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1. Introduction. The richness of the theory of functions over the complex field makes
it natural to look for a similar theory for the only other non-trivial real associative
division algebra, namely the quaternions. Such a theory exists and is quite far-reaching,
yet it seems to be little known. It was not developed until nearly a century after
Hamilton's discovery of quaternions. Hamilton himself (1) and his principal followers
and expositors, Tait(2) and Joly (3), only developed the theory of functions of a quater-
nion variable as far as it could be taken by the general methods of the theory of func-
tions of several real variables (the basic ideas of which appeared in their modern form
for the first time in Hamilton's work on quaternions). They did not delimit a special
class of regular functions among quaternion-valued functions of a quaternion variable,
analogous to the regular functions of a complex variable.

This may have been because neither of the two fundamental definitions of a regular
function of a complex variable has interesting consequences when adapted to quater-
nions ; one is too restrictive, the other not restrictive enough. The functions of a quater-
nion variable which have quaternionic derivatives, in the obvious sense, are just the
constant and linear functions (and not all of them); the functions which can be repre-
sented by quaternionic power series are just those which can be represented by power
series in four real variables.

In 1935, R. Fueter(4) proposed a definition of 'regular' for quaternionic functions
by means of an analogue of the Cauchy-Riemann equations. He showed that this
definition led to close analogues of Cauchy's theorem, Cauchy's integral formula, and
the Laurent expansion (5). In the next twelve years Fueter and his collaborators
developed the theory of quaternionic analysis. A complete bibliography of this work is
contained in (6), and a simple account (in English) of the elementary parts of the theory
has been given by Deavours(7).

The theory developed by Fueter and his school is incomplete in some ways, and
many of their theorems are neither so general nor so rigorously proved as present-day
standards of exposition in complex analysis would require. The purpose of this paper
is to give a self-contained account of the main line of quaternionic analysis which
remedies these deficiencies, as well as adding a certain number of new results. By
using the exterior differential calculus we are able to give new and simple proofs of
most of the main theorems and to clarify the relationship between quaternionic
analysis and complex analysis.

In Section 2 of this paper we establish our notation for quaternions, and introduce
the quaternionic differential forms dq, dq A dq and Dq, which play a fundamental role
in quaternionic analysis. The 1-form dq and the 3-form Dq have simple geometrical
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200 A. SlXDBEBY

interpretations as the tangent to a curve and the normal to a hypersurface, respect-
ively.

Section 3 is concerned with the definition of a regular function. The remarks in the
second paragraph of this introduction, about possible analogues of the definition of a
complex-analytic function, are amplified (this material seems to be widely known,
but is not easily accessible in the literature); then Fueter's definition of a regular
function, by means of an analogue of the Cauchy—Riemann equations, is shown to be
equivalent to the existence of a certain kind of quaternionic derivative. Just as, for a
function /:C->C, the Cauchy-Riemann equation df/dx + idf/dy = 0 (the variable
being z = x + iy) is equivalent to the existence of a complex number/'(z) such that
df = f'(z)dz, so for a function/: H->IH1, the Cauchy-Riemann-Fueter equation

dt dx By

(the variable being q = t + ix +jy + kz) is equivalent to the existence of a quaternion
f'(q) such that d(dq A dqf) = Dqf'{q).

Section 4 is devoted to the quaternionic versions of Oauchy's theorem and Cauchy's
integral formula. If the function/ is continuously differentiable and satisfies (1*1),
Gauss's theorem can be used to show that

f #<?/= 0, (1-2)
J dC

where O is any smooth closed 3-manifold in H, and that if q0 lies inside C,

(1-3)
' dC \'i~'io\

We will show that Goursat's method can be used to weaken the conditions on the
contour C and the function/, so that 0 need only be assumed to be rectifiable and the
derivatives of/need not be continuous. From the integral formula (1-3) it follows, as in
complex analysis, that if/is regular in an open set U then it has a power series expansion
about each point of U. Thus pointwise differentiability, together with the four real
conditions (1-1) on the 16 partial derivatives of/, are sufficient to ensure real-
analyticity.

In Section 5 we show how regular functions can be constructed from functions of
more familiar type, namely harmonic functions of four real variables and analytic
functions of a complex variable, and how a regular function gives rise to others by
conformal transformation of the variable.

The homogeneous components in the power series representing a regular function
are themselves regular; thus it is important to study regular homogeneous poly-
nomials, the basic functions from which all regular functions are constructed. The
corresponding functions of a complex variable are just the powers of the variable, but
the situation with quaternions is more complicated. The set of homogeneous regular
functions of degree n forms a quaternionic vector space of dimension \(n +1) (n + 2);
this is true for any integer n if for negative n it is understood that the functions are
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denned and regular everywhere except at 0. The functions with negative degree of
homogeneity correspond to negative powers of a complex variable, and occur in the
quaternionic Laurent series which exists for any function which is regular in an open
set except at one point. Fueter found two natural bases for the set of homogeneous
functions, which play dual roles in the calculus of residues. (He actually only proved
that these bases form spanning sets.) In Section 6 we study homogeneous regular func-
tions by means of harmonic analysis on the unit sphere in H, which forms a group
isomorphic to SU(2); this bears the same relation to quaternionic analysis as the
theory of Fourier series does to complex analysis. In Section 7 we examine the power
series representing a regular function and obtain analogues of Laurent's theorem and
the residue theorem.

Many of the algebraic and geometric properties of complex analytic functions are
not present in quaternionic analysis. Because quaternions do not commute, regular
functions of a quaternion variable cannot be multiplied or composed to give further
regular functions. Because the quaternions are four-dimensional, there is no counter-
part to the geometrical description of complex analytic functions as conformal map-
pings. The zeros of a quaternionic regular function are not necessarily isolated, and its
range is not necessarily open; neither of these sets need even be a sub manifold of H.
There is a corresponding complexity in the structure of the singularities of a quater-
nionic regular function; this was described by Fueter(9), but without giving precise
statements or proofs. This topic is not investigated here.

