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Abstract It is known that a polynomial local diffeomorphism (f, g) : R
2 → R

2 is a global diffeomorphism
provided the higher homogeneous terms of ffx + ggx and ffy + ggy do not have real linear factors in
common. Here, we give a weight-homogeneous framework of this result. Our approach uses qualitative
theory of differential equations. In our reasoning, we obtain a result on polynomial Hamiltonian vector
fields in the plane, generalization of a known fact.
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1. Introduction

Let F = (f, g) : R
2 → R

2 be a polynomial map whose Jacobian determinant satisfies

det DF (x, y) �= 0 (1)

for all (x, y) ∈ R
2. The map F is locally a diffeomorphism but, after the family of

counterexamples found by Pinchuk [15], we know that F is not necessarily globally injec-
tive. Pinchuk’s counterexamples disprove the real Jacobian conjecture, i.e. the claim that
polynomial maps satisfying (1) are injective.

A natural problem is then to look for additional conditions that guarantee the real
Jacobian conjecture. For instance, if the Jacobian determinant of F is a constant different
from zero, then its injectivity is unknown up to now, and this problem is part of the famous
Jacobian conjecture, which is unsolved until these days, see [9].

Conditions on the degree of F were established in [1,3,13]. Conditions on the spectrum
of DF , also valid for non-polynomial maps, can be found in [7,10]. The aim of this paper
is to provide different conditions to the validity of the real Jacobian conjecture. Our
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main result is Theorem 1, which turns out to be a generalization of the main result of
[4]. Theorem 1 is also related to the work [6], as explained below. In order to enunciate
the theorem, we need some preliminary concepts.

Let s1 and s2 be positive integers and set s = (s1, s2). We say that a polynomial
function f : R

2 → R is s-weight-homogeneous if there is a non-negative integer d such
that

f(αs1x, αs2y) = αdf(x, y)

for all α ∈ R, α > 0, and for all (x, y) ∈ R
2. In this case, we call d the weight-degree of f

and s the weight-exponent of f . When s = (1, 1) we simply say that f is homogeneous of
degree d. Given a weight-exponent s and a polynomial f : R

2 → R, we can uniquely write
f = f0 + f1 + · · · + fr where fi is a s-weight-homogeneous polynomial of weight degree
i. In this case, when fr �= 0, we say that fr is the higher s-weight-homogeneous part of
f and we also say that r is the weight degree of f . It is straightforward to check the
validity of the following Euler formula for a s-weight-homogeneous polynomial f with
weight degree d:

df(x, y) = s1xfx(x, y) + s2yfy(x, y). (2)

Here fx (respectively fy) is the partial derivative of f with respect to x (respectively y).
It is also clear in this case that fx (respectively fy) is s-weight-homogeneous with weight
degree d − s1 (respectively d − s2). Finally, if p(x, y) = (ax + by)kq(x, y), with p and q
polynomial functions, k a positive integer and a, b ∈ R, then we say that ax + by is a real
linear factor of f . We observe that a s-weight-homogeneous polynomial p, with s1 �= s2,
can have a real linear factor only in case a = 0 or b = 0. Now we can formulate our main
result.

Theorem 1. Let F = (f, g) : R
2 → R

2 be a polynomial map satisfying (1) and such
that there is z ∈ R

2 with F (z) = (0, 0).

(a) If either the higher homogeneous terms of the polynomials ffx + ggx and ffy + ggy

do not have real linear factors in common, or

(b) if the higher homogeneous term of f2 + g2 does not have a factor (ax + by)2, with
ab �= 0, and there is a weight-exponent s such that the higher s-weight-homogeneous
terms of the polynomials ffx + ggx and ffy + ggy do not have real linear factors
in common,

then F is injective.

The main result of [4] is only statement (a) of Theorem 1, with z = (0, 0). The following
is an example where the injectivity follows from Theorem 1 but not from [4]. Let F (x, y) =
(x + y + x2, y + x2). We have det DF = 1 and

ffx + ggx = x + y + 3x2 + 4xy + 4x3, ffy + ggy = x + 2y + 2x2.

The higher homogeneous terms of these polynomials are 4x3 and 2x2, respectively, and
so the assumptions of [4] are not satisfied. Now the higher homogeneous term of f2 + g2

is 2x4 and, with weight exponent s = (1, 2), the higher s-weight-homogeneous terms of
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the above polynomials are 4x(y + x2) and 2(y + x2), respectively, that do not have real
linear factors in common. So F is injective by Theorem 1.

