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Introduction

The history of retouching images is as old as film photography, where the usage of chemicals,
dyes or graded tone paints is common practice in the silver print workflow: after the darkroom
processing, the prints are usually manipulated with soft brushes for removing dust spots,
hairs or scratches enlarged from the film negative; see Lambrecht and Woodhouse (2013) for
common print spotting techniques. The artistic skills in manipulating the final paper print
need to take into account both the structure and texture of the image, as well as the film
grain. These skills are even more demanding when large areas have to be reconstructed:
famous examples include the substitution of people in group photographs with the landscape
background for propagandist political purposes or photo montages. The ability to retouch
photographs is also a key ingredient in digital images. With the rise of digital photography
and photo-editing software, a lot of effort has been made by the mathematical and computer
vision communities to develop effective methods and algorithms for digital imaging data.
On top of that, the increasing quality of recording reached by camera sensors requires
continuous improvement of the algorithms to adapt to modern needs, both in performance
and in diminishing the visual impact of a retouch.

What is Inpainting
In the scientific community, the problem of recovering missing data in digital images, initially
called disocclusion or amodal completion, dates back to the early 1990s. It relates to recover-
ing the contours of occluded objects, thus making them appear disoccluded. Early approaches
were based on mathematical methods for recovering missing data from a few samples either
lying on equally spaced points or at scattered locations, with the usual assumption that the
function to be recovered has a certain degree of smoothness making easy its interpolation
on unknown locations. However, the inpainting problem is much more than an interpola-
tion problem, embracing a broader class of methods dealing with the non-uniqueness of the
solution and its expected plausibility as a natural image.

Real-life data are not smooth in general: for example, images come with edges, jumps of
colour or structural discontinuities. Thus, it is necessary to set the mathematical problem in
a space allowing for such discontinuities.1 Moreover, the image texture (e.g. in grass, stones,
etc.) makes the reconstruction problem even more challenging, especially if the task is to
recreate an image that is visually plausible to the human eye and indistinguishable from the
expected original. Additionally, the difficulty of the problem is closely related to the size of

1 This is called the space of functions of (special) bounded variation, Ambrosio et al. (2000).
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2 Introduction

the region to be reconstructed. If the region is relatively large, a simple propagation of either
smooth or texture information is not enough, and a knowledge of the semantics of the full
image is necessary. Nowadays the term inpainting is commonly accepted for describing the
general task of restoring the geometric and texture content in damaged images by filling in
the unknown regions (which can be of any size and shape) with plausible visual information.
The word “inpainting” first appeared in the seminal work of Bertalmío et al. (2000), borrowed
from the dictionary of art conservators dealing very often with the restoration of fragmented
missed data in artworks.

Why this Book
Over the last few years, the inpainting research field has become extremely popular in the sci-
entific community. Existing reviews of digital inpainting describe only thematic approaches,
e.g. local methods (Schönlieb, 2015) and non-local methods (Guillemot and Le Meur, 2014;
Buyssens et al., 2015a), as well as efforts to organise the vast literature on deep learning
methods in Elharrouss et al. (2019). As authors, we believe that a comprehensive and detailed
monograph covering the whole history of inpainting is still lacking and we are aiming to
match this challenge.

In this monograph we offer the reader a timeline of the evolution of inpainting research,
with a description of methods selected by their novelty and representing the overall research
directions in the field, from early initiatives to the present. In particular, we analyse the
theoretical contributions and emphasise the quality of the solutions that were proposed to
the novel challenges presented at each stage in this evolution, e.g. the increasing size of
the images to be processed, the growing expected quality of seamless reconstruction and the
efficiency of the algorithms involved. Additionally, we consider different test cases and image
comparisons regarding damages from imaging data arising in the cultural heritage domain:
this is another key aspect of this work. Indeed, we also aim to enrich the existing reviews by
focusing on the restoration of artworks, specifically the collection of illuminated manuscripts
in the Fitzwilliam Museum (Cambridge, UK), ideally to bring back the inpainting research
field to the place where it originated.

All things considered, with this monograph we aim to promote new interdisciplinary
research opportunities at the intersection between art and science.

