) which
contains S, (K). We shall henceforth write 7Q and TQ(A) in place of TQ(L/K, 0) and
TQ(L/K, A,0) respectively.

To recall the central conjecture of [17,18] we fix a finite set of places S which is
admissible for L/ K. We then fix an exact sequence of finitely generated Z[G]-modules

i d n
0> Us—>0>P5 Xg— 0 (2.3.1)
in which P is projective, Q is perfect, and the sequence represents the canonical

element ¢g(L/K) of ExtzG(Xs, Us) defined by Tate in [26]. We write B for the image
of d, make a choice of G-equivariant injective endomorphisms « and f of B which

https://doi.org/10.1023/A:1014502826745 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014502826745

EQUIVARIANT TAMAGAWA NUMBERS AND GALOIS MODULE THEORY 1 229
are each homotopic to 0, and form push out and pull back diagrams

B =S p X Xy Us — BoUs — B

L s ol L L

B — BaXs — X5 Us - 0 — B
where & and ff are defined so that both diagrams commute. For each G-equivariant
injection @g: Xg — Us we write @g for the composite injection

BDOg

] 1 a
PrlBoxs X BaUsS 0.

The cokernel of ¢y is finite and Z[G]-perfect, and we set
Q= ta(cok(g)) = dG(Bo. x o B) € Ko(Z[G). Q).

We let Joo(Q°) and J(Q°) denote the subgroups of J(Q°) consisting of those ideles
for which all non-Archimedean components and all Archimedean components are
trivial respectively, and we write 7., 7y and 7© for the diagonal embeddings of
Q7 into Joo(Q), J,(QF) and J(QF) respectively. With respect to the direct product
decomposition J(Q°) = Jo(Q°) x Jr(Q) one therefore has n = (7, 7). In this sec-
tion we regard Q¢ as a subfield of C, and assume that £'/Q is Galois. We may
therefore identify X(E’) with Gal(E'/Q).

Conjecture 2.2.1 implies that there is an element glws of Homrg)(Ro<(G), J(Q))
such that

Apy(1) == 1(Ay (D)) € J(QY)

for each y € RE[(G). After choosing a function W € Hompg)(Roe(G), Joo(Q)) such
that WA, € Hom}r(Q)(RQr(G), J(Q) we set

Wgy = Qp, — ha(WA,,) € Ko(Z[G], Q).

CONJECTURE 2.3.1 (The Lifted Root Number Conjecture, [17,18]). w,, =
0 € Ko(Z[G], Q).

Remark 2.3.2. (i) It is possible to specify a canonical choice of W in terms of Artin
root numbers (cf. [11]).
(i1) Since the 2-extension (2.3.1) is chosen to represent the class cg(L/K) one has

35(Qpy) = (P) = (0) = —Q(L/K, 3) € Ky(Z[G))

where Q(L/K, 3) is the element defined by Chinburg in [10,11]. On the other hand, it
is easily shown that —Bg(hG(WA%)) is equal to the so-called ‘Cassou—-Nogues—
Frohlich class’ (cf. for example [18], App. A, following (A.3)) and so the equality
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8%((0(?»?) =0 € Ky(Z]G]) is equivalent to the conjecture formulated by Chinburg in
loc. cit.
(iii)) Some explicit evidence in support of Conjecture 2.3.1 is described in [24].

We are now ready to state the main result of this section.

THEOREM 2.3.3. TQ = y(w,,) € Ko(Z[G], Q) for each choice of S and ¢g as
above. In particular, one has TQ = 0 if and only if Conjecture 2.3.1 is true for L/K.

Remark 2.3.4. In conjunction with Theorem 2.1.2 and Proposition 2.1.4 the
equality TQ = y;(w,,) leads to alternative proofs of Theorems 1,2 and 3’ of [18].