We point out that the assumptions on Theorem 1 are not necessary for the global
injectivity of a polynomial local diffeomorphism, as can be seen by the polynomial dif-
feomorphism G(x, y) = (x + (x − y)2, y + (x − y)2). Here det DG = 1, the higher homo-
geneous part of f2 + g2 is 2(x − y)4 and the higher homogeneous terms of ffx + ggx and
ffy + ggy are 4(x − y)3 and −4(x − y)3, respectively, and so we can not use Theorem 1.

It is important to mention here that a standard fact in algebraic geometry is that if
a polynomial map (f, g) satisfying (1) has no points at infinity in RP

2, i.e., the higher
homogeneous term of f2 + g2 has no real linear factors, then (f, g) is a proper map,
and so it is a diffeomorphism, according to [16]. A generalization of this to the quasi-
homogenous frame is the bidimensional counterpart of [6, Theorem A]: polynomial maps
F = (f, g) satisfying (1) and such that the higher s-weight-homogeneous parts of f and g
have (0, 0) as an isolated common zero, are injective. We observe that in the first example
F above, the higher s-weight-homogenous parts of f and g are (y, y), (y + x2, y + x2) or
(x2, x2), depending whether 2s1 < s2, 2s1 = s2 or 2s1 > s2, respectively. None of them
have (0, 0) as an isolated common zero, and hence this example (satisfying the hypotheses
of Theorem 1) does not satisfy the assumptions of [6, Theorem A]. On the other hand,
we do not know if our Theorem 1 implies this result of [6], although in case the s-weight
degree of f and g is equal, for some weight s, it does, as proven in Lemma 6.

We emphasize that our proofs rely on qualitative theory of differential equations and
uses a characterization of injectivity of F via centres of a suitable Hamiltonian vector
field associated to F . In our reasoning, we prove a result on polynomial Hamiltonian
vector fields in the plane, Proposition 4, which is a generalization of a result of [5] that
we think is interesting on its own.

In § 2, we summarize this and other results needed to the proof of Theorem 1, which
is performed in § 3.

After the completion of this work, we took knowledge of the paper [14], a partly exposi-
tory paper with very nice connections between global injectivity and dynamics. The main
result of [14] is that a polynomial map (f, g) satisfying (1) is globally injective provided
the complexification of the algebraic curve f = 0 has one place at infinity (meaning that
the curve f = 0 is irreducible and the pre-image of the desingularization map of the curve
intersected with the infinity line in CP

2 has only one point, see the precise definition in
[14]). This result is different from our Theorem 1 as the polynomial local diffeomorphism
(f, g)(x, y) = (x + x3, y + y3) satisfies the assumption (a) of Theorem 1 but f and g are
not irreducible, and so cannot have one place at infinity.

2. Preliminary results and a new condition for degenerate hyperbolic
sectors at infinity

We begin this section by explaining the characterization of injectivity of polynomial maps
mentioned in the introduction section. By a centre of a vector field V, we mean as usually
an equilibrium point v of V having a neighbourhood U such that U \ {v} is filled with
non-constant periodic orbits of V. The period annulus of the centre is the maximum
neighbourhood of v with this property. We say that a centre is global if its period annulus
is the whole plane.
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In what follows we assume that F = (f, g) is a polynomial map satisfying (1). Let the
function H : R

2 → R be defined by

H(x, y) =
f(x, y)2 + g(x, y)2

2

for (x, y) ∈ R
2 and its associated Hamiltonian vector field χ = (P, Q), that is,

P = −Hy = −ffy − ggy, Q = Hx = ffx + ggx.

We observe that q ∈ R
2 is a singular point of χ if and only if DF (q) · q = (0, 0), which

is equivalent to F (q) = (0, 0) as det DF (q) �= 0. Let U be a neighbourhood of q where
F is injective. It follows that H is positive in all the points of U different from q, while
H(q) = 0, proving that q is an isolated minimum of H. Then all the orbits of χ in a
neighbourhood of q (maybe smaller than U) are closed, proving that q is a centre of X.
We state this result as a lemma for further reference.

Lemma 2. The singular points of χ are the zeros of F . Each of them corresponds to
a centre of χ, and so has index 1.