2. Preliminaries. We denote the four-dimensional real associative algebra of the
quaternions by HI, its identity by 1, and we regard IR as being embedded in H by
identifying (e U with I G H . Then we have a vector space direct sum H = R 0 P, where
P is an oriented three-dimensional Euclidean vector space, and with the usual notation
for three-dimensional vectors the product of two elements of P is given by

ab = - a . b + a x b . (21)

We choose an orthonormal positively oriented basis {i,j, k} for P, and write a typical
quaternion as , ,. m , ,„ „.
M q = t + ix+jy + kz (t,x,y,zeU). (2-2)
On occasion we will denote the basic quaternions i,j, k by ei and the coordinates
x, y, z by xi (i = 1, 2, 3) and use the summation convention for repeated indices. Then
(2-2) becomes

1 i (2-3)
and the multiplication is given by

«i«y= -Sa + emek. (2-4)

We will also sometimes identify the subfield spanned by 1 and i with the complex field
C, and write

q (v,weC) (2-5)

where v = t + iz and w = y — iz. The multiplication law is then

vj=jv (2-6)
for all veC.
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202 A. SUDBERY

We write q = t - ix -jy - kz, (2-7)

? + ya + z*)eR, (2-8)

= teU, (2-9)

(2-10)

,|je<S, (2-11)

where S is the unit sphere in HI; and

<?i»?2> = Refold) = «1<2 + a:1a:.! + 2/1i/2-|-z1z2. (2-12)

Then we have qjq~2 = q2qv (2-13)

(2-15)

and g " 1 = l fr 2 ' (2'16)

Note that if % and M2 are unit quaternions, i.e. \ux\ = |«2| = 1, the map g i-» % gti2 is
orthogonal with respect to the inner product (2-12) and has determinant 1; conversely,
any rotation of Hi is of the form q\-^ulqu2 for some uv u2e H (see, for example, (10),
chap. 10).

The inner product (2-12) induces an R-linear map V: H*~> H, where

H* = HomR(IHI)IR)

is the dual vector space to 0-5, given by

(T(<x),q) = oc(q) (2-17)

for a e H*, q e H. Since {1, i,j, k} is an orthonormal basis for HI, we have

r(a) =

The set of R-linear maps from HI to HI forms a two-sided vector space over H of dimen-
sion 4, which we will denote by Fv It is spanned (over H) by H*, so the map F can be
extended by linearity to a right H-linear map Fr: F1->- H and a left-linear map

They are given by
rr(a) = a(l) + ict(i)+j<x(j) + kct(k) (2-18)

and rl(a) = a(l) + a(i)i + a,(j)j + a(k)k (2-19)
for any ae Fv

The geometric terminology used in this paper is as follows:

An oriented k-parallelepiped in H is a map C:Ik-+U, where Ik c: |Rfe is the closed
unit &-cube, of the form

0(<i. —.**) = qo + hh1+...+tkhk.
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qoeU is called the original vertex of the parallelepiped, and hv ..., hke H are called its
edge-vectors. A parallelepiped is non-degenerate if its edge-vectors are linearly inde-
pendent (over U). A non-degenerate 4-parallelepiped is positively oriented if

v(hv ...,A4) > 0,

negatively oriented if v(hv ..., hA) < 0, where u is the volume form defined below (equa-
tion (2-26)).

We will sometimes abuse notation by referring to the image G(Ik) as simply G.

Quaternionic differential forms. When it is necessary to avoid confusion with other
senses of differentiability which we will consider, we will say that a function / : D-fl -»• HI
is real-differentiable if it is differentiable in the usual sense. Its differential at a point
q e H is then an R-linear map dfq: H -> H. By identifying the tangent space at each point
of H with D-0 itself, we can regard the differential as a quaternion-valued 1-form

%dt + %dx + dy + dz. (2-20)
ot ox oy oz

Conversely, any quaternion-valued 1 -form 6 = aQdt + atdx^a^ ai e H) can be regarded
as the R-linear map 0: H -> H given by

^(i + x^ef) =aot + aixi (2-21)

Similarly, a quaternion-valued r-form can be regarded as a mapping from H to the
space of alternating U-multilinear maps from Ml x ... x HI (r times) to H. We define
the exterior product of such forms in the usual way: if 6 is an r-form and <f> is an
s-form,

where the sum is over all permutations p of r + s objects, and e(p) is the sign of p. Then
the set of all r-forms is a two-sided quaternionic vector space, and we have

a{6 A</>) = (ad) A </>,
(6 A<p) a = 6 A (<f>a),
(da) A(/) = dA (a<p)

(2-23)

for all quaternions a, r-forms 6 and 5-forms <j>. The space of quaternionic r-forms has a
basis of real r-forms, consisting of exterior products of the real 1-forms dt, dx, dy, dz;
for such forms left and right multiplication by quaternions coincide. Note that because
the exterior product is defined in terms of quaternion multiplication, which is not
commutative, it is not in general true that 6 A<j> = — <f> AO for quaternionic 1-forms 6
a n d <j>.

The exterior derivative of a quaternionic differential form is defined by the usual
recursive formulae, and Stokes's theorem holds in the usual form for quaternionic
integrals.
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204 A. SUDBERY

The following special differential forms will be much used in the rest of the paper.
The differential of the identity function is

dq = dt + idx+jdy + kdz; (2-24)

regarded as an R-linear transformation of H, dq is the identity mapping. Its exterior
product with itself is

dqhdq = \eijk ex dxj A dxk = idy Adz +j dzAdx + kdxA dy, (2-26)

which, as an antisymmetric function on H x H, gives the commutator of its arguments.
For the (essentially unique) constant real 4-form we use the abbreviation

v = dthdx hdy A dz, (2-26)

so that u(l,i,j, k) = 1. Finally, the 3-form Dq is defined as an alternating R-trilinear
function by

{hly Dq(h2, h3, h4)) = v{K, h2, h3, h4) (2-27)

for all hx h^eH. Thus Dq(i,j,k) = 1 and Dq(l,eite^) = — eijkek. The coordinate
expression for Dq is

Dq = dx t\dy Adz — \eiik et dt A dxt A dxk

— dxAdyAdz — idtAdyAdz —j dt A dz A dx — k dt A dx A dy. (2-28)

Geometrically, Dq(a, b, c) is a quaternion which is perpendicular to a, b and c and has
magnitude equal to the volume of the 3-dimensional parallelepiped whose edges are
a, b and c. It also has the following algebraic expression:

PROPOSITION" 1. Dq(a,b,c) = ^(cab-bac).