To prove Theorem 2.3.3 we must first reformulate the definition of Q, in the spirit
of Section 1.2. Since Q is Z[G]-perfect there exists a short exact sequence

0—>P_1—§>PO—V>Q—>0

in which P’ and P! are finitely generated projective G-modules. In this way we
obtain an exact commutative diagram

0 0
| |
p-l -  pl
e 7 e

0 — ker(k) — P° 5 cok(@g) — O (2.3.2)
I

0 — P — 0 — cok(py) — O

| |

0 0

where first x, and then i, is defined to make the diagram commutative. Since P is
projective one can choose a section 77: P — Ker(i) to i and the diagram then implies
that

to(cok(pyg)) = [P_1 ®P,(1p1 ®1)os PO] € Ko(Z[G], Q). (2.3.3)

The next lemma provides the key stepcin coglparing this element to TQ(4).
We let P* denote the complex P! —> P* =5 P (with P! placed in degree —1).

LEMMA 2.3.5. Using (2.1.2) to identify the cohomology modules of W%, there exists
an isomorphism 1:¥$ — P* in P (Z[G)) such that H' (1) is the identity map in each
degree .
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Proof. It suffices to show that the 2-extension (2.1.2) represents the canonical class
¢s(L/K), and this follows from the proof of ([7], Th. 3.2). O

Combining the equality (2.2.1) with Lemma 2.3.5 and Proposition 1.2.1(iii) gives
an equality

V(TQ() =[P & P, §, P']

for any ¢ € Isgiq (P~ @ P)g, PY)) such that detgg(¢) = ts(A)(PF,). In conjunction
with (2.3.3) and the argument which proves Proposition 1.2.1(ii) this implies that

t6(cok(Pg)) — We(TQL) = g (detoia (™" o [1p1 @ nlo)).

We may assume that upon restriction to P@l C PF)Q the morphism ¢~ is equal to the
identity map and so it induces an isomorphism ¢: Qo — Pg. The last displayed
equation therefore implies that

Qg — (TQA))
= 16(cok(Ps)) — Ye(TQ(A)) — dg((Bo, oo B))
= 0(deto(@ ™" o [1p- @ nlo)) — 36((Bo, =0 B))
= d(detoig( © Bs.0)) — d(detopg (o B)
= dL(detog () 0 Ps.0)detomg(@o f).

Theorem 2.3.3 now follows from this last equality together with the following two
lemmas.

Let 4, denote the element of {(C[G])* such that (4,,);, = A,(0 o y;) for each
i€l and o € 2(F).

LEMMA 2.3.6. detgg (¢ © @ o)detoia(xo ) =i 4% e (R[G)*.

Proof. Choose € Isgig(Us.0, Xs.0) with detoig () = ts(2)"'. To obtain an
isomorphism ¢; as above, one combines ¥/ with a choice of G-equivariant sections
o and p to the morphisms Qg iy Bp and Pg o0 x, 5.0 respectively. Since the precise
choice of ¢ and p is irrelevant, we shall for convenience use the sections defined by
a(b) = &@(aélb, 0) and u(x) = B(_)] (0, x) for all b € Bp and x € X5 o respectively.
With these choices of ¢ and u there is a commutative diagram of G-equivariant
morphisms

(1.d) . 1) (1)
QQ =Uso® O'(B@) — Uso® By — Xso@®Bp — Pop
l(((ﬂs®"@)0l//,0) l((¢s®@)ol//~ﬁ) l(l,/f) l=
00 =Uso®a(By) < Uso®By 2 Xs0®By < Po

where 0 denotes the automorphism of ¢(Bg) given by

do(eg' b, 0) i do(ag (@ o fb, 0))
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foreach b € Bp. We can take ¢ to be defined by the top row of this diagram and, on
the other hand, the bottom row is equal to ¢g (. It follows that, with respect to the
decomposition Qg = Us o @ d(Bg), one has ¢g o ¢ = (g oy, 0). Hence

detgpa(¢) 0 ds.0) = detga(Ps.o 0 b))
= detog(@s,0 o ¥) - detgi(0)
= iilAzS . det@[G](fx ) ,8)

as required. O

LEMMA 2.3.7. 35(27" 4% ) = ha(W 4,,) — To(2).