The following is a generalization given in [2] of a result from [17], see also [11]:

Theorem 3. Let F : R
2 → R

2 be a polynomial map satisfying (1). Assume there is
z ∈ R

2 such that F (z) = (0, 0). Then F is injective if and only if the centre z of χ is
global.

In what follows we use results and notation on the Poincaré compactification of poly-
nomial vector fields of R

2. Particularly, Ui, Vi, i = 1, 2, 3, are the canonical local charts
of the Poincaré sphere S

2. For details on this technique, we refer the reader to [8, Chap-
ter 5] or to [12]. Letting X be a polynomial vector field of R

2, we denote by p(X) its
compactification. As usual, we say that q is an infinite singular point of X, or of p(X),
if q is in the equator of S

2. We also say that a hyperbolic sector h of q is degenerate if
its two separatrices are contained in the equator of S

2. Finally, by the Poincaré disc, we
mean the projection of the north hemisphere together with the equator of S

2 on the plane
z = 0.

Next result studies the infinite singular points of a general polynomial Hamiltonian
vector field, giving necessary conditions in order to have a non-degenerate hyperbolic
sector. It turns out that the present result generalizes a similar result from [5], by consid-
ering also weight-homogeneous polynomials. We recall that for a Hamiltonian vector field
X = (−Hy, Hx), where H : R

2 → R is a polynomial, the infinite singular points of p(X)
in the Poincaré disc are the endpoints of each straight line ax + by = 0, where ax + by is
a real linear factor of the higher homogeneous part of H.

Proposition 4. Let q be an infinite singular point of a Hamiltonian system X =
(P, Q) = (−Hy, Hx) (with PQ �≡ 0), endpoint of the straight line ax + by = 0 in the
Poincaré disc. If q has a non-degenerate hyperbolic sector, then ax + by is a common
factor of the higher homogeneous parts of P and Q. If a = 0 (respectively b = 0), then y
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(respectively x) is a common factor of the higher s-weight-homogeneous parts of P and
Q, for each weight-exponent s = (s1, s2).

Proof. We clearly can assume that the degree of H is greater than 1 and that the
higher homogeneous term of H has the form

r(x, y)(ax + by)τ ,

where τ ≥ 1 is an integer and r(x, y) is a polynomial that does not have ax + by as a
factor.

Clearly if ab �= 0 and τ ≥ 2, then the higher homogeneous terms of P and Q have both
the factor ax + by, and we are done.

So it remains to consider the following three cases concerning the higher homogeneous
term of H: (i) it has the form r(x, y)(ax + by) with ab �= 0, i.e., τ = 1; or (ii) it has the
form r(x, y)yτ , i.e., a = 0; or (iii) it has the form r(x, y)xτ , i.e., b = 0. By changing x and
y we do not need to consider case (iii) (observe that with a change like that, a (s1, s2)-
weight-homogeneous polynomial is carried to a (s2, s1)-weight-homogeneous polynomial).
Also, with a linear change of variable we can transform (i) into (ii) and consider just the
later case (because the degree of H is greater than 1). Our conclusion will show that case
(ii) with τ = 1 (and so case (i)) cannot happen.

So we assume that case (ii) is in force. Letting s = (s1, s2) be a given weight-exponent,
we denote by m and n the weight degrees with respect to s of P and Q, respectively. In
the sequel, we shall use notation on the Poincaré compactification of X. Observe that
q is the origin of the local chart U1, that we will treat with the variables (u, v), with
the relation between (x, y) and (u, v) given by (u, v) = (y/x, 1/x). The equator of the
Poincaré sphere, i.e., the infinite of R

2 is mapped in the straight line v = 0. Let r1 and r2

be the two separatrices of a hyperbolic sector h of (0, 0) in U1. Without loss of generality,
we assume that the interior of h is contained in the region v > 0. Suppose that r1 is not
contained in the infinite, i.e. in the straight line v = 0. We claim that r2 is not contained
in the infinite and that r1 and r2 have the same tangent line at (0, 0). Indeed, assume
on the contrary that there exists a straight half-line u = λv, with v > 0, between r1 and
r2. Each obit of X is contained in a level set of H(x, y) = c of H. So, by letting

H̃(u, v) = vd+1H

(
1
v
,
u

v

)
(3)

and G̃(u, v) = H̃(u, v)/vd+1, points (u, v) of the compactified orbit will satisfy G̃(u, v) =
c. Let c be the value of G̃ in r1. Since h is an hyperbolic sector, each sequence {wn} in
the interior of h such that limn→∞ wn = (0, 0) will satisfy limn→∞ G̃(wn) = c. So

lim
v→0

G̃(λv, v) = c.