Proof. For any unit quaternion u, the map q i-» uq is an orthogonal transformation of
H with determinant 1; hence

Dq(ua, ub, uc) = uDq(a, b, c).

Taking u = \a\ a~x, and using the R-trilinearity of Dq, we obtain

Dq(a,b,c) = la^aDqil.a^b.a^c). (2-29)

Now since Dq(l,eit ej) = — eijkek = J(e^et — eie3-), we have by linearity

Dq( 1, hlt K) = UK h ~ h h) (2- 30)
for all hlth2eH. Hence

Dq{a,b,c) = ±\a\2a{a,-1ca-1b - a-iba^c)

= \{cab — bac). I

Two useful formulae were obtained in the course of this proof. The argument leading
to (2-29) can be generalized, using the fact that the map qt-+uqv is a rotation for any
pair of unit quaternions u, v, to

^ h2,h3)b; (2-31)
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and the formula (2-30) can be written as

1 JZ>g= -\dqhdq, (2-32)

where J denotes the usual inner product between differential forms and vector fields
and 1 denotes the constant vector field whose value is 1.

Since the differential of a quaternion-valued function on H is an element of Fv the
map Fr can be applied to it. The result is

(2-33)

We introduce the following notation for the differential operator occurring in (2-33),
and for other related differential operators:

8f J
2\dt e

J dP da* By* 8z*'

Note that 8t, 8lt 8r and 8~r all commute, and that

A = 48r8r = 48^.

(2-34)

(2-35)

3. Regular functions. The requirement that a function of a complex variable
z = x + iy should be a complex polynomial, i.e. a sum of terms anz

n, picks out a proper
subset of the polynomial functions/(z, y) + ig(x, y). The corresponding requirement of a
function of a quaternion variable q = t + ix +jy + kz, namely that it should be a sum of
monomials a^qax.. .aT_^qar, places no restriction on the function; for in contrast to the
complex case the coordinates t, x, y, z can themselves be written as quaternionic poly-
nomials: , , , . . . .

t = ±(q-iqi-jqj-

z = — (q + iqi +jqj - kqk), ^

and so every real polynomial in t,x,y,z is a quaternionic polynomial in q. Thus a
theory of quaternionic power series will be the same as a theory of real-analytic
functions on R4.
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On the other hand, the requirement that a function of a quaternion variable should
have a quaternionic derivative, in the obvious sense, is too strong to have interesting
consequences, as we will now show.

Definition. A function/: H -> H is quaternion-differentiable on the left at q if the limit

exists.

THEOREM 1. Suppose the function f is defined and quaternion-differentiable on the left
throughout a connected open set U. Then on U,fhas the form

for some a, b e H.

Proof. From the definition it follows that if/ is quaternion-differentiable on the left
at q, it is real-differentiable at q and its differential is the linear map of multiplication on
the right by df/dq:

i.e. df =dq-~-. (3*2)
dq

Equating coefficients of dt, dx, dy and dz gives

8t~ %8x

Put q = v+jw, where v = t + ix and w = y — iz, and let f(q) = g(v, w) + jh(v, w),
where g and h are complex-valued functions of the two complex variables v and w;
then (3-3) can be separated into the two sets of complex equations

8g _ .dg_dh_.8h
dt ~~%dx~d~y~ldz'

8h _ .8h 8g _ .8g

~8t~l8~x~ ~~8y~ l8~z'

In terms of complex derivatives, these can be written as

8g = 8_h=:8h=8g = 0

8v 8w 8v 8w . '

dg dh n *\
( 3 5 )

and
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Equation (3-4) shows that g is a complex-analytic function of v and w, and A. is a
complex-analytic function of v and w. Hence by Hartogs's theorem ((11), p. 133)
g and h have continuous partial derivatives of all orders and so from (3-5)

dv2 dv\8w) 8w\dv)

Suppose for the moment that V is convex. Then we can deduce that g is linear in w, h is
linear in w and h is linear in v. Thus

g (v,w) = a.

h(v,w) = e + £v + 7JW + 6vw,

where the Greek letters represent complex constants. Now (3-5) and (3-6) give the
following relations among these constants:

A = 9, £ = -7> 5 = 0 = 0.

Thus / = g +jh = a+je + (v +jw) (fi-jy)
= a + qb,

where a = a+je and b = fi—jy; so / i s of the stated form if U is convex. The general
connected open set can be covered by convex sets, any two of which can be connected
by a chain of convex sets which overlap in pairs; comparing the forms of the function/
on the overlaps, we see that f(q) = a + qb with the same constants a, b throughout U. I

We will now give a definition of' regular' for a quaternionic function which is satis-
fied by a large class of functions and which leads to a development similar to the theory
of regular functions of a complex variable.

Definition. A function / : HI ->• H! is left-regular at qe HI if it is real-differentiable at q
and there exists a quaternion//(g) such that

d(dq A dqf) = Dqf{(q). (3-7)

It is right-regular if there exists a quaternion f'r(,q) such that

d(fdqAdq)=fXq)Dq.

Clearly, the theory of left-regular functions will be entirely equivalent to the theory
of right-regular functions. For definiteness, we will only consider left-regular functions,
which we will call simply regular. We write/('(g) = f'(q) and call it the derivative of/at q.

An application of Stokes's theorem gives the following characterization of the
derivative of a regular function as the limit of a difference quotient:

PROPOSITION 2. Suppose that f is regular at q0 and continuously dijferentiable in a
neighbourhood ofq0. Then given e > 0, there exists S > 0 such that if C is a non-degenerate
oriented ^-parallelepiped with qoeC(P) and qsG(P) => \q — qQ\ < S, then

< e.
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The corresponding characterization of the derivative in terms of the values of the
function at a finite number of points is

f'(q0) = lim [Dqfc, h2, A, )" 1 ^ \ - M i ) (/(?„ + K) -/(&))

+ (h, h3 -h3h2) (f(q0 + hj -f(qQ)) + (A3 h, -h.h,) (f(q0 + h2) -f(q0))}]. (3- 8)

This is valid if it is understood that hv h2, h3 are multiples of three fixed linearly inde-
pendent quaternions, \ = ^H^ and the limit is taken as tv <2,<3->-0.

By writing (3-7) as
dq A dqA df = Dqf'{q)

and evaluating these trilinear functions with arguments (i, j , k) and (1, i, j), we obtain
two equations which give an expression for the derivative as

and also

PROPOSITION 3. {the Cauchy-Riemann-Fueter equations). A real-differentiable
function f is regular at q if and only if dj = 0, i.e.