Proof. To prove this we work in terms of the description (1.1.5). More precisely,
after chqosing elements 6; and 6, of Hom}r(Q)(RQr(G), JA(Q")) such that
ha(0r) = 05;(2 7" 4% ) and hG(02) = Tg(2) we show that 07'05' WA, € ker(hg).

By explicitly interpreting 3}; and BIZ/,[G] in terms of hg and hg ), one finds that the
homomorphisms

|: <detC (RS o qDS,R | HomG( Vao;(,-v XS,C)))1|
goyl—>T o —
o(4i)Lg(a 0 %;, 0) i

and [0 o z;1— nf(o'()vi))]i,(T are suitable choices for 0; and 0, respectively (where here i
and o run over / and X(£")). Note that whilst this choice of 0, obviously belongs to
Hom}’(@)(RQ«(G),J(Q")), the same is true for 0; since A =[], 4; satisfies (2.1.6)
and detc (RS o@gsr | Homg(Vooy,, X, S,C)) is a strictly positive real number if y; is
symplectic. Indeed, if y; is symplectic, then detc(Rso ¢g g | Homg(Vooy,, Xs,c))
is the reduced norm of an invertible element of a simple algebra component of
Endpg(Xs,r) which is a matrix algebra over the quaternions.

By using the above choices for 0; and 0,, one computes that for each index i and

embedding ¢

(07 20,05 W (@ 0 1) = Wi 0 1)mcl00)) € Joc( 0.

If y; is symplectic, then as a consequence of the precise conditions which W and 4 are
chosen to satisfy, each component of the last expression is a strictly positive real
number. Hence 0;'05' WA, € Detrig(Ki(R[G]))  ker(hg) as required. O

This completes the proof of Theorem 2.3.3.

2.4. TQ(L/K,0) AND THE EQUIVARIANT TAMAGAWA NUMBER CONJECTURE

We continue to use the notation of Section 2.3, and assume that Conjecture 2.2.1 is
true for L/K. For each prime p we write 7Q, and 7(4), for the projections of
TQ and TQ(/) into Ko(Z,[G], Q,).
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In this section we describe 7Q, in terms of p-adic étale cohomology. As a con-
sequence, we show that Conjecture 2.3.1 is equivalent to the Equivariant Tamagawa
Number Conjecture for the pair (Z[G], ((0),) as formulated in [3]. This equivalence
gives new insight into Conjectures 2.2.2 and 2.3.1 and, in particular, provides a
canonical interpretation in terms of étale cohomology of each p-primary component
of Conjecture 2.3.1. This interpretation (which assumes only that Conjecture 2.2.1 is
true for L/K) is likely to prove crucial to the study of Conjecture 2.3.1 and cannot be
obtained using the methods of [17,18]. In conjunction with the results of Sections 2.1,
2.2 and 2.3 the result proved here also provides further clarification of the conjec-
tures formulated in [3] and, in more concrete terms, it allows one to interpret
the extensive body of existing work which supports Conjectures 2.2.2 and 2.3.1
as evidence for the general conjectural equality (1). This is important since there
are still very few examples for which (1) has been completely verified (see [1] for
some recent results in this direction).

We first quickly recall the central conjecture of [3] (as applied to the pair
(72161, Q(0),)). To do this we fix a finite subset S of S(K) which is admissible
for L/K, and set S,: = SU S,(K) and S, ;: = S, N Sy(K). For any (p-adic) étale sheaf
& on Spec Or 5, we set Hﬁg‘&): = H"RFC(OL,SP, &) for each integer i. yVe regard p as
fixed, and write z(—, —), 8'(-) and " in place of x5 (g.0,(= —); a}Zp[G],Q/,(_) and
Y, respectively.

