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HARMONIC ANALYSIS ON THE POSITIVE RATIONALS.
DETERMINATION OF THE GROUP GENERATED BY THE

RATIOS (an + b)/(An + B)

P. D. T. A. ELLIOTT AND JONATHAN KISH

In memory of Klaus Roth

Abstract. The multiplicative group generated by a certain sequence of rationals
is determined, settling a 30-year conjecture.

§1. Introduction. The present paper settles in the affirmative a 30-year-
old conjecture of the first author concerning the representation of an arbitrary
positive rational by products and quotients of rationals taken from the sequence
(an + b)/(An + B), n = 1, 2, . . . , the fixed coefficient integers a, b, A, B to
satisfy a > 0, A > 0, 1 = aB − Ab 6= 0, cf. [8, Ch. 23, Unsolved Problems 11,
12].

To appreciate the underlying abstract problem, let Q∗ denote the multiplicative
group of positive rationals, 0 its subgroup generated by a given sequence of
positive rationals rn , n = 1, 2, . . . . The extent to which any further positive
rational, w, has a representation

w =
m∏

j=1

r
ε j
j , ε j = ±1,

is encoded in the structure of the quotient group G = Q∗/0.
We may view G as free on the positive rational primes, restricted by the

relations rn = identity, n = 1, 2, . . . . It is known that no finite recursive
algorithm can be given to determine an arbitrary denumerably infinite abelian
group presented in this manner, cf. [2, 8], [23, Ch. 23, Exercises 106–108].

However, if U denotes the complex unit circle and we canonically extend a
standard character G → U by Q∗ → Q∗/0 → U , then we obtain a complex-
valued completely multiplicative function g on the positive rationals, of absolute
value 1, i.e., a character on the group Q∗, that satisfies g(rn) = 1 on each of the
rationals rn , n > 1. We may ask whether the sequence rn bears enough form to
explicitly determine the dual group of G, hence G itself.

To this end, following examples of Gauss and Dirichlet, we ask for the
asymptotic behaviour of the mean values

x−1
∑
n6x

g(rn)

as x becomes unbounded.
Received 30 July 2016.
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Viewed within this aesthetic, an implicit early application of harmonic
analysis on Q∗ is that of Elliott [4], in which probabilistic number theory
is employed to settle affirmatively a 1968 conjecture of Kátai, [20], that a
real-valued additive function vanishing on the shifted primes p + 1 vanishes
identically.

A more elaborate harmonic treatment of the shifted primes may be found in
Elliott [15], 1995, where the quotient groups Gk corresponding to the subgroups
of Q∗ generated by the shifted primes p + 1, p > k, are for all positive k shown
to be of order at most 3.

Moreover, every positive integer w has infinitely many representations

w|Gk | =
m∏

j=1

(p j + 1)ε j , ε j = ±1,

with the number of shifted primes necessary for such representations bounded
uniformly in w and k. Subsequent arguments reduced this bound to 9, cf.
Berrizbeitia and Elliott [1], Elliott [17].

Note that since they are nested and their orders are uniformly bounded, for all
sufficiently large values of k the groups Gk are isomorphic, cf. Elliott [18, §6].

Doubtless, in accordance with a century-old conjecture of Dickson, every
group Gk is trivial and a single representing ratio (p1+ 1)/(p2+ 1) will suffice.

A mainspring of the upper bound on the orders of the groups Gk is the
inequality

∑
p+16x

∣∣∣∣ k∑
j=1

cj g j (p + 1)
∣∣∣∣2 6 (λ x

log x
+ O

(
xk

(log x)21/20

)) k∑
j=1

|cj |2

with

λ = 4+ max
16`6k

k∑
j=1
j 6=`

max
χ (mod d)

44d
φ(d)2

∣∣∣∣1x ∑
n6x

g`(n)g j (n)χ(n)
∣∣∣∣,

and its variants, cf. Elliott [15, Theorem 3 and Lemma 15], which hold uniformly
for x > 2, multiplicative functions g j with values in the complex unit disc, and
complex cj , 1 6 j 6 k. The inner maximum runs over characters to squarefree
moduli.

In particular, the size of the groups Gk is controlled by the size of the partial
sums ∑

p6x

p−1(1− Re g(p)χ(p)pi t ),

the typical character g of Q∗ braided with a Dirichlet character to an essentially
bounded modulus and a standard unitary character on the multiplicative positive
reals.