If we write q = v +jw,f(q) = g(v, w) +jh{v, w) as in Theorem 1, (3-10) becomes the pair
of complex equations

dg^dh 8g_ = _8h
3v 8w' dw dv' K '

which can be seen as a complexification of the Cauchy-Riemann equations for a
function of a complex variable.

From Proposition 3 and (2-35) it follows that if/is regular and twice differentiable,
then A/ = 0, i.e./is harmonic. We will see in the next section that a regular function is
necessarily infinitely differentiable, so all regular functions are harmonic.

4. Gauchy's theorem and the integral formula. The integral theorems for regular
quaternionic functions have as wide a range of validity as those for regular complex
functions, which is considerably wider than that of the integral theorems for harmonic
functions. Cauchy's theorem holds for any rectifiable contour of integration; the
integral formula, which is similar to Poisson's formula in that it gives the values of a
function in the interior of a region in terms of its values on the boundary, holds for a
general rectifiable boundary, and thus constitutes an explicit solution to the general
Dirichlet problem.

The algebraic basis of these theorems is the equation

d(gDqf) = dg A Dqf-gDq A df
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which holds for any differentiable functions/ and g. Taking g = 1 and using Proposition
3, we have:

PROPOSITION 4. A differentiable function f is regular at q if and only if

DqAdfq = 0.

From this, together with Stokes's theorem, it follows that if/ is regular and con-
tinuously differentiable in a domain D with differentiable boundary, then

f Dqf
JdD

As in complex analysis, however, the conditions on / can be weakened by using
Goursat's dissection argument. Applying this to a parallelepiped, we obtain

LEMMA 1. / / / is regular at every point of the ̂ -parallelepiped G,

(4.2)f Dqf=O.
J dC

The dissection argument can also be used to prove the Cauchy-Fueter integral
formula for a parallelepiped:

LEMMA 2. / / / is regular at every point of the positively oriented ^-parallelepiped C, and
q0 is a point in the interior of C,

(4-3)

Then g is differentiable except at qg, and drg = 0; hence if/ is regular d(gDqf) = 0
except at q0. A dissection argument now shows that in the above integral C can be
replaced by any smaller 4-parallelepiped 0' with q0 6 int C" <= C, and since / is con-
tinuous at q0 we can choose C so small that/(g) can be replaced by f(q0). Since the

3-form g Dq is closed and continuously differentiable in HI — {q0}, we can replace g Dq
JdC

by the integral over a 3-sphere S with centre at q0, on which

where dS is the usual Euclidean volume element on the 3-sphere. Hence

f ITTW1*™ = f UTaT^ = 2 ^ - •jdc i<z-<7oi J s\q—qo\

We will use the following special notation for the function occurring in the integral
formula:
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This function is real-analytic except at the origin; hence in (4-3) the integrand is a
continuous function of {q, q0) in 8C x int C and, for each fixed q e dC, a real-analytic
function of q0 in int C. I t follows ((12), p. 7) that the integral is a real-analytic function
of q0 in int 0. Thus we have

THEOREM 1. A function which is regular in an open set U is real-analytic in U.
This makes it valid to apply Stokes's theorem and so obtain Cauchy's theorem for

the boundary of any differentiable 4-chain. It can be further extended to rectifiable
contours, defined as follows:

Definition. Let C:I3->U be a continuous map of the unit 3-cube into H, and let
P : 0 = s0 < s1 < ... < sp = 1,Q: 0 = t0 < tx < ... < tq = 1 and

R: 0 = uQ < ut < ... < ur = 1

be three partitions of the unit interval / . Define

o-(C;P,Q,R) = *j? '% 'i Dq(O(sl+1,tm,un)-C(Sl,tm,un),
1 = 0 m = 0 n = 0

C(si, tm+1, un) - C{s,, tm, un), C(s,, tm, un+1) - C(s,, tm, un)).

C is a rectifiable 3-cell if there is a real number M such that cr(C; P, Q,R) < M for all
partitions P, Q, R. If this is the case the least upper bound of the numbers (C; P, Q, R)
is called the content of C and denoted by cr{G).

L e t / and g be quaternion-valued functions defined on C(P). We say th&tfDqg is
integrable over C if the sum

P£ ^ S 1 ACih, im, un) Dq (C(sl+1, tm, un) - C{slt tm, un),
j = 0 m=0 n = 0

C(S[, tm+1, un) - C(s,, tm, un), C{st, tm, un+1) - G(s,, tm, un)) g(C(s, im, un),

where st < s, ^ sl+1, tm < im < tm+1 and un < un ^ un+1, has a limit in the sense of
Riemann-Stieltjes integration as \P\, \Q\, \R\ ->0, where

\P\ = max | s m - s , |
OiKp-l

measures the coarseness of the partition P. If this limit exists, we denote it by fDq g.
J c

We extend these definitions to define rectifiable 3-chains and integrals over recti-
fiable 3-chains in the usual way.

Just as for rectifiable curves, we can show that fDq g is integrable over the 3-chain C
if/ and g are continuous and C is rectifiable, and

fDqg <(max|/|)(max|gr|)<r(C).

Furthermore, we have the following weak form of Stokes's theorem:

STOKES'S THEOREM FOR A RECTIFIABLE CONTOUR. Let Cbea rectifiable 3-chain in HI
with 80 = 0, and suppose f and g are continuous functions defined in a neighbourhood U
of the image ofC, and that fDqg = dco where wis a 2-form on U. Then

fDqg = 0.
c
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The proof proceeds by approximating C by a chain of 3-parallelepipeds with vertices
at the points Ca(st,tm, un) where Ga is a 3-cell in C and st, tm, un are partition points in I.
Stokes's theorem holds for this chain of 3-parallelepipeds, and we can use the same
argument as for rectifiable curves (see, for example, (13), p. 103).

We can now give the most general forms of Cauchy's theorem and the integral
formula.