The complex RT' (O s,, Z,) belongs to orert (Z,|G]) and so can be represented by a
bounded complex of finitely generated projective Z,[G]-modules P*. For any element
A of {(Q[G))* as specified immediately prior to (2.2.1) we write 7(A*) for the element
,(K, Q(0),, S, ) of 55N[G](H§(Qp), H{(Q,)) which is defined in ([3], §3.2.2) (this
trivialisation will be described more explicitly a little later). For each place
ve Sp(K) we set D}:= Home(C",’@p, @Q,) where the complex Cj is as defined at
the beginning of Section 2.1. We let 7, denote the reduced determinant of the
0,[Gl-equivariant isomorphism H' Cro, ~ HOC;’QP which is induced by the
identifications (2.1.1). We set

evi=1(Ch)" € 58 1Dy b, Do) € LQ,IGD*,
and then define
TQ = y(P*.1(0*) + 3' G = Y 8'(e) € Ko(Z,[G], Q).

VES[,/

This element is equal to the element 7TQ°(Z[G], Q(0),) introduced in ([3], Th.
4.1.1(ii)), and so the Equivariant Tamagawa Number Conjecture of (loc cit., Conj.
4.1.2) asserts that T7QP = 0.

In this section we prove the following result.

THEOREM 2.4.1. For each prime p one has TQ, = TQ’. In particular, Conjecture

2.3.1 is true for L/K if and only if the Equivariant Tamagawa Number Conjecture
is true for the pair (Z[G], Q(0),).
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Before proving this result we record an interesting corollary. This generalises the
result of ([7], Th. 3.2) to non-Abelian extensions L/K.
Set TQ(2%):= TQ" — 3'(2") € Ko(Z,[G]. Q) and TQ(*): =[], TQ(W").

COROLLARY 2.4.2. TQ(") € Ko(Z[G], Q) and ag(TQ(/I#)) = —yL(Q(L/K,3)) €
Ko(ZIG)).

Proof. Theorem 2.4.1 implies TQ?(¥) is equal to the p-component of TQ— T(A%).
Since TQ — T¢(A") € Ko(Z[G], Q) it follows that TQ”(/#) = 0 for almost all p, and
hence that 7Q(/*) belongs to Ko(Z[G], Q) and indeed is equal to TQ — Tg(A").

From Theorem 2.3.3 and Remark 2.3.2(ii) one has

UTQUY) = d%UTQ — Te(37))
= WV Qpy) — (Wi (ha(W Ayy) + Ta(3"))
= —VGQL/K, 3) = QWG ha(W 4,)) + To(3")).
It therefore suffices to prove that /ig( wA o) T We( T4(2")) belongs to the kernel of 8%.

However, as a consequence of (2.0.4) and (2.0.5) one has xV&(TG(/l#)) = —Ts(4), and
so the required containment follows directly from Lemma 2.3.7. O

In the remainder of this section we prove Theorem 2.4.1.

As already observed in the proof of Corollary 2.4.2 one has x//”‘(él D) = -3 Vi)
and so Theorem 2.4.1 will follow if we show that 7Q(4), = TQP(2%). In proving this
equality the key point is the canonical distinguished triangle

RFC(OL,S,,» Qp) e er(L’ Qp) g @ D‘., 57 @ RF(LWs Qp)

VES), weSs (L)

of ([7], (6)) (cf. also ([3], triangle Ag(V') following (2.2.2.2))). This triangle implies the
existence of a complex K°® which lies in canonical distinguished triangles in

> (Q,[G))
K* — RFf(L, Qp) - @ RF(LWs Qp)
weSs(L)
Py — K*— ¢ p:. (2.4.1)