The genesis of the study of products of shifted primes and its connection with
illuminating remarks of Wolke [25], Dress and Volkmann [3], and Meyer [21],
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is considered in detail in Chapter 15 of the first author’s 1985 Springer volume,
[8]. An upshot of their results, and which is established in that same chapter, is
that the torsion elements of a typical group Q∗/0 are precisely those on which
every homomorphism of the group into the additive reals vanishes.

In what follows G will denote the quotient group Q∗/0 with 0 generated by
the rationals (an + b)/(An + B), n > k, 1 = aB − Ab 6= 0, k > max(|a−1b|,
|A−1 B|). To simplify the exposition it will be further assumed that a and A
are positive. Replacing Q∗ by the multiplicative group of all rationals, simple
changes allow that condition to be removed.

It was shown in that same Springer volume that this particular group is finitely
generated. A study of the differences f (an + b) − f (An + B) of a real-valued
additive function f , hence of the homomorphisms of G into the additive reals,
enabled a set of generators for the associated free group and membership of the
attached torsion group to be determined.

As its main result the present paper determines the fine structure of the torsion
group and establishes the conjecture.

THEOREM 1. The dual of the group G, hence G itself, may be determined.
In particular, G is finitely generated and its torsion group is an identifiable
subgroup of the reduced residue class group (mod 6(a, A)(a A)213), hence its
homomorphic image.

In the terminology of [8, Ch. 22], suitably interpreted G is arithmic.
The following waystation in the proof is of independent interest.

THEOREM 2. Let integers a > 0, A > 0, b, B, satisfy 1 = aB − Ab 6= 0.
Set δ = 6(a, A)(a A)213.

If a completely multiplicative complex-valued function g satisfies

g
(

an + b
An + B

)
= c 6= 0

on all but finitely many positive integers, n, then there is a Dirichlet character
(mod δ) with which g coincides on all primes that do not divide δ.

Theorem 2 is established in §2. Viewed as a character on Q∗ restricted to
the integers prime to a A1, the function g is shown to have bounded order, to
be essentially a Dirichlet character, then to be exactly a Dirichlet character, and
with a modulus that divides 6(a, A)(a A)213.

Attention is drawn to application of a (recent) result of Tao [24], that a
sufficiency of large sums

∑
p6x p−1(1 − Re g1(p)χ(p)pi t ), χ a Dirichlet

character, t real, forces the logarithmically weighted correlation

(log x)−1
∑
n6x

n−1g1(an + b)g2(An + B), 1 6= 0,

of multiplicative functions g j , j = 1, 2 with values in the complex unit disc, to
be small. This is an important step towards a suitably modified version of the
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first author’s conjecture, dating from the late 1980s, cf. [11, Conjecture II], see
also [12], that if for multiplicative functions g j , 1 6 j 6 k, with values in the
complex unit disc, and integers ar > 0, bs , ar bs − asbr 6= 0, 1 6 r < s 6 k,

lim sup
x→∞

x−1
∣∣∣∣∑
n6x

k∏
j=1

g j (a j n + b j )

∣∣∣∣ > 0,

then there are Dirichlet characters χ j and reals τ j , so that the series

∑ 1
p
(1− Re g j (p)χ j (p)piτ j ), j = 1, . . . , k,

converge.
That the correlation of two multiplicative functions can be controlled by just

one of the functions is already manifest in the first author’s 1994 AMS Memoir
in probabilistic number theory, [14].

Theorem 1 is established in §3. The argument employs Theorem 2 to
characterize the group G theoretically, then reduce its computation to a
practicality.

Section 4 contains further practical matters, illustrated by examples. Section 5
considers simultaneous representations and offers variant arguments. Section 6
concludes the paper with a number of historical remarks by the first author
concerning the asymptotic estimation of correlations of multiplicative functions.

Here it is convenient to note some constraints.

Constraints. Given integers a > 0, A > 0, b, B with1= aB−Ab 6= 0, define
α = (a, b), β = (A, B), a1 = aα−1, b1 = bα−1, A1 = Aβ−1, B1 = Bβ−1,
ρ = αβ−1 in lowest terms and 11 = a1 B1 − A1b1, so that 1 = αβ11. Define
ρ0 to be that part of ρ made up of primes that divide (a1, A1), to be 1 if there are
none. This notation is consistent with that of [8, Ch. 16].