THEOREM 2. (Cauchy's theorem for a rectifiable contour).
Suppose f is regular in an open set U, and let C be a rectifiable 3-chain which is

homologous to 0 in the singular homology of U. Then

Dqf = 0.
c

Proof. First we prove the theorem in the case when U is contractible. In this case,
sinced(Dqf) = 0 and/is continuously differentiable (by Theorem 1), Pomcare"'s lemma
applies and we have Dqf = dco for some 2-form co on D. But 8C = 0, so by Stokes's

theorem f Dqf=0.
J c

In the general case, suppose C = dC* where 0* is a 4-chain in U. We can dissect
C*as

where each C* is a 4-cell lying inside an open ball contained in U and C* is rectifiable.

Hence by the first part of the theorem Dqf = 0, and therefore
Jed

f # ? / = 2 f Dqf = 0. I
J C n JdCZ.

For the general form of the integral formula, we need an analogue of the notion of the
winding number of a curve round a point in the plane. Let q be any quaternion, and let
G be a 3-cycle in HI — {q}. Then C is homologous to n 8C0, where Co is a positively oriented
4-parallelepiped in H — {q}, and n is an integer (independent of the choice of CQ), which
we will call the wrapping number of G about q.

THEOREM 3 (the integral formula for a rectifiable contour).
Suppose f is regular in an open set U. Let q0 be a point in U, and let G be a rectifiable

3-chainwhichishomologous, in the singular homology ofU — {q0}, to a differentiable 3-chain
whose image is 8B for some ball B <=• U. Then

'^f^Dqf(q) = nf(q0)

where n is the wrapping number of C about q0.
Many of the standard theorems of complex analysis depend only on Cauchy's

integral formula, and so they also hold for quaternionic regular functions. Obvious
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examples are the maximum-modulus theorem (see, for example, (14), p. 165 (first
proof)) and Liouville's theorem ((14), p. 85 (second proof)). Morera's theorem also
holds for quaternionic functions, but in this case the usual proof cannot easily be
adapted. It can be proved (8) by using a dissection argument to show that if/ is con-
tinuous in an open set U and satisfies

1Dqf=0
dC

for every 4-parallelepiped G contained in U, then/satisfies the integral formula; and
then arguing as for the analyticity of a regular function.

5. Construction of regular functions. Regular functions can be constructed from
harmonic functions in two ways. First, if / i s harmonic then (2-35) shows that 8J is
regular. Second, any real-valued harmonic function is, at least locally, the real part of a
regular function:

THEOEEM 4. Let ubea real-valued function defined on a star-shaped open setVcU.If
u is harmonic and has continuous second derivatives, there is a regular function f defined
on U such that Re / = u.

Proof. Without loss of generality we may assume that U contains the origin and is
star-shaped with respect to it. In this case we will show that the function

is regular in U.
Since

f(q) = u{q) + 2Pu | si8lu{sq)qds (5-1)
Jo

Re J s2 8, u{sq) qds=-\ #U-£ (sq) + xi -^ (sq) j ds

= I u{q) - su{sq) ds,
Jo

we can write f(q) = 2 s2 dlu{sq)qds + 2 su(sq)ds. (5-2)
Jo Jo

Since u and 8tu have continuous partial derivatives in U, we can differentiate under the
integral sign to obtain, for qeU,

dj(q) = 2 | s2dl[dlu(sq)]qds+ \ s2{d[u(sq)+ei8lu(sq)ei}ds+2 \ s2d,u(sq)ds.
Jo Jo Jo

But 8[[dlu(sq)] = ^sku(sq) = 0 since uis harmonic in U, and

dl u(sq) + et 8t u(sq) ei= — 2dt u{sq)

= —28tu(sq) since u is real.

Hence 8tf = 0 in U and so / i s regular. I
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If the region U is star-shaped with respect not to the origin but to some other point a,
formulae (5-1) and (5-2) must be adapted by changing origin, thus:

f(q) = u{q) + 2Yu\ sidlu{{l-s)a + sq)(q-a)ds (5-3)
Jo

= 2 s2dlu{{l— s)a + sq)(q-a)ds + 2\ su((l-s)a + sq)ds. (5-4)
Jo Jo

An example which can be expected to be important is the case of the function

u(q) = \q\~K

This is the elementary potential function in four dimensions, as log \z\ is in the complex
plane, and sp the regular function whose real part is |<7|~2 is an analogue of the log-
arithm of a complex variable.

We take U to be the whole of HI except for the origin and the negative real axis. Then
V is star-shaped with respect to 1, and \q\~2 is harmonic in U. Put

= - f - J 2 . a = 1 >
then (5-3) gives

1

if Pu q 4
(5-5)

= j—r; if q is real and positive,
m

where arg q = log (Un q) = ^ ^ tan"1 \j^jJ , (5-6)

which is i times the usual argument in the complex plane generated by q. (In practice
the formulae (5-3) and (5-4) are not very convenient to use, and it is easier to obtain
(5-5) by solving the equations

2t

, 8F _ _ 2r
and — + V x F =

where t = Re q, r = Pu q and r = | r | - these express the fact that F: D-l -> P is the pure
quaternion part of a regular function whose real part is |<7|~2 - and assuming that F has
the form F(r)r.)

We will denote the function (5-5) by — 2L(q). The derivative of L(q) can most easily
be calculated by writing it in the form

a-1

the result is diMq) = G{q) = j - ^ . (5-8)
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Thus L(q) is a primitive for the function occurring in the Cauchy-Fueter integral
formula, just as the complex logarithm is a primitive for z~x, the function occurring in
Cauchy's integral formula.

Theorem 4 shows that there are as many regular functions of a quaternion variable
as there are harmonic functions of four real variables. However, these functions do not
include the simple algebraic functions, such as powers of the variable, which occur as
analytic functions of a complex variable. Fueter(4) also found a method for con-
structing a regular function of a quaternion variable from an analytic function of a
complex variable.