Then writing H̃ =
∑d+1

i=0 H̃i, with H̃i being the homogeneous part of degree i of H̃, we
get H̃0(λ, 1) = · · · = H̃d(λ, 1) = 0 and H̃d+1(λ, 1) = c. Hence

G̃(λv, v) =
H̃d+1(λv, v)

vd+1
= c,
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meaning that the straight half-line u = λv is invariant by the flow, a contradiction. This
proves the claim.

Clearly G̃(u, v) have the same value c in r1 and r2, by the continuity of G̃ in v > 0.
Let u = λv, v > 0, the common tangent of r1 and r2 at (0, 0). This line is contained in
the tangent cone of the algebraic variety H̃(u, v) − cvd+1 = 0, with multiplicity at least
two, i.e.,

H̃(u, v) − cvd+1 =
d+1∑
i=k

˜̃Hi(u, v),

with k ≥ 2 and ˜̃Hk(u, v) = (u − λv)2R(u, v), where R(u, v) is a homogeneous polynomial
of degree k − 2, and ˜̃Hi is the homogeneous part of degree i of H̃(u, v) − cvd+1. Therefore,
from (3), it follows that

H(x, y) =
H̃(u, v)
vd+1

= c +
d+1∑
i=k

xd+1−i ˜̃Hi(y, 1).

Note that if k = d + 1 then H(x, y) = H̃d+1(y) which is not possible because then Q ≡
0. So, k < d + 1, and Q contains the term (d + 1 − k)xd−k ˜̃Hk(y, 1). Since H̃k = (y −
λ)2R̃(y, 1) we get that n, which is the s-weight degree of Q, satisfies

n ≥ (d − k)s1 + 2s2. (4)

The s-weight-homogeneous part of weight degree n of Q writes

Qn =
∑
i,j

is1+js2=n

aijx
iyj .

Since the maximum exponent of x in H is d + 1 − k, and so the maximum possible
exponent of x in Qn is d − k, it follows that if aij �= 0 in the above sum, then (d − k)s1 +
js2 ≥ n ≥ (d − k)s1 + 2s2, from (4), forcing that j is at least 2. This means that

Qn = y2T (x, y),

where T (x, y) is a suitable s-weight-homogeneous polynomial of weight degree n − 2s2.
Since Qn = ∂Hn+s1/∂x, where here Hn+s1 means the s-weight-homogeneous term of
weight degree n + s1 of H (recall that if H has s-weight degree � then ∂H/∂x, if not zero,
has s-weight degree � − s1), it thus follows that

Hn+s1 = y2

∫
T (x, y) + G(y) (5)

for some polynomial G(y) which must be a factor of y2, otherwise Hn+s1 is not weight-
homogeneous.

Now the higher s-weight-homogeneous term, Pm, of P = −Hy comes from Hm+s2 .
Clearly m + s2 ≥ n + s1 by (5). In case m + s2 = n + s1, then Pm has a factor y. On the
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other hand, if m + s2 > n + s1, it follows that Hm+s2 = syj , with s2j = m + s2, other-
wise the higher s-weight-homogeneous term of Q is not Qn because m + s2 − s1 > n. In
particular, Pm has a factor y.

Observe that our proof shows in particular that the higher s-weight-homogeneous term
of H has the factor (ax + by)2 (homogeneous if ab �= 0). In particular, case (i) of the
beginning of the proof is not possible. �

Corollary 5. Let H : R
2 → R be a polynomial function. Let q be an infinite singular

point of the polynomial Hamiltonian vector field χ = (−Hy, Hx), endpoint of the straight
line ax + by = 0 in the Poincaré disc. Assume either that the higher homogeneous terms
of Hx and Hy do not have real linear factors in common, or, if a = 0, (respectively b = 0)
that y (respectively x) is not a common factor of the higher s-weight-homogeneous parts
of Hx and Hy, for some weight-exponent s = (s1, s2). Then the topological index of q is
greater than or equal to zero. If this index is zero, then q is formed by two degenerate
hyperbolic sectors.