Since there are only two constraints upon n, we can find a positive n, and so
a complete residue class, for which (a1n + b1)(A1n + B1) is not divisible by a
given odd prime, p.

Moreover, either this is possible for p = 2 or there is a pair of integers n1, n2
for which 2‖(a1n1+ b1), 1

2 (a1n1+ b1)(A1n1+ B1) is odd, and 2‖(A1n2+ B1),
(a1n2 + b1)

1
2 (A1n2 + B1) is odd.

Hence we can either arrange for (an + b)/(An + B) = ρr with (r, δ) = 1,
or for the pair (an1 + b)/(An1 + B) = 2ρr1, (an2 + b)/(An2 + B) = (ρ/2)r2,
with (r1r2, δ) = 1.

For each prime divisor p of δ that does not divide (a1, A1) we can arrange a
value of n such that p‖(a1n+b1)/(A1n+B1). If pz‖11 and p - a1 (say), then we
choose n such that pz+1‖(a1n+b1). The identity a1(A1n+B1)−A1(a1n+b1) =
11 shows that pz‖(A1n + B1).
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§2. Proof of Theorem 2. The argument is in four steps, annotated individually.
Without loss of generality (a, b) = 1 = (A, B).

Step 1. There is an integer m for which g(p)m = 1 whenever (p, a A1) = 1.
Moreover, c is a root of unity.

For immediacy, in this step only we appeal to results from the first
author’s volume on arithmetic functions, [8], in which L2 additive analogues
of correlations are characterized, homomorphisms into the unit circle are
replaced by homomorphisms into the additive reals. A merit is that their strong
localization lends itself well to computation.

Choose a rational r for which g(r)c = 1. Then g has the value 1 on all but
finitely many of the fractions r(an+b)(An+B)−1, n > 0. Let00 be the subgroup
of Q∗ that they generate.

We may regard g as a character on the group G0 = Q∗/00.
Let f be a homomorphism of G0 into the additive reals, i.e., a completely

additive function that satisfies

f (an + b)− f (An + B) = − f (r), n > n0.

According to [8, Ch. 13], there is a real H so that f (m) = H log m whenever
(m, a A1) = 1.

There are two cases. As in Constraints, in the first case there is a residue class
for which an + b, An + B are both prime to a A1. In this case

H log
(

an + b
An + B

)
= − f (r)

for infinitely many positive integers, untenable unless H = 0.
Thus f (p) = 0 if (p, a A1) = 1, and f (r) = 0.
For each such prime p there is a positive integer v, possibly depending upon

p, and a representation

pv =
k∏

j=1

(
r(an j + b)

An j + B

)ε j

, ε j = ±1, n j > n0.

As a consequence g(p)v = 1.
Likewise g(r)w = 1 for some positive integer, guaranteeing c to be a root of

unity.
If we choose a residue class s (mod a A1) for which ((as + b)(As + B),

a A1) = 1, and consider the ratios

(a(a A1n + s)+ b)(A(a A1n + s)+ B)−1,

then the argument of [8, Ch. 4], shows that the subgroup of G generated by the
cosets p (mod00), (p, a A1) = 1, is finitely generated, and by similar cosets.
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The existence of an integer m so that the g(p) are all mth roots of unity is
now clear.

In the second case we can find a residue class for which an + b is divisible
exactly by 2, but by no other prime divisor of a A1, whilst An + B is coprime
to a A1; also a residue class for which the roles of the parameters a, b, A, B are
reversed.

Once again

f (2)− H log 2+ H log
(

an + b
An + B

)
= − f (r), n > n1

so that H = 0, f (2) = − f (r).
Moreover,

− f (2)+ H log 2+ H log
(

am + b
Am + B

)
= − f (r), m > m1,

so that H = 0, f (2) = f (r).
Hence f (2) = 0 = f (r).
Since we may choose r to have the form 2r1, where the rational r1 is

comprised only of primes not dividing a A1, c itself is again a root of unity.
The inductive argument of [8, Ch. 4], proceeds, since the class 2 (mod00) has

torsion, and for some m, g(p)m = 1 on all primes not dividing a A1.

