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1. Introduction
The non-negative harmonic functions of a transient Markov process yield a great

deal of information about the 'behaviour at infinity' of the process, and can be used
to A-transform the process to behave in a certain way at infinity. The traditional
analytic way of studying the non-negative harmonic functions is to construct the
Martin boundary of the process (see, for example, Meyer [4], Kunita and T.
Watanabe[3], and Kemeny, Snell & Knapp[2], Williams [7] for the chain case).
However, certain conditions on the process need to be satisfied, one of the most basic
of which is that there exists a reference measure v such that Ux (x, •) <| rj for all
A > 0, all xeE, the state space of the Markov process. (Here, (UA)A>0 is the
resolvent of the process.)

An interesting example proposed by Erwin Bolthausen arises when we take a
standard one-dimensional Brownian motion (Bt)t>0, and define

U — ^[0, oo)

Jo
(Bs)ds.

Then the process (Xt)t>0 = ((At,Bt))t^0 with values in E = R+ x IR is a Feller-
Dynkin process, and is transient. However, if this process starts at any point (a, y)
with y < 0, then for any O O w e have P(a<y)(At -a)>0, while P(a"v)(At = b) = 0 for
b =t= a. It is easy then to see that for this example there can be no reference measure
v with respect to which all the resolvent kernels have a density, so the question of
discovering the Martin boundary is ill-posed. Nonetheless, there are harmonic
functions for X, and invariant functions too. We shall characterize all invariant
functions h, and shall give representations of all harmonic functions, though the
exact class remains mysterious.

To be precise about our definitions, if (Pt) denotes the semigroup of X, we shall say
that a function h:E^-U+ is

invariant if Pth = h for all < ^ 0 ; (H)

harmonic if h(Xt) is a P^-local martingale for all xeE; (1-ii)

excessive if Pth^h for all t^O a n d Pth\h a s t{0. (1-iii)

We have always invariant => harmonic => excessive, because h is invariant if and
only if h(Xt) is a Pz-martingale for all x, and h is excessive if and only if h(Xt) is a Px-
supermartingale for all x.

1 It is a pleasure to thank Erwin Bolthausen for inviting me to visit Zurich in February 1992
under Swiss NSF grant 21-29833.90, during which time this work was undertaken.
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The main result is the following:

THEOREM 1. Suppose that h:E^-U+ is harmonic. Then there exists some measurable
p: R+ -+ U+ such that for t^O^x

h(t,x) = h(t,O)-xp(t). (2)

The function p satisfies the integrability condition

Too

g{a,O)=\ p(a + s) ™^_ ^ < oo for all a ^ 0. (3)
Jo

ds
V(2ns)

Defining

g(t, x) = (4)

g(t,O)-xp(t)

f
Jo

the function g is invariant, and
(i) if h is invariant, then we have the representation

/•»
h(t, x) - g(t, x) = ht(t, x)= \ exp ( - dH/2) cosh (6x+) fi(dd) (5)

Jo

for some non-negative measure /i on U+ satisfying the integrability condition

exp(cd)/i(dd) < oo for all ceU; (6)
/o

(ii) if h is harmonic, then

h{t,x)-g(t,x) = hl(t,x)+ ps_t(x
+,y)v(ds,dy)

JJ(«, oo)xR

= h((t,x) + Gv(t,x), (7)

where ht is as at (5), and v is a non-negative measure on E, symmetric under the map (t,
x)i->- (t, —x), and p.(-, •) is the Brownian transition density.

Any function h represented as h = g + hi, with g given by (4) and ht by (5) is an
invariant function.

Remarks, (i) Not every function h= ht+g + Gv is necessarily harmonic, because
the potential Ov is in general excessive but not harmonic. It seems to be hard in
general to describe the measures v for which Gv is harmonic, but certainly if v is
concentrated on a finite set, then Gv is harmonic.