For each q e H, let vQ: C -»• HI be the embedding of the complex numbers in the quater-
nions such that q is the image of a complex number £(g) lying in the upper half-plane;
i.e. p

^ (5-9)

(5-10)
Then we have

THEOREM 5. Suppose f: C^-Cis analytic in the open set U £ C, and define/: H -> H by

Then A/is regular in the open set £-1(f7) £ H, and its derivative is

0,(A/) = A/', (5-12)

where/' is the derivative of the complex function/.
For a proof, see (7). Note that if we write f(x + iy) = u{x,y) + iv(x,y), t = Reg and

r = Pu q, then p
f ^ (5-13)

r r { r r2 )

where the suffix 2 denotes differentiation with respect to the second argument.
Functions of the form / have been taken as the basis of an alternative theory

of functions of a quaternion variable by Cullen(15). The following examples are
interesting:
when f(z) = z-\ A/(g)= -4(?(g); (5-15)

when f(z) = logz, A/(g)=-4L(g) (5-16)

Given a regular function / , other regular functions can be constructed from it by
composing it with conformal transformations. The special cases of inversion and
rotation are particularly useful:

PROPOSITION 5. (i) Given a function/: H -* M, let If: H - {0} -+ H be the function:

^ / ( ( T 1 ) - (5-17)

/// is regular at q-1, If is regular at q.
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(ii) Given a function/: H -> H and constant quaternions a, b, let M(a, b)fbe the function

[M(a,b)f](q)=bf(a-iqb). (5-18)

/ / / is regular at a^qb, M(a, b)f is regular at q.

Proof, (i) By Proposition 4 it is sufficient to show that

Now / / = G(foi), where G(q) = q~x/\q\2 and i: HI - {0}-»• H is the inversion
Hence

Dq A d(If)g = DqA dGJ{q^) + DqA G(q) d(fo i)q

= DqG(q) A i*dfq-,

since G is regular at q 4= 0. But

by (2-31). Thus DqG(q) = - \q\2qi*Dq

and so Z><7 A d(If)q = - |?| V*(Z>? A

= 0
if/ is regular at q~x.

(ii) L e t / i i H ^ H be the map q^-aqb. Then by (2-31)

fi*Dq = {a^

and so Dq A rf[ilf (a, 6)/]g = Dq A fyt*
V*Z) ) 6 1 A

= 0

if/is regular at fi(q). I t follows from Proposition 4 that Jf (a, 6)/is regular at q. I
The general conformal transformation of the one-point compaetification of H is of

the form
(5-19)

with a~*b 4= c-1rf. Such a transformation ((16), p. 312) is the product of a sequence of
transformations of the types considered in Proposition 5, together with translations
q-+q + a (which clearly preserve regularity). The corresponding transformation of
regular functions is as follows:

THEOREM 6. Given a function f: H -*• HI and a conformal transformation v as in (5-19),
let M(v)fbe the function

If f is regular at v(q), M(y)f is regular at q.
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6. Homogeneous regular functions. In this section we will study the relations between
regular polynomials, harmonic polynomials and harmonic analysis on the group S of
unit quaternions, which is to quaternionic analysis what Fourier analysis is to complex
analysis.

The basic Fourier functions eind and e~ine, regarded as functions on the unit circle
in the complex plane, each have two extensions to harmonic functions on C — {0}; thus
we have the four functions zn, zn, z~n and z~n. The requirement of analyticity picks out
half of these, namely zn and z~n. In the same way the basic harmonic functions on S,
namely the matrix elements of unitary irreducible representations of S, each have two
extensions to harmonic functions on H — {0}, one with a negative degree of homogeneity
and one with a positive degree. We will see that the space of functions belonging to a
particular unitary representation, corresponding to the space of combinations of
eine a n ( j e-in0 for a particular value of n, can be decomposed into two complementary
subspaces; one (like ein$) gives a regular function on H — {0} when multiplied by a
positive power of |g|, the other (like e-inS) has to be multiplied by a negative power of
\9\-

Let Un be the set of functions / : HI - {0} -> HI which are regular and homogeneous of
degree n over U, i.e.

for

Removing the origin from the domain of/ makes it possible to consider both positive
and negative n (the alternative procedure of adding a point at infinity to H has dis-
advantages, since regular polynomials do not necessarily admit a continuous extension
to H U {oo} ^ S*). Let Wn be the set of functions/: HI — {0}^- H which are harmonic and
homogeneous of degree n over U. Then Un and Wn are right vector spaces over HI (with
pointwise addition and scalar multiplication) and since every regular function is
harmonic, we have Un e Wn.

Functions in Un and Wn can be studied by means of their restriction to the unit
sphere S = {q: \q\ = 1}. Let

Un = {f\S:fe Un}, Wn = {f\S:fe Wn};

then Un and tJn are isomorphic (as quaternionic vector spaces) by virtue of the corres-
pondence

feUnofeVn, where f(q) = r»/(«), (6-1)

using the notation r = \q\eU, u — q/\q\eS.
Similarly Wn and ffln are isomorphic.
In order to express the Cauchy-Riemann-Fueter equations in a form adapted to the

polar decomposition q = ru, we introduce the following vector fields Xo, ...,X3 on
H-{0}:

J (6-2)

wid)]g.0 (»= 1,2,3). (6-3)
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These fields form a basis for the real vector space of left-invariant vector fields on the
multiplicative group of H, and they are related to the Cartesian vector fields d/dt,

* by
^o = t-+Xi-, (6-4)

= ( t X 0 * , * < ) , (6-6)

Their Lie brackets are
[^•o.-x:t] = 0, (6-8)

[Xi)X3.] = 2ei,fcXft. (6-9)

Using (6-6) and (6-7) the differential operators dl and A can be calculated in terms of
Xo and Xt. The result is

X0 + eiXi), (6-10)

{ i i + 0(X0 + 2)}. (6-11)

The following facts about the space of harmonic functions Wn are well known (and
follow from (6-11); see, for example, (17), p. 71):

PROPOSITION 6. (i) Wn s T^Ln_2. (ii) dimT^ = (ra + 1)2. (iii) The elements of Wn an
polynomials in q.

We can now obtain the basic facts about the spaces Un of regular functions:

THEOEBM 7. (i) Wn = Vn ® CLn_2. (ii) Un s U_n_3. (iii) dim Un = \{n+1) (n + 2).

Proof. (i)Equation (6-10)shows that the elements of Un, which satisfy Xof= nf and
8t f = 0, are eigenfunctions of Q = ei Xi with eigenvalue — n. Since the vector fields
Xt are tangential to the sphere S, Q can be considered as an operator on Wn, and
Un consists of the eigenfunctions of Q with eigenvalue — n. Using (6-9), it can be
shown that

Q2-2Q + XiXi = 0.
Hence / e Wn => A(rnf) = 0

= -n(n + 2)f

It follows that ffln is the direct sum of the eigenspaces of Q. with eigenvalues — n and
n + 2 (these are vector subspaces of Wn since the eigenvalues are real), i.e.