How to Read this Book
The book is targeted at both image inpainting experts, serving as a reference book for
mathematicians, engineers and computer scientists interested in image processing and image
inpainting more specifically, and also art historians who are keen to understand the main
concepts behind image inpainting and its various capabilities. In order to achieve this, we
have structured the book in a two-layer format. The main text is accessible to our whole target
readership. The framed boxes give technical details of particular interest for mathematicians
and image inpainting experts.
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1.1 Mathematical Setting 3

1.1 Mathematical Setting

In order to describe an image mathematically, we introduce some standard notation to be
used in all the following chapters unless otherwise stated. Additional terminology for specific
use within each chapter will be discussed at the start of the chapter.

In the continuous setting, where an image is defined over a continuous range of coordinates,
let Ω ⊂ R2 be an open, bounded Lipschitz domain, meaning an open and connected set with
sufficiently regular boundary. Specifically, at each point on its boundary, Ω can locally be
described as the graph of a Lipschitz-continuous function indexed by the variable x = (𝑥, 𝑦);
its outer normal is denoted by n(x). A grey-scale image is defined as a function 𝑢 : Ω → R,
while a colour image is defined as a multi-valued function u : Ω → R𝐶 , where 𝐶 is a
positive value indicating the number of colour channels. The occluded or inpainting domain
is the portion 𝑂 of the imaging domain Ω that contains the region with the damage to be
restored, with boundary denoted by 𝜕𝑂. At the same time, the intact domain is denoted by
its complement𝑂𝑐 := Ω \𝑂, and the initial image is denoted by 𝑢⋄ (x) (the composite of the
intact part for all x ∈ 𝑂𝑐 and of the damaged part for all x ∈ 𝑂). Thus, the mathematical
definition of the inpainting problem can be given as the interpolation problem aiming to
recover the missed values in 𝑂, according to the information available in 𝑢⋄.

Since the inpainting problem is mostly addressed using algorithms dealing with real images
that, unlike their abstract mathematical representation, lie in a discrete setting, we introduce
some specific terminology. In the discrete setting, the domain Ω can be represented by a
discrete grid of height 𝐻 and width 𝑊 whose vertices, called pixels, are equally spaced by
a certain grid size ℎ > 0. Therefore, a grey-scale image is represented as a matrix of size
𝐻 ×𝑊 , with positive entries falling typically in the range [0, 255] (for an 8-bit image) and
which are usually unrolled into a vector u : Ω → [0, 255]𝐻𝑊 ; a colour image of 𝐶 channels
is represented by layered matrices as u : Ω → [0, 255]𝐻×𝑊×𝐶 or u : Ω → [0, 255]𝐻𝑊×𝐶 , in
the case of unrolled images.

In the discrete setting and in order to preserve the fidelity information on the intact
domain, we will make use of matrix notation to distinguish between the inpainting mask and
the intact mask. The inpainting mask denotes the pixels belonging to the inpainting domain
and is represented by a matrix M which is the same size 𝐻 ×𝑊 as the image and which is
associated with the inpainting domain 𝑂 via the indicator function

M(x) =
{

1 if x ∈ 𝑂,
0 if x ∈ 𝑂𝑐 .

The intact mask is denoted by the indicator function on the intact domain𝑂𝑐, i.e. 1−M(x),
where 1 denotes the matrix of size 𝐻 × 𝑊 with all entries equal to 1. For the unrolled
version of the image, we will also take advantage of a diagonal projection matrix P and its
complement I − P, where I is the identity matrix, both of size 𝐻𝑊 × 𝐻𝑊 and acting on the
unrolled version of each colour channel of the rectangular image. The main diagonal of P
consists of the unrolled entries of M(x) and, by means of P, we can identify the intact part
of the vector image as u⋄ = Pu, of size 𝐻𝑊 × 1 (for grey-scale images) or 𝐻𝑊 × 𝐶 (for
coloured images). An illustration of this terminology is given in Figure 1.1.
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4 Introduction

(a) Discrete image u (before
unrolling)

(401 × 401 px,𝐶 = 3)

(b) Mask M:
the inpainting domain𝑂 in

white,
𝑂𝑐 in black

and𝑂 ∪𝑂𝑐 = Ω.

(c) A visual diagram: (left) the image space, showing the boundary
𝜕𝑂 of the inpainting domain𝑂; (right) the image representation.

The image coordinate x is mapped to the image pixel colour via the
discrete function u(x): Ω → [0, 255]3.

Figure 1.1 Illustration of the notation used in this text. Coronation of the Virgin
(detail) from MS 153, fol. 15r. © Fitzwilliam Museum, Cambridge, UK.