(ii) The description of the h-transformed process is peculiar. The representation (5)
corresponds to picking a drift 6 according to law /i(dd)//i(U+), and h-transforming
according to that while B is positive. The effect of g is to transform the process below
0 into a Bessel (3) process, pushed away from the origin at g(At,0)p(At) > 0. Since
both the upward-drifting Brownian motion and the Bessel (3) process are transient,
eventually one or other prevails, and the particle either drifts off to + oo at a linear
rate, or else goes out to — oo like a Bessel (3) process, with the value of A frozen
forever.
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(iii) Notice that, while g will certainly be continuous in [0, oo) x (0, oo), there is no

reason why it need be continuous in [0, oo) x [0, oo) as p may be quite badly behaved.
However, if p is continuous at t, it is easy to show that

so that the x-derivative of g is continuous across the boundary.
The plan of the proof of Theorem 1 is as follows.
In Section 2, we establish (2), and that g denned by (3)-(4) is invariant and

dominated by h. We thereby reduce the problem to a situation where the harmonic
function h = h — g is constant along any line {a} x (— oo, 0). Then h(At,Bt) = h(At,Bf),
and we time change by the inverse of A to obtain the result that h(t, \Bt\) is a local
martingale; this reduces the problem to a characterization of harmonic functions for
space-time Brownian motion, and we deal with this in Section 3.

However, it turns out that in the case where h is invariant, not only is h(A, \Bt\) a
local martingale, but it is also a martingale. We prove this in Section 4.

2. The basic decomposition

Let us observe that if we start at (a, y) with y < 0 and stop at Ho = inf {u :BU = 0},
then

HAtAHs>,BthH) = h(a,BtAHo) is a martingale,

and so h(a, y) = h(a, 0) — yp(a), y < 0,

for some p(a) ^ 0.
We now define a function

Is this well defined ? First, observe that if we set

gn{a,y) = E<a-»[np(A{H_n))]

then 0 < gn(a,y) ^ Eia'*>[h(A{H_n), - « ) ] ^ h(a,y)

using Fatou's Lemma for the last inequality: so there is no problem about finiteness
of the gn. Next, for y ^ 0,

because the Brownian motion has to get down to 0 (at time t) and then keep going
till it hits —n. The local time at 0 when this happens is V ~ exp (l/2n), so the amount
of time spent above 0 at that time is the same in law as the first passage time to F/2
for BM. That is where formula (8) above comes from!

Thus for y ^ 0

f% t"P°q(i>,s)dsp(a
Jo Jo Jo
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where we abbreviate the Brownian first-passage density to q( •, •). Now it is clear that
as n-*- oo, this remains bounded by h(a,y) and increases to a limit.

g(a,y)= q(y,t)dt
Jo Jo

=1
ds

I • . . . du

Thus the integrability condition
/•»

p(a + s)ds/^s < oo for all a^O (10)
Jo

is necessary for A to be harmonic, and is sufficient for us to define a function g(a, y)
(at least for y 5s 0) by (9).

This justifies the definition of g for y ̂  0. For«/ < 0, let us assume n ^ |?/|, and then

l(a,0)'\ — yp(a)+g(a,0) (asnfoo).

Thus the function g is well denned, and

g(a, y) = g(a, 0) — yp(a) for i / ^ 0.

If we set gn{a,y) = gn(a, —n) for y ^,—n, then the grB increase everywhere, and we
shall next prove that the limit g is invariant. For this,

The second term is negligible since

E^y\gn(Al7Bt):t>H_n\^E^y\h{At,Bt):t>H_n\iO as w^ <

since h(At,Bt)eLl. Also,

£<»'<%B(.4t,2?,) :<< H_n]= E^«\np(A(H_n)) :t < H_n]

= gn(a,y)-E<a'»[np(A(H_n)):t>H_nl

All that is needed now is to prove that for t > 0 fixed

)):H_n<t\ = Yn(t) - 0.

Since *Fn( •) is clearly increasing, it will be sufficient to prove that, with A > 0 fixed,

Jo
(11)

where T is exponentially distributed with parameter A, independent of B. Now for
v > — n.