(ii) It follows from Proposition 5 (i) that the mapping / is an isomorphism between
Un and U_n_3.
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(iii) Let dn = dim Un. By (i) and Proposition 6(ii),

and by (ii), c L ^ = dn_v

Thus ^n + 4 - i = (w + l)2.

The solution of this recurrence relation, with dQ = 1, is

There is a relation between Proposition 5 (ii) and the fact that homogeneous regular
functions are eigenfunctions of Q. Proposition 5 (ii) refers to a representation M of the
group H x x U x defined on the space of real-differentiable functions / : HI — {0} -> H by

Restricting to the subgroup {(a, b): \a\ = \b\ = 1}, which is isomorphic to

SU(2) x SU(2),

we obtain a representation of SV(2) x SU(2). Since the map q->aqb is a rotation when
\a\ = |6| = 1, the set W of harmonic functions is an invariant subspace under this
representation. Now W = H <g)c W

c, where We is the set of complex-valued harmonic
functions, and the representation of SU(2) x SU(2) can be written as

M(a,b)(q®f) = (bq)®R(a,b)f

where R denotes the quasi-regular representation corresponding to the action q \—• aqb*1

ofSU(2)xSU(2) on IH-{0}:

Thus M| W is the tensor product of the representations D° x D1 and R\ Wc of

8U(2)xSU(2),

where Dn denotes the (n+ l)-dimensional complex representation of SU(2). The
isotypic components of R\ Wc are the homogeneous subspaces W%,, on which R acts
irreducibly as Dn x Dn; thus Wn is an invariant subspace under the representation M,
and M\Wn is the tensor product (D° xfl1)® (Dn x Dn). Wn therefore has two invariant
subspaces, on which M acts as the irreducible representations Dn x Dn+1 and

J)n

These subspaces are the eigenspaces of Q. To see this, restrict attention to the second
factor in 8U{2) x ££7(2); we have the representation

M'(b)(q®f) = M(l,b){q®f) = [B^b)q] ® [B(l,b)f]

where Dx{b)q = bq. The infinitesimal generators of the representation R{l,b) are the
differential operators Xt; the infinitesimal generators of Z)1(6) are et (by which we mean
left multiplication by et). Hence the infinitesimal operators of the tensor product
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M' are Ci + X^ The isotypic components of W are the eigenspaces of the Casimir
operator

(ej + Xt) (e, + XJ = ej e, + X, X< + 2fl.

But eief = - 3, and XiXi= -n(n + 2) on Wn; hence

= 2Q-?i2-2n-3.

and so the isotypic components of Wn for the representation M' are the eigenspaces of
£l. Un, the space of homogeneous regular functions of degree n, has eigenvalue — n for
Q, and so M'\Un is the representation Dn+1 ofSU(2).

Similar considerations lead to the following fact:

PROPOSITION 7. Iffis regular, qfis harmonic.
The representation M of SU(2) x SU(2) can also be used to find a basis of regular

polynomials. It belongs to a class of induced representations which is studied in (18),
where a procedure is given for splitting the representation into irreducible components
and rinding a basis for each component. Rather than give a rigorous heuristic deriva-
tion by following this procedure, which is not very enlightening in this case, we will
state the result and then verify that it is a basis.

Since the functions to be considered involve a number of factorials, we introduce the
notation

ZM = — if n > 0
n!

= 0 if n < 0

for a complex variable z. This notation allows the convenient formulae

i-aW = af»-«, (6-12)
dz

(z1 + z2)W=2zCirl2l2l'"r] (6-13)
r

where the sum is over all integers r.
The representation Dn of 8 ^ SU{2) acts on the space of homogeneous polynomials

of degree n in two complex variables by

where z[ +jz'2 = u~\zx +jz2).

Writing u = v+jw where v,u>eC and \v\2+ \w\2 = 1, we have

z[ = vz1 + wz2, z'2 = — wz1 + vz2.

Hence the matrix elements of Dn(u) relative to the basis/fc(z1,z2) = zf1^""*1 are

where PJf,(w +ju>) = 2 ( - y^-k-i+r^ir^k-Dyp-n ( 6 . 1 4)
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The functions PM<l) a r e denned for all quaternions q — v +jtu and for all integers
k, I, n, but they are identically zero unless 0 < k, I ^ n.

PROPOSITION 8. As a right vector space over U, Un has the basis

QUq) = PUa)- J ^ U t e ) (o^k^i^n).
Proof. Using (6-14), it is easy to verify that Q%t satisfies the Cauchy-Riemann-

Fueter equations in the form (cf. 3-11)

dv did ' dw 8v

Since the functions D%i are independent over C as functions on S for 0 ^ k, I < n,
the functions P%t are independent over C as functions on HI for 0 < k, I ^ n. I t
follows that the functions Qfa {0^k^n+l,04:l^n) are independent over C and
therefore span a right vector space over H of dimension at least \{n + 1) (n + 2). Since
this space is a subspace of Un, which has dimension \{n+ 1) (n + 2), the Q%x span Un.

Since zj = jz for any z e C, it can be seen from the definition (6-14) that

and therefore Qfaj = Ql_k+^n_v

Thus Un is spanned by the Q£, (0 < k < I ^ n), which therefore form a basis for Un. I
Another basis for Un will be given in the next section.
We conclude this section by studying the quaternionic derivative dv Since 8t is a

linear map from Un into Un_1 and dim Un > dim Un_ly dt must have a large kernel and so
we cannot conclude from dtf=O that / is constant. However, although the result is far
from unique, it is possible to integrate regular polynomials:

THEOREM 8. Every regular polynomial has a primitive, i.e. dt maps Un onto Un_x if
n > 0.

Proof. Suppose fe Un is such that dj = 0. Then

T h u s / can be regarded as a function on the space P of pure imaginary quaternions.
Using vector notation for elements of P and writing / = /0 + f with/oeR, ieP, the
condition ei df/8xi = 0 becomes

V/o + Vxf = 0, V.f = 0.

If n ^ 0, we can define /(0) so that these hold throughout P, and so there exists a
function F:P->P such that

f = V x F , / „ = - V . F ,

. SFf=e^.