1.2 Overview of Inpainting Approaches

The classic mathematical approaches for the inpainting problem are essentially two: geometry-
oriented and texture-oriented methods (also called exemplar-based methods). With the in-
creasing computational power of computers and graphics processing units (GPUs), as well as
the availability of large datasets, these approaches have been overtaken by the new era of deep
learning techniques, where the geometric and texture approaches are eventually combined,
plus other possible clues such as semantic information.

Geometry-oriented approaches (see Chapter 2) are local methods, which are influenced
only by points neighbouring the inpainting domain: thus, they are designed to propagate
local information, mainly level lines (contours of equal brightness, or isophotes), from the
boundary of the inpainting domain to its inside. They were very popular in the mid 2000s
and produce good results for tiny scratches that need to be filled in (but are not suited for
propagation of the texture).

Texture-oriented approaches (see Chapter 3) are non-local methods, which originated as
an application of the texture synthesis problem: they are able to recover information from the
whole image. This is different from the approach based on the influence of local neighbours
in geometric-oriented methods. Texture-oriented approaches are also referred to as exemplar-
based or non-parametric methods, since they look for similar examples in the intact part of
the image for realistic reconstruction. They peaked in popularity in the mid 2010s and do
provide excellent results in many situations where there is limited data available. However,
they only perform well in an inpainting task with repetitive patterns or more complex textures
if enough examples are present in the same image. For this reason a good similarity measure
between small portions within the image, called patches, needs to be defined and customised.
Therefore, texture-based methods are not able to generate reasonable new geometries.

From the beginning of 2010 onwards, a novel class of inpainting methods based on neu-
ral networks and deep learning (DL) strategies appeared in the literature (see Chapter 4).
Those approaches aim to leverage the information found in large-scale datasets, thus com-
bining local, non-local and high-level information. While early deep learning approaches
used reconstruction distances on small inpainting regions, perceptual objectives were soon
introduced, frequently in a two-step approach where structure and texture are incorporated.
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1.2 Overview of Inpainting Approaches 5

Table 1.1 Summary of inpainting approaches: local (L), non-local (NL) and deep learning (DL)

Type Ch. Unit Mathematics
Inpainting
domain Drawbacks Source of data

L 2 pixel

fluid dynamics
PDE, variational

methods

tiny for textured
or large for
cartooned

images, regular
geometry

no texture
reconstructed

single image, the
boundary of the

inpainting
domain

NL 3 patch

variational
methods,

minimisation of
patch similarity

functions

relatively large
with irregular

geometry

subject to
availability of

the content to be
replicated

single image, the
intact part

DL 4 —

neural networks,
minimisation of
loss functions

size variable
(better visual

results for
smaller size),

irregular
geometry

dataset size and
type, neural

training time,
possibly

unrealistic
results

multiple images,
content learned
from very large

datasets

On the other hand, deep learning methods depend very much on the dataset on which they are
trained, as these methods aim to learn underlying visual priors from data, including geomet-
ric, smoothness, self-similarity patterns, global perceptual coherency and image semantics.
Note that, as in the inpainting literature, throughout the book the terms inpainting region,
inpainting hole or just hole are used interchangeably.

We summarise the main differences between such methods in Table 1.1.

Terminology
Local and non-local approaches can also be classified with respect to the domain in which the
inpainting task is performed. For example, inpainting methods dealing with missed wavelet
or Fourier coefficients can be considered as transformed domain methods; they differ from
the standard manipulation of intensity values in the imaging domain. In order to highlight
inpainting approaches in a transformed domain, as they are transverse to both local and non-
local methods we add a star ∗ in Tables 2.1 and 3.1. Notice that deep learning approaches can
also be seen as methods belonging to the transformed domain, since most tasks are based on
learning the underlying feature space.

Note on Evaluation
In general, there exist no unique solutions to the inpainting problem. Therefore evaluation of
the effectiveness of each approach is purely descriptive. This is the reason why, in the case
of art restoration, it is important to collaborate with specialised restorers in order to code
methods that are close to their needs. It is important to highlight the fact that very often a
damaged region causes a distraction when viewing images. Therefore, the general principle
of inpainting can be translated as finding a good retouching that minimises the disruption to
a general audience. If any methodology results in an artefact that does not affect the overall
quality of the image and can still improve upon the input, then the artefact is recognised as a
feature of that particular approach.
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6 Introduction

1.3 The Gestalt Laws
All inpainting methods have been inspired, explicitly or implicitly, by the laws of the Gestalt
psychology theory, a German word translated as “form” or “shape”. In this section we
summarise the key principles of the theory, which are extensively described in Metzger
(1975), and how they relate to the inpainting problem. We refer the reader to Desolneux et al.
(2008, Chapter 2) for more technical insights.