Step 2. There is a Dirichlet character χ (mod D) and a set of primes q with∑
q−1 convergent, such that g(p) = χ(p) on all remaining primes.

Remark. Without loss of generality we may assume χ to be primitive.

The following is Tao [24, Theorem 1.3].

LEMMA 1. Let the integers a > 0, b > 0, c, d, satisfy ad − bc 6= 0. Let
ε > 0 and suppose that A0 is sufficiently large depending upon ε, a, b, c, d.
Let x > w > A0 and let g1, g2 be multiplicative functions, with values in the
complex unit disc, for which∑

p6x

p−1(1− Re g1(p)χ(p)p−i t ) > A0

for all Dirichlet characters of period at most A0, and all real numbers t with
|t | 6 A0x.

Then ∣∣∣∣ ∑
x/w<n6x

n−1g1(an + b)g2(cn + d)
∣∣∣∣ 6 ε logw.

To implement the result of Tao we apply the following.
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LEMMA 2. If |g(p)| 6 1 on the primes and∑
p6x

p−1(1− Re g(p)piλ(x))� 1,

with λ(x) real and λ(x) � x, for x > 2, then there is a constant α for which
λ(x) = α + O((log x)−1) and the series

∑
p−1(1− Re g(p)piα) converges.

A somewhat elaborate version of Lemma 2 is employed in the first author’s
study of correlations attached to the sums of renormalized shifted additive
functions, [14, §10.3]. The present version may be found as [19, Lemma 17].
Note that on page 84 line 2 of that account the first sum over the primes contains
a surplus factor of g(p).

Applying Lemma 1 to g(an+ b)g(An+ B) guarantees a constant A0 and for
each x sufficiently large a pair χ (mod Dx ), tx real, with χ a Dirichlet character
to a modulus Dx 6 A0, |tx | 6 A0x , for which the sums∑

p6x

p−1(1− Re g(p)χ(p)p−i tx )

are uniformly bounded.
The characters belong to a finite set. This provides a positive integer k for

which χ(p)k = 1 on all but finitely many primes. The inequality 1 − Re zk 6
k2(1− Re z), valid in the complex unit disc, shows the sums∑

p6x

p−1(1− Re g(p)k p−iktx )

to be uniformly bounded.
An application of Lemma 2 guarantees a real β for which tx = β +

O((log x)−1). Hence ∑
p6x

p−1(1− Re g(p)χ(p)p−i tx )

differs from a similar sum with tx replaced by β, by

�
∑
p6x

p−1|p−i tx − p−iβ | �
∑
p6x

p−1|tx − β| log p � 1.

The sums ∑
p6x

p−1(1− Re g(p)χ(p)p−iβ)

are uniformly bounded and, since there are only finitely many possibilities for
the character, for some character the corresponding infinite series converges.

Although we shall not need it, it is interesting to note the following.
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LEMMA 3. If for multiplicative functions g j , j = 1, 2, with values in the
complex unit disc,

lim inf
x→∞ (log x)−1

∣∣∣∣∑
n6x

n−1g1(an + b)g2(An + B)
∣∣∣∣ > 0,

then for some Dirichlet characters χ j and reals β j the series
∑

p−1(1 −
Re g j (p)χ j (p)piβ j ), j = 1, 2, converge.

To complete Step 2 we note that by Step 1, g(p)m = 1 on all but finitely many
primes. Hence the series ∑

p−1(1− Re p−imkβ)

converges; and that is only tenable if β = 0.
On the primes for which g(p) 6= χ(p), g(p)χ(p) is a non-trivial mkth root

of unity and the corresponding summands are uniformly bounded from below.

Step 3. g(p) = χ(p) provided (p, D) = 1, (p, a A1) = 1.

It is convenient to establish a more general result.

LEMMA 4. Let the integers a > 0, A > 0, b, B satisfy1 = aB− Ab 6= 0. Let
g be a completely multiplicative function, with values in the complex unit disc,
that satisfies

lim sup
x→∞

x−1
∣∣∣∣∑
n6x

g(an + b)g(An + B)
∣∣∣∣ = 1,

it being understood that finitely many of the summands may be omitted.
If g is 1 on all primes that do not belong to a set of primes q for which

∑
q−1

converges, then g is 1 on all the primes that do not divide 1.
In the particular case that g has a non-zero constant value on all but finitely

many of the ratios (an + b)/(An + B), it is further 1 on the primes that do not
divide (a/(a, b), A/(A, B)).