\’ES/,J

Using the first of these triangles one computes that K* is acyclic outside degrees 1 and
2, and that there are canonical identifications H'K* = (Xo, ) and H>K*® = (U@p)*. In
addition, the argument of ([7], Prop. 3.3) proves that there is a D”"’f(Zp[G])-
isomorphism 0: D(‘ng) ® 7y = P*[2] such that, after identifying H! (Q,) and
Hf(Qp) with (XSP’@]))* and (USpva)* via 0 ® Q,, the long exact cohomology sequence
which is associated to (2.4.1) recovers the (,-linear duals of the sequences obtained
by applying Q,®z- to the sequences (2.1.4) and (2.1.5) with § = S (K) and
T=3S8,,.
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Since we are assuming Conjecture 2.2.1 is true for L/K, Lemma 2.2.5 guarantees
that (1) € 56[0](XW,©s Uw.g) for any finite subset W of S(K) which contains
Sx(K). In particular, using the notation of Proposition 1.2.1(iii), we may set

T, (1) 1= (15,(D)” @ Qp)y € 8 1(H(Qy), HZ(Q)).

Combining the equality (2.2.1) with Theorem 2.1.2(i) and Proposition 1.2.1(iii) (the
latter taken with A =7Z,[G] and F = Q,) now gives

TQL), =" (1(V5 ® Zp, ts() ® Q)
=Y (U5, ® 2y, 15,() © Q)
= 1(D(¥5) ® Z,, 75,(1)” ® Oy)
= £(P*[2], s, (1))
= 1(P*. 75, (2)).

Applying Proposition 1.2.1(ii)) we deduce
TQ(), — 1(P*, t(i¥)) = 3'(z(G*) " o 7, (2)),
and hence that
TQ(A), — T OF) = 9! ((7;(/1#)1 o T/Sp(;“)) X 1_[ s‘,). (2.4.2)
VESptf

It is now time to be more explicit concerning the definition of t(/*). To do this, we
choose $oo € Isgie(Xo, Ug) with detog) (o) = Tsu)(4), and let
P € Ispa((X. 5,.0)"» (Us,.0)") be any morphism which fits into a commutative dia-
gram

0 — (Y5, 0 — (X507 — (Xo)f — 0
lz l‘b’x l«ﬁé’o
0 — (Ys,.0° — (Us.0) — (Up) — 0O,

where the upper and lower rows are the Q-linear duals of the exact sequences
obtained by applying Q ®7 — to (2.1.5) and (2.1.4) respectively (with S = S,.(K)
and T = S, 7). Set 1. (4): = detgg(¢,)- Then, by the very definition of (%) in ([3],
§3.2.2), one has 1(2") = (¢, (2) ® Q,),. Hence

75 ()7 012 = ((25,(D° ® Q) ot ® Q)

(2.4.3)
= (15,(A)" 0 T,,(4) ® Q).

Upon comparing the explicit definitions of 75, (/) and 7 (4) (and using (2.0.5)) one
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finds that
Ls (0)
Ly, (K) (0)

where 1, , denotes the R-linear dual of the automorphism of Y, , g which is induced
by wi— (log(Nw)) w for each v € S,y and w € S,(L). Now Lemma 2.0.1 implies

T5, () 0 T () = detpq (.Us ,) (2.4.4)

L% (0 . 0
5O _ I1 (H(log(Nv))dWE’<Vw)detE/(1 — /il Vifl,/V,?ly)) e ((RIG),

—r
LSDO(K)(O) veS, s \ i€l

and a direct computation shows that

detgjg) (,uSN> = 1_[ (H(log(NW))—dimE/(V&,)) e URIG))*.

veS, s \ iel

Combining the last two equalities together with (2.4.3) and (2.4.4) gives

w5, () o) =[] (H(#Gv/#lv)"""lf'“” detp (1= 1V],/ )).

vesS, s \iel
(2.4.5)

On the other hand, for each v € S, 7, the definition of ¢, = T"(C;,QN)D together with
(2.0.5) and an explicit computation similar to that following (2.1.10) implies

e = [ [#G /1)~ Vi deti (1 = £, | VL, VD)) € LQ,[GD".
iel
The required equality TQ(4), = TQ" (%) now follows by taking the last displayed
equation in conjunction with the equalities (2.4.2) and (2.4.5). This completes
the proof of Theorem 2.4.1. O
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