The Gestalt theory was developed in 1923 at the Berlin School of Experimental Psychology
by Max Wertheimer (1880–1943), Kurt Koffka (1886–1941) and Wolfgang Köhler (1887–
1967): see Wertheimer (1923), Koffka (1935) and Köhler (1929). The idea of the Gestalt
theory can be summarised in the words of K. Koffka, “the whole is something other than
the sum of its parts”, claiming that the human mind is able to recognise an object thanks to
the priority of the total perception of the object over the perception of its individual parts.
The Gestalt theory is based on grouping and governing laws: the former can be applied
independently and recursively to the “atom elements”, or previously formed objects, to build
a total image (gestalt); the latter are principles dealing with the collaboration and conflictions
of the elements. The local to global grouping laws are also described in the work of Kanizsa
(1980) and are called there primary processes (they are also called basic grouping principles
or local principles). These laws are very close to the list introduced by M. Wertheimer and
are described as follows.

• Proximity: Objects with proximity are close enough to be grouped together (this can be
related to the mathematical properties of connected sets or clusters).

• Similarity: Objects sharing features (e.g. colours or texture) are said to have similarity
and are grouped together.

• Continuity of direction: Objects aligned with others are said to have continuity of direc-
tion and are grouped together.

• Amodal completion: In amodal completion, relatable2 curves (curves that can be related)
interrupted by the creation of T-junctions are grouped together as part of the same object
(principle of good continuation).

• Closure: Closure occurs when a figure is perceived as complete and unified even when
parts of it are missing or incomplete.

• Constant width: Two parallel curves, which can be said to be of constant width, identify
boundaries of the same object.

• Tendency to convexity: A convex curve (not necessarily closed) identifies the boundary
of a convex object.

• Symmetry: Objects symmetric around a central point belong to the same group.
• Common motion or fate: Objects moving along the same smooth path or behaving with

a similar trend are said to have a common motion or fate and can be grouped together.
• Past experience: Past experience influences our visual perception and tendency to group

objects.

As mentioned in Desolneux et al. (2008), global gestalt and partial gestalt are the results
of different synthesis processes: for example, a square on its own is global, being the result
of recursive partial groupings, e.g. edges and corners. On top of the basic laws, the Gestalt
2 The notion of relatability was introduced by Kellman and Shipley (1991) and was proved experimentally in

Rubin (2001) to play a global role in cueing the first occlusion-perception stages; see Oliver et al. (2016) for a
computational model for amodal completion based on relatability.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009585965.002
Downloaded from https://www.cambridge.org/core. Yunnan University, on 25 Aug 2025 at 00:40:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009585965.002
https://www.cambridge.org/core


1.4 Mathematical Interpretation of Visual Perception 7

theory requires the global principles of inheritance, describing how the parts share the
features of the whole, and Prägnanz, a German word meaning “pithiness” and describing
perceptual cognition on the assumption that the human brain acquires information in a
regular, orderly, symmetrical and simple way. In the Gestalt theory the independent basic laws
can collaborate or compete, thus generating conflicts or masking phenomena and possibly
leading to incompatible objects, especially when no law is strong enough to overcome the
others. Kanizsa (1979) also contributed, with the connectivity principle, meaning that human
perception tends to prefer disjoint aligned objects to be connected; see Chan and Shen (2001b,
Figures 1 and 2).

In more recent years, Gestalt theory has impacted on the inpainting problem described by
the mathematical and computer vision research communities. Indeed, the results of inpainting
models are visually evaluated by their perceived coherence with respect to the intact part of
the image; this is called the principle of visual reconstruction in Gombrich (2006).