The next result is a particular case of a theorem of Stepanauskas, [22], who
was concerned with allowing the parameters a j , b j and functions g j , j = 1, 2,
to grow with the variable, x .

LEMMA 5. Let g1, g2 be multiplicative arithmetic functions with values in the
complex unit disc. Define the multiplicative functions h j by h j (pm) = g j (pm)−
g j (pm−1), m = 1, 2, . . . , j = 1, 2. Let a1, a2, b1, b2 be integers satisfying a1 >

0, a2 > 0, (a j , b j ) = 1, j = 1, 2, 1 = a1b2 − a2b1 6= 0.
Define

wp =
∞∑

m1=0

∞∑
m2=0

(p
m j
j ,a j )=1, j=1,2
(pm1 ,pm2 )|1

h1(pm1)h2(pm2)

[pm1, pm2] ,
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S(x) =
2∑

j=1

∑
log x<p6x

|s j (p)|2
p

,

where

s j (p) =


g j (p)− 1 if p - 1a j ,

g1(p)g2(p)− 1 if p | 1, p - a j ,

0 if p | a j .

Then, uniformly in x > 2,

x−1
∑
n6x

g1(a1n + b1)g2(a2n + b2)−
∏
p6x

wp � S(x)1/2 + (log x)−1,

the implied constant independent of the g j .

Proof of Lemma 4. We define the multiplicative function h by Dirichlet
convolution, g = 1 ∗ h, so that

h(pm) = g(pm)− g(pm−1) = (g(p)− 1)g(p)m−1, m = 1, 2, . . . .

Then by Lemma 5,

lim
x→∞ x−1

∑
n6x

g(an + b)g(An + B) =
∏

p

wp,

where, since this result holds for any choices of the g(p), we may set all but one
g(p) = 0 and conclude that |wp| 6 1. The displayed hypothesis of Lemma 4
then shows that |wp| = 1 for each prime p.

The most interesting case in evaluating the wp is when p - a A, but p may
divide 1. If v is the highest power of p to divide 1, then

wp = 2 Re
v∑

k=0

h(pk)
∑
m>k

h(pm)

pm −
v∑

k=0

|h(pk)|2
pk

and is real, hence ±1.
The various sums are now geometric progressions and may be readily

evaluated.
In our present circumstances v = 0 and

Re
(

1− 1/p
1− g(p)/p

)
= 1 or 0

is required. As a diagram in the complex plane shows, the left-hand ratio is in
absolute value less than 1 unless g(p) = 1, and is certainly not zero.

The cases when p divides (exactly) one of a and A are simpler.
In most applications g(p) lies on the unit circle and the constraints upon the

wp force Re g(p) to satisfy a quadratic equation with real coefficients.
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In the narrower context that g has a fixed non-zero value on all but finitely
many of the ratios (an + b)/(An + B), let p - a. If ps‖1 then, with possibly a
simple modification in regard to the prime 2, as in Constraints, we can arrange
that pr‖(an+ b), r > s, p−r (an+ b), p−s(An+ B) free of prime factors of 1.

Since g(p)r has a constant value for r > s, g(p) = 1.
Enhanced by an eratosthenian sieve, this second method will then obviate

appeal to Lemma 5, cf. [8, Ch. 12, particularly Lemma 12.4].

Completion of Step 3. The argument differs slightly according to the
circumstances of the cases considered in Step 1.

In the first case we choose a residue class s (mod a A1D) for which ((as +
b)(As + B), a A1D) = 1 and apply Lemma 4 to the function

gχ(a(a A1n + s)+ b)gχ(A(a A1n + s)+ B).

On the primes for which (p, a A1D) = 1, gχ = 1.
In the second case(s) we adopt the modifications employed in Step 1, noting

that |g(2)| = 1.

Step 4. D divides 6(a, A)(a A)213.

To this end we apply the following result.

LEMMA 6. Let the integers uj > 0, v j , (uj , v j ) = 1, j = 1, 2 satisfy 11 =
u1v2 − u2v1 6= 0. Assume that the primitive Dirichlet character χD satisfies

χD

(
u1k + v1

u2k + v2

)
= c 6= 0

for all k such that (uj k + v j , D) = 1, j = 1, 2, and that there exists a k0 for
which this holds; hence a class k0 (mod D).