)V(2A)),
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and conditional on {H_n < T), {Bt:0 < t ̂  H_n) is identical in law to

(Bt-dt:O^t^<r_n),

where 0 = V(2^) a n d °"-n i s t h e first t i m e Bt~et reaches -n (see Williams[6]).
So now we want to compute the law of

_ j = £n = \ I [ 0 x)(Bt-6t)dt.
Jo

However, if f{y) = Ey[e~a^«], then xjr must satisfy

\f-df'-a.f = Q in (0, oo)

W-W = 0 in (-TO.0)

together with the condition that i/r is C1 at 0. A few simple calculations yield the

(-n^y^O), (12)

where y = V(02 + 2a)-0 , c"1 = l + (y/20) (i-e~Wn). For the time being, we restrict
our attention to starting values y Js 0. What (12) tells us is that the P^-distribution of
£„ is the same as the time taken for Bt-6t to drop from y to -F B 1 where Vn is
exponentially distributed with mean (l-e-2e")/20. This comes as no surprise to
anyone who has understood the path decompositions of Williams, and the excursion
theory of drifting Brownian motion (see VI.55 in Rogers and Williams[5]).

Thus for y>0, with qn = 20(1 -<rWn)~x,

Since the gn decrease to 20, we have the upper bound

which is finite if and only if it is finite for y = 0. Putting y = 0,

e-*d*dx\
Jo Jo

T'oo r<x>

V(2n)
r°
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from (3). Since P[H_n < 71]-» 0 as TZ.->• oo, we deduce (10), at least when y ^ 0. But for
y<0, n>-y,

E{a'v)[np(A{H_n)):H_n < T\ = E(a-'>)[np(A(H_n));H_n < T].Pia'v)[H0 < H_n A T]

+ np(a)P^«)[H_n<H0AT],

and it is a simple matter now to deduce that this goes to 0. Hence the function g is
invariant for X.

3. Representing h—g

Since g is invariant and g ^ h, it follows that h = h — g is harmonic, that is, h(Xt)
is a local martingale. But since h(a, x) = h(a,x+), if we let

Tn = M{t:h{Xt) >n)
then certainly X(Tn) must be in R+xlR+. So if we define the time change rt =
ini{u:Au > t) then h(X(rt)) is a local martingale in the (J2; )-filtration, reduced by
the stopping times A(Tn). However, (X(Tt))t>0 has the same distribution as ((t, \Bt\))t>0,
so if we redefine

h(t,y)=h(t,-y) (y^O)

we obtain the conclusion that

h(t,Bt) is a local martingale.
So we now address the task of characterizing all functions h: U+ x U -»• R+ which are

symmetric in that h(t,y) = h(t, —y) for all (t,y) and such that h(t,Bt) is a local
martingale under every Px. Observe that this means that h is excessive.

To finish things reasonable directly, we appeal to results of Meyer [4]. Using the
results III.T13, I.T16, III.T9, we may represent excessive he as

he(x) = ho(x)+(g(x,x')fi(dx') (13)

for some measure /i such that

u(z) = g(x, x')/i{dx') < 0 for all x, (14)

where g((s, y), (sr, y')) = I{S'>s]pS'-s{y, y'),

with p. (•, •) denoting the Brownian transition density. The function h0 in the
representation (13) has the property

ho(x) = Ex[h0(X(rK))] for all compact K (15)

where TK = inf {t > 0 :Xt $K}. This property is what Meyer [4] calls harmonic, but this
does not agree with our definition. We do, however, have the following result.

PROPOSITION. If h0 satisfies (15) then h0 is invariant.

Proof. For ease of notation, we consider only starting points on {0} x U, and (for
the purposes of this proof only) abbreviate (0, y) to y. Thus for any t > 0 and
-K<y<N,

ho(y) = E«[ho(X(H_K A HN A t))]

= Ev[ho(Xt):t < H_K A HN]+E»[h0(X(HN)):HN < t A H_K]

+ E»[K(X(H_K)) :H_K < t A HN].
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The first of these three terms tends to Ev[h0(Xt)] as N,K^- oo, so we must show that
the last two tend to zero. By letting iT-> oo, we learn that Ey[h0(X(H N)) :HN < t] ^
ho(y) and so J q(N—y,s)h(s,N)ds ^ ho(y). But if we consider starting from y+1, we
learn that

[(N-y-
Jo

j [ ~ V'S) HS'N) ̂
It follows immediately that

Ev[h0(X(HN)) :HN <t]^0 (as N^ oo)

and the in variance of h0 is established.
Now it is well known that the invariant functions h{ for space-time Brownian

motion are all of the form

hi(t,x)= \exp(dx-6H/2)i>(dd)

for some v satisfying the integrability condition (6) and that ht is symmetric in x if
and only if v is symmetric.