1.4 Mathematical Interpretation of Visual Perception
Over the recent years, a different class of approaches to the inpainting problem has gained
attention, owing to its connections with the neurophysiology of vision (Citti and Sarti, 2006;
Duits and Franken, 2010; Bekkers et al., 2014; Barbieri et al., 2014; Citti and Sarti, 2014;
Sarti and Citti, 2014; Prandi and Gauthier, 2018; Franceschiello et al., 2017; Boscain et al.,
2018; Bertalmío et al., 2019; Bertalmío et al., 2020; Smets et al., 2020; Bertalmío et al.,
2021) and the perception of objects described by the Gestalt theory in Section 1.3. This
class of methods, deserving a separate discussion in this section, takes the name of cortical-
inspired approaches; this stresses their connections with the hypercolumn architecture of
the first layer of the visual cortex (V1), the first protagonist of visual perception tautology.
As observed by Hubel and Wiesel (1968) in their Nobel-prize-winning work, discovery
neurons in V1 are sensitive to both the spatial location and the local orientation of the visual
stimulus observed. From a mathematical point of view, this discovery intrinsically changes
the classical modelling of images and inpainting operators.

Namely, while standard variational and partial differential equation (PDE) approaches
(see Chapter 2) regard images as discrete or continuous objects defined on bidimensional
domains Ω of R2, so that the local information is all contained at point x = (𝑥, 𝑦), cortical-
inspired models enlarge the space to an extra dimension, so that the cortical domain becomes
M := Ω × [0, 𝜋) and the local independent variables are thus the pair (x, 𝜃 (x)), where
𝜃 denotes the local orientation at point x. The space of positions and orientations M can
thus be considered as a reference space to which images can be “lifted” appropriately using
tools from harmonic analysis and wavelet theory (Bekkers et al., 2014; Prandi and Gauthier,
2018). The space M can now be used as a reference framework to define new functional
spaces, variational models and evolutionary PDEs which can be applied, for instance, to
solve the inpainting problem. We remark that the associated metric and induced geometry in
the space M are profoundly different from the standard Euclidean case, which changes both
qualitatively and quantitatively the image reconstruction properties of these models. The fact
that at each point (x, 𝜃) ∈ M the local orientation information is encoded in the variable 𝜃,
indeed makes possible the definition of a new, strongly anisotropic, (sub-Riemannian) metric
which can be used to define linear and nonlinear diffusion operators (such as respectively sub-
Riemannian Laplacians, Boscain et al., 2018, or total-variation and mean-curvature flows,
Citti et al., 2016 respectively) promoting at each point diffusion along the local direction
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8 Introduction

𝜃 (x) only. Notice that this framework is then deeply different from the classical Riemannian
framework, where directional information is typically encoded either by means of higher-
order information or by a preliminary local-orientation estimation performed by means of
structure tensors (Weickert, 1998).

The connections between the architecture of V1 and its sub-Riemannian mathematical
modelling have been recently investigated in a series of papers (Bertalmío et al., 2019;
Bertalmío et al., 2020, 2021). In these papers such cortical-inspired modelling has been used
to extend well-known reference models describing neuronal interactions in V1, classically
known in the literature as Wilson–Cowan equations. These models were first proposed in
Wilson and Cowan (1972) to describe the evolution of a local neuronal state at a given
instant 𝑡 > 0 and local coordinate (x, 𝜃 (x)) in the space of position and orientations M.
They have been widely applied to a variety of studies on physical transmission, diffusion and
interaction phenomena of stimuli in the visual cortex over the last 40 years (see e.g. Chow
and Karimipanah, 2020 for a review).

An extension of these models favouring local histogram equalisation (LHE) was intro-
duced first in the context of image processing (Bertalmío et al., 2007) and has been recently
connected with the description of visual perception bias (illusions) on the basis of both
local brightness (contrast) and local orientation changes (Bertalmío, 2014; Bertalmío et al.,
2019; Bertalmío et al., 2020). Interestingly, it is possible to show mathematically that the
standard Wilson–Cowan dynamics do not obey any variational principle (Bertalmío et al.,
2020, 2021); thus they form a “suboptimal” model as they conflict with the principle of
redundancy minimisation or efficient coding popularly used in the study of the neurophys-
iology of vision (Olshausen and Field, 2000). On the other hand, the LHE variation of the
Wilson–Cowan model can indeed be shown to rely on a variational structure, whose energy
functional models the local neuronal interactions in the image as well as attachment to the
given stimulus and local average information. The existence of a variational counterpart of
the LHE model is not only interesting from a mathematical point of view, but also because
it is an important characteristic which relates to the well-known notion of efficient repre-
sentation principle introduced by Attneave (1954) and Barlow (2012). This principle states
that neural responses aim to optimise the available biological resources by adapting to the
statistics of the images that the individual typically encounters, so that visual information
can be encoded in the most efficient way. In vision science, the efficient representation prin-
ciple has correctly predicted a number of neural processing aspects and phenomena such as
photoreceptor-response histogram equalisation and the fact that the receptive fields of cor-
tical cells have a Gabor-function form (Atick, 1992; Daugman, 1985; Olshausen and Field,
2000).