Proof. From Proposition 4, it follows that q have no non-degenerate hyperbolic sec-
tors. Thus, the number of hyperbolic sectors of q is h ≤ 2. By the index formula we
conclude that the index of q is greater than or equal to the number of elliptic sectors of q,
and so greater than or equal to zero. If the index is zero, it thus clearly follows that there
are no elliptic sectors and also that q must have two degenerate hyperbolic sectors. �

3. Proof of Theorem 1

We consider the function H(x, y) = (f(x, y)2 + g(x, y)2)/2 defined in R
2, and the asso-

ciated Hamiltonian vector field χ = (−Hy, Hx). Since F (z) = (0, 0), it follows from
Theorem 3 that in order to prove that F is injective, it is enough to prove that z is
a global centre of the vector field χ.

Let q be an infinite singular point of χ, endpoint of the straight line ax + by = 0 in
the Poincaré disc. If we are under assumption (a) of Theorem 1, then we are under the
assumptions of Corollary 5. If we assume (b) of the Theorem and ab �= 0, then ax + by is
not a common factor of Hx and Hy (from (2)), and we are again under the assumptions
of Corollary 5. On the other hand, if ab = 0, assumption (b) guarantees the existence of a
weight-exponent s satisfying the assumptions of Corollary 5. Thus, in any case, it follows
from this corollary that the topological index of any infinite singular point of χ is greater
than or equal to zero.

Also, the index of each finite singular point of χ is one, by Lemma 2. Corresponding
to the singular point z of χ there are two singular points of p(χ), the Poincaré compact-
ification of χ, one in each hemisphere of the Poincaré sphere, having index 1. Thus the
sum of the indices of all the singular points of p(χ) in the Poincaré sphere is at least 2.
From the Poincaré–Hopf theorem (see Theorem 6.30 in[8]), this sum must be 2. So, we
conclude that p(χ) does not have other finite singular points (other than the two centres
corresponding to the centre of χ) and p(χ) either does not have infinite singular points or
each of them has index 0, which again by Corollary 5, must be formed by two degenerate
hyperbolic sectors.
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Looking at the Poincaré disc, we summarize the frame: χ is a polynomial vector field
such that its Poincaré compactification p(χ) in the Poincaré disc has a centre in its only
finite singular point, and p(χ) either does not have infinite singular points or they are
formed by degenerate hyperbolic sectors. From this, it is not difficult to conclude that z
must be a global centre of χ (see, for instance, Corollary 10 and the proof of Theorem 1
in [4]).

We end the paper with the following Lemma, that gives a relation between our Theorem
and the already mentioned result of [6].

Lemma 6. Let F = (f, g) : R
2 → R

2 be a polynomial map and let s = (s1, s2) be a
weight-exponent. Assume that the weight degrees of f and g with respect to s are equal.
If the higher s-weight-homogeneous terms of f and g do not have real linear factors in
common, then so do the higher s-weight-homogeneous terms of ffx + ggx and ffy + ggy.

Proof. We let m be the weight degree of f and g and write f = f0 + · · · + fm and g =
g0 + · · · + gm the weight decomposition of f and g. We first observe that (f2

m + g2
m)x �≡ 0

and (f2
m + g2

m)y �≡ 0, because if (f2
m + g2

m)x ≡ 0, for instance, then (we are dealing with
polynomials) fm = a0�y

� and gm = b0�y
�, with �s2 = m and a0�, b0� ∈ R, a contradiction.

Thus, the higher s-weigh-homogeneous parts of ffx + ggx and ffy + ggy are, respec-
tively, (f2

m + g2
m)x/2 and (f2

m + g2
m)y/2. If there is a linear factor dividing the last

polynomials, it will also divide

s1x
∂

(
f2

m + g2
m

)
∂x

+ s2y
∂

(
f2

m + g2
m

)
∂y

= m
(
f2

m + g2
m

)
,

and so this factor will be common to fm and gm, a contradiction. �

This lemma is no longer true without the assumption that the weight degrees of f
and g are the same, as the map F (x, y) = (x + y3, y − x3) shows. It satisfies det DF =
1 + 9x2y2 and, with s = (3, 1), the higher homogeneous terms of f and g are x + y3

and = x3, respectively. But the higher homogeneous terms of ffx + ggx and ffy + ggy

are 3x5 and −x3, respectively. Here it is worth to mention that with s = (5, 3), the
higher s-weight-homogeneous terms of ffx + ggx and ffy + ggy are 3x5 and −x3 + 3y5,
respectively. That is, this map satisfies the assumption of Theorem 1.
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