We have now established that any harmonic function of (At,Bt) can be represented
as at (7) for some invariant ht, and the potential of some measure v. Not every
measure v will give a harmonic function, of course and it appears difficult to
characterise the v for which we do get a harmonic function. One example is where we
take v to be the unit mass at (1,0), and then we have the harmonic function

h(a,y) = (2n(l— a))~5exp{ — (y+)2/2(l— a)}I,a<1).

This is a particularly interesting example, because if we A-transform using h, we
obtain a process (At, Yt) satisfying

Yf
flV — /fW l tit rl A — / fit
uit — u,vvt j _ j w'> u>At ~ J (y ( > D ) w t >

and it is not clear how this process behaves; it is like Brownian motion when Y < 0,
and like Brownian bridge when Y > 0, but does it have finite or infinite lifetime?
As A approaches 1, the excursions of Y from 0 into (0, oo) get shorter and shorter,
so it is conceivable that the lifetime of the process could be infinite, as the bulk of
time is spent with Y < 0. We shall prove that this is not in fact the case, by observing
first that Z, = Yt(l— At)~

l satisfies

dWt
dZt = - T

and so if a is inverse to the continuous increasing process

yt= Ui-A8)-*ds,
Jo
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then Zt = Z(at) is a Brownian motion. We now express the time change in terms of
Z. We have

2

Thus if fit = 7j2 >o)> a little elementary calculus gives us

Now Hobson[l] proves that if/: IR+-• R+ is decreasing, and / " r 1 y/ f(t)dt < oo, then
\im.\n£t^xlAt/tf(t) = + oo. Taking/(<) = t~e, we see that At ^ t1'6 for all large enough
t, and so <x is integrable. The conclusion is that a^ < oo and y explodes in finite time,
that is, A reaches 1 in finite time!

4. The invariant case
The first thing to prove is that the potential term Gv in (7) cannot be invariant for

X. However, this is almost obvious if we re-express it as

Qv[t,x)= IT {ps-t(x
+,y)+Ps-t(x

+,-y)}Hds,dy)+\ Ps_t(x
+,0)v(ds,{0}).

JJ(t,co)X(0, oo) J(.t,an)

Indeed, y(t,x;s,y) = {ps-t(x
+,y)+ps_t(x

+, -y)}I(s>t)

is the density with respect to Lebesgue measure of the Green's function of X, at least
for y ̂  0. This is because if we only view X at times when B ^ 0, we see a reflecting
space-time Brownian motion in IR+ x R+. Hence Gv is in fact a potential with respect
to the semi-group of X, and so is not invariant. Next we must prove that every
function \ of the form given in (5) is invariant for X. This is not difficult if we set
it up correctly.

Take a Brownian motion W, with local time L at zero, and an independent stable
(|) subordinator Z:

EexTp(-aZt) = exp(-< V(2a))

and now consider the bivariate Markov process (\Wt\,t + Z(Lt))t>0.
Let C&t)t2o be the filtration of this process. We then have that Mt = h^t, \Wt\) is a

(^)-martingale. If we now time change by

at = ini{u:u + Z(Lu) > t}

then always at ^ t, and so M(crt) is a martingale in the filtration (^rr^t-)). However, by
the way it has been constructed, we have the identity in law as processes

(<rt,\Wa{t)\)t>0 = (At,Bt),

and so ht(At,B~[) = h^A^B,) is a martingale, which means that ht is also invariant for
(At,Bt)=Xt.

Assembling this finally, if h is invariant for X, then it is harmonic for X, and so has
a representation of the form (7), by the previous section. However, we have seen that
g is invariant for X, and have just proved that ht is invariant for X, so we conclude
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that the potential Gv is invariant for X. This can only happen if v s 0. The theorem
is proved.
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