It is thus natural to combine the cortical-inspired sub-Riemannian framework described
above with Wilson–Cowan and LHE modelling so as to provide a fully bio-inspired math-
ematical framework for studying visual perception. This modelling was recently applied
by Bertalmío et al. (2020, 2021) to the study of brightness- and contrast-dependent visual
illusions. Their work showed that the existence or lack of an underlying variational princi-
ple is crucial for the possibility or impossibility of reproducing the visual perception bias
generated by the visual system when it is exposed to illusion-inducing stimuli. In particular,
Bertalmío et al. (2021) showed that, as far as orientation-dependent illusions are concerned,
both inpainting-type and a perception-type behaviours can be reproduced by these models,
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1.5 The Fitzwilliam Museum Dataset 9

(a) Input stimulus (b) Inpainting-type completion (c) Perceptual completion

Figure 1.2 (a) A variation of the Poggendorff illusion (Weintraub and Krantz, 1971)
for a grating. The grey central surface induces a misalignment of the background lines.
The completion inside the middle grey bar can be (b) geometric (inpainting-type) or
(c) illusory (perception-type). Image courtesy of Luca Bertalmío et al. (2021).

depending on the choice of model parameters, thus suggesting the existence of parameter
thresholds (such as the radius of the neighbourhood used to model local interactions) which
separate collinear perception from falsely aligned perception; see Figure 1.2.

1.5 The Fitzwilliam Museum Dataset
The dataset for this monograph has been drawn from the work of two interrelated research
projects at the Fitzwilliam Museum, namely Cambridge Illuminations3 (CI) and Manuscript
Illumination: Non-Invasive Analysis, Research and Expertise4 (MINIARE). The first project
aims to research and document 4000 western illuminated manuscripts dating from the sixth
to the sixteenth centuries in the Fitzwilliam and Cambridge colleges, and to publish them
in print and online. The second employs cutting-edge non-invasive analytical techniques
such as near-infrared imaging, spectroscopic analyses and optical microscopy to identify the
materials and techniques used by manuscript illuminators.5 Both projects have imaging at
their heart. In the case of CI, images illustrate and evidence the research findings outlined
in the published descriptions, while, for MINIARE, technical images – e.g. ultraviolet and
infrared images, elemental maps as well as micrographs – are vital tools in the analytical
protocol and investigative armoury of the project. The dataset is therefore immensely rich, but
there are further reasons – historic and ethical – for selecting images of medieval manuscripts
as the focus of this mathematical enquiry. It has been argued that illuminated manuscripts
contain between their covers the largest and best preserved repository of medieval painting
in existence, less subject to destruction or damage by natural forces or ideological violence
than paintings and sculpture (Panayotova, 2016). Moreover, where such manuscripts have
been damaged, the thinness of their paint layers and their small scale means that current
conservation practice tends to not retouch areas of loss – in contrast with work on panel and
3 www.fitzmuseum.cam.ac.uk/research/cambridgeilluminations.
4 www.fitzmuseum.cam.ac.uk/research/miniare.
5 The full analytical protocol is described in detail in Panayotova and Ricciardi (2016); an up-to-date survey of

analytical methods for working with manuscripts is Ricciardi and Patterson (2020).
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easel paintings. Indeed, privileging the authenticity of the work over the subjective judgement
of the conservator means that damage – in so far as it reveals aspects of an object’s construction
and biography - is evaluated and stabilised, but not reversed or concealed (Cheese and Honold,
2016). In line with the non-invasive approach of MINIARE and the non-interventive approach
of conservators, mathematical tools offer a new way of working with images rather than
objects, to reverse damages virtually and open up a conversation with curators, conservators
and the public about the processes and problems of restoration. They also offer a “reliable
surrogate” for the research and teaching of medieval manuscripts (Calatroni et al., 2018).