Then F is harmonic, i.e. V2F = 0.
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Let Tn be the right quaternionic vector space of functions F:P-»-H which are

homogeneous of degree n and satisfy V2F = 0; then dimTn = 2n+ 1. Let Knhe the
subspace of Tn consisting of functions satisfying et d¥/dxi = 0; then Kn = ker 8t <= Un.
The above shows that e{ d/dx^. Tn+1 -+ Tn maps Tn+1 onto Kn; its kernel is Kn+1, and so

dim Kn + dim Kn+1 = dim Tn+1 = 2w + 3.

The solution of this recurrence relation, with dim.K"0 = 1, is dimKn = n+ 1. But

dim Un- dim Un_x = \{n+ 1) (n + 2) - %n(n + 1) = n+1.

It follows that dt maps ?/„ onto Un_v I

THEOREM 9.1fn < 0, <Ae nrap 3̂ : C/n->-C4_i is one-to-one.

Proof. We introduce the following inner product between functions defined on the
unit sphere S:

r -
\u) g(u) du<f,9>=\ /(*

J s
where du denotes Haar measure on the group S, normalized so that

du = A772.L' s
For functions defined on H, we can write this as

</.?>= f f(q)r1Dqg(q)
J s

As a map: Un x Un->• H, this is antilinear in the first variable and linear in the second,
i.e.

(fa, gb} = a(f,g}b for all a, b e H

and is non-degenerate since </,/) = 0 0 / = 0.
Now le t /e Un, g e U_n_2

 a n d let / denote the map: Un -> lLn_3 defined in Proposition
5(i). Then

<g,Id,f>= t
J s

= - f g(q)i*(DqdJ),
• Js

where 1 denotes the map q t—* q~x and we have used the fact that i*Dq = — q~1Dqq~1 for
qeS. Since/is regular, Dq8,f = %d(dq Adqf) and so

(g,18lf) = - - \ g(q)d[i*(dqAdqf)]

dg A i*(dq A dqf) since dS = 0.
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On S, the inversion t coincides with quaternion conjugation; hence i*dq = dq and
therefore

(g, Idtf) =
 {- j

= - J
dg A

= [ DqAdig(q)f(q-1

Js
)

since g is regular. Since conjugation is an orthogonal transformation with determ-
inant — 1, Dq(hlth2,h3) = — Dqih^h^hz); hence, because conjugation is the same as
inversion on S,

Dq = -i*Dq =

(g, Id^ = f
J s

Thus

But / is an isomorphism, the inner product is non-degenerate on U_n_2, and d, maps
C/_n_2 onto U_n_3 if n ^ — 3; it follows that dt: Un^-Un_x is one-to-one. I

In the missing cases n = — 1 and n = — 2, Theorems 8 and 9 are both true trivially,
since U_x = U_2 = {0}.

7. Regular power series. The power series representing a regular function, and the
Laurent series representing a function with an isolated singularity, are most naturally
expressed in terms of certain special homogeneous functions.

Let v be an unordered set of n integers {ilt ...,in} with 1 < ir < 3; v can also be
specified by three integers nltn2,n3 with nx-\-n^n3 = n, where % is the number of
l's in v, n2 the number of 2's and n3 the number of 3's, and we will write v = [r^n2n3].
There are |(w+ 1) (n + 2) such sets v; we will denote the set of all of them by <rn. They
are to be used as labels; when n = 0, so that v = 0, we use the suffix 0 instead of 0 . We
write dv for the nth order differential operator

o.. =
dxh...dxin

The functions in question are
Gv(q) =

and Pv{q) = ^{teil-xii)...{tein-xin) (7-2)

where the sum is over all w!/(% \n2ln3\) different orderings of n^ l's, n2 2's and n3 3's.
Then Pv is homogeneous of degree n and Gv is homogeneous of degree — n — 3.

As in the previous section, Un will denote the right quaternionic vector space of
homogeneous regular functions of degree n.

PROPOSITION 9. The polynomials Pv(veo~n) are regular and form a basis for Un.
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Proof. (17) Let /be a regular homogeneous polynomial of degree n. Since/is regular

and since it is homogeneous,

Hence nf(q) = 2 (xt - tej —.

But df/dxi is regular and homogeneous of degree n — 1, so we can repeat the argument;
after n steps we obtain

Since/is a polynomial, d,, / i s a constant; thus any regular homogeneous polynomial is a
linear combination of the Pv. Let Vn be the right vector space spanned by the Pv. By
Proposition 6(iii), the elements of Un are polynomials, so Un ^ Vn; but

dim Fn ^ |(w + 1) (n + 2) = dim Un

by Theorem 7(iii). Hence Vn = Un. I
The mirror image of this argument proves that the Pv are also right-regular.
Just as for a complex variable, we have

(1-0-1= s <r
n=0

for |g| < 1; the series con verges absolutely and uniformly in any ball | q | ^ rwithr < 1.
This gives rise to an expansion of G(p — q) in powers of p~xq; identifying it with the
Taylor series of G about p, we obtain

PROPOSITION 10. The expansions

G(p-q)= £ S P,{q)Q,{p)
n=0 » e<rn

= 2 2 Gv(p)Pv(q)
n=0 »£ff,

are valid for \q\ < \p\;the series converge uniformly in any region {(p, q):\q\ < ''l^l} of H2

with r < 1.
Now the same arguments as in complex analysis give:

THEOREM 10. Suppose f is regular in a neighbourhood of 0. Then there is a ball B with
centre 0 in which f(g) is represented by a uniformly convergent series

f(q)= S 2
n = 0 v e<r

where the coefficients av are given by
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where S is any sphere containing the origin.

THEOREM 11 (the Laurent series). Supposef is regular in an open set U except possibly
at qQeU. Then there is a neighbourhood N of q0 such that ifqeN and q + q0, f(q) can be
represented by a series

CO

71 = 0 vecrn

which converges uniformly in any hollow ball

{q: r < \q — qo\ < R], with r > 0, which lies inside N.

The coefficients av and bv are given by

^ = 7^f Gv(q-q0)Dqf(q),
i c

where C is any closed 3-chain in U — {q0} which is homologous to dB for some ball with
qoeB c: U (so that C has wrapping number 1 about q0).

I am grateful for the hospitality of the Department of Applied Mathematics and
Theoretical Physics in the University of Liverpool, where part of this work was done,
and to Drs P. J. McCarthy and C. J. S. Clarke for many stimulating discussions.
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