A detailed description of manuscripts that have been virtually restored can be found in the
Appendix.

Taxonomy of Damage
Though they are relatively well preserved, many manuscript illuminations have suffered
various forms of damage over their long histories. Broadly speaking, damage can be classified
as either accidental or intentional, though the two categories may overlap. Accidental damage
includes the inevitable changes brought about by the chemical process of ageing or exposure
to environmental change, such as colour change or craquelure (cracking of the paint surface).
It also includes mishaps and disaster, such as damage by fire or water. Intentional damage,
perhaps more frequently encountered than we might expect, includes deliberately inflicted
removals (scratches, scrapes, erasures) and additions (over-paintings, additions) for reasons
of censorship, ideological commitment, the harvesting of rare materials, re-purposing of
materials, the signalling of a change of ownership or commercial gain. In both cases, the
geometry of the damaged domain is varied in nature, ranging from tiny lines to changes
which destroy the legibility of the image; see Figure 1.3.

1.6 Plan of the Book
The inpainting methods described in this monograph are grouped into thematic chapters,
according to their mathematical approach. These can be summarised as follows.

• In Chapter 2 we introduce the foundation of inpainting strategies by describing local
methods; these started in early 1990 and became increasingly popular around the year
2000. These approaches are based on the local diffusion of imaging intensity values into
the damaged domain by means of partial differential equations and variational techniques
that can preserve the coherent geometric structures and produce a smooth version of the
expected fill-in.

• In Chapter 3 we detail non-local inpainting methods, also called exemplar-based, which
were predominant in the first decade of the 2000s. These approaches are based on finding
good examples (or patches), within the same image, to be copied and pasted onto the
damaged domain in order to reconstruct the textured information.

• In Chapter 4 we illustrate inpainting approaches that use recently developed techniques in
machine and deep learning, which appeared in the literature from 2010 onwards. These
methods aim to leverage the relevant information not only within a single image but also
on large datasets.

• In Chapter 5 we describe inpainting approaches specifically conceived within the context
of cultural heritage data, and their challenges. We illustrate specific cases of effective
inpainting strategies in real scenarios.
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1.6 Plan of the Book 11

(a) Craquelure
(accidental)

(b) Pigment degradation
(accidental)

(c) Water damage
(accidental)

(d) Over-painting – censorship
(intentional)

(e) Scratches
(intentional)

(f) Over-painting – re-purposing
(intentional)

Figure 1.3 Types of damage and their taxonomy. Details from: (a) MS Marlay 18.iii,
(b) MS 39-1950, fol. 147r, (c) MS McClean 173, fol. 51r, (d) MS 159, fol. 4r, (e) MS
330.iii and (f) MS 62, fol. 16v. All images © Fitzwilliam Museum, Cambridge, UK.

At the end of Chapters 2, 3 and 4 we compare inpainting algorithms for which we have
found a working implementation; these were tested on reference images we identified in our
dataset. The format of the references list provides a glimpse of the time frame of the research
work described in this book and is summarised in Tables 2.1, 3.1 and 4.1.

Note on Experiments
In this book we discuss applications of different inpainting methods to the specific cultural-
heritage-imaging dataset described in Section 1.5. Some of these methods were developed for
the virtual retouching of natural images and with the goal of being included in photo/video-
editing software. Very often, people working in cultural heritage conservation deal with
damaged objects that in fact are rarely restored, as they are too fragile to be handled. Therefore,
virtual restoration seems a promising alternative way for preserving such artworks. None of
the inpainting methods tested preprocess the damaged images, i.e. they do not require any
initialisation of the inpainting domain, which is indicated by the white area of the masks
provided for each test. Different initialisation choices are certainly possible, e.g. using a
random initialisation of the damaged area, but these are avoided in this book in order not
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12 Introduction

to bias the final result. Throughout the book it is assumed that the inpainting domain is
manually defined by the end-user, unless explicitly stated otherwise. Our experiments, with
no quantitative evaluation owing to the lack of ground truth solutions, were performed in
Chapters 2, 3 and 5 on a standard MacBook Pro (13-inch, 2019), 2.4 GHz Intel Core i5
quad-core, 16 GB 2133 MHz LPDDR3, while in Chapter 4 we used Ubuntu 16.04 with
NVIDIA Quadro P6000 GPU.
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