Then D | 6(u1, u2)11.

Proof of Lemma 6. Define

χD

(
u1k + v1

u2k + v2

)
= 0 if ((u1k + v1)(u2k + v2), D) > 1.

If D =∏pt‖D pt , then there is a decomposition χD =
∏

pt‖D χpt .
Correspondingly

χD

(
u1k + v1

u2k + v2

)
= χpt

(
u1k + v1

u2k + v2

)
χD1

(
u1k + v1

u2k + v2

)
where D1 = p−t D.

If we set k = k̃ D1 + k0, then (uj (k̃ D1 + k0)+ v j , D1) = 1, j = 1, 2, hence

χD1

(
u1(k̃ D1 + k0)+ v1

u2(k̃ D1 + k0)+ v2

)
= χD1

(
u1k0 + v1

u2k0 + v2

)
6= 0.
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Replacing k̃ by k:

χpt

(
u1(k D1 + k0)+ v1

u2(k D1 + k0)+ v2

)
=
{

c1 6= 0 if (uj (k D1 + k0)+ v j , p) = 1, j = 1, 2,
0 otherwise.

We have reduced ourselves to the case D = pt , with uj , v j replaced by uj D1,
k0uj + v j , j = 1, 2.

Note that D1u1(k0u2 + v2)− D1u2(k0u1 + v1) = D111.
For convenience of exposition, write w j for k0uj + v j , j = 1, 2.
Assume that ps j ‖uj with, without loss of generality, s2 6 s1. Otherwise,

consider χ pt .
If s2 > t we have pt | (u1, u2) and we (temporarily) stop. Otherwise, set

uj = ps j m j , so that p - m j , j = 1, 2. Then

u1 D1k + w1

u2 D1k + w2
= m2(u1 D1k + w1)

m2(u2 D1k + w2)

= m1 ps1−s2 ps2m2 D1k + m2w1

m2(m2 ps2 D1k + w2)

= m1 ps1−s2(m2 ps2 D1k + w2)+ m2w1 − m1 ps1−s2w2

m2(m2 ps2 D1k + w2)

= m1

m2
ps1−s2 + m2w1 − m1 ps1−s2w2

m2(u2 D1k + w2)
.

Since χpt is primitive, for an appropriate Gauss sum ε(χpt )with |ε(χpt )| = pt/2,

χpt

(
u1 D1k + w1

u2 D1k + w2

)
ε(χpt ) =

pt∑
r=1

χ pt (r) exp
(

2π ir
pt

(
u1 D1k + w1

u2 D1k + w2

))
whenever (u2 D1k + w2, p) = 1.

In particular,

ε(χpt )

pt−s2∑′

k=1

χpt

(
u1 D1k + w1

u2 D1k + w2

)
=

pt∑
r=1

χ pt (r)
pt−s2∑′

k=1

exp
(

2π ir
pt

(
u1 D1k + w1

u2 D1k + w2

))
,

(1)
where ′ denotes that summation is confined to terms with (u2 D1k +w2, p) = 1.

The second innersum has the alternative representation

M =
pt−s2∑′

k=1

exp
(

2π ir
pt

(
m1

m2
ps1−s2 + L

u2 D1k + w2

))
where

L = m2(m2w1 − m1 ps1−s2w2), m2m2 ≡ 1 (mod pt ).

Here 1/(u2 D1k + w2) is likewise interpreted as a group inverse (mod pt ).
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For ease of notation we replace s2 by s.
Assume that s > 1. The restriction (u2 D1k+w2, p) = 1 is then automatically

satisfied.
For 1 6 k 6 pt−s , arguing via representations, we map the class u2 D1k +

w2 (mod pt ) onto the class jk (mod pt−s) given by

jk = m2 ps D1k + w2 − w2

ps ,

the inverses taken (mod pt ). Since

w2(m2 ps D1k + w2)(m2 ps D1k + w2 − w2) ≡ m2 ps D1k (mod pt ),

jk is well defined. It is the class

(w2(m2 ps D1k + w2))
−1m2 D1k (mod pt−s),

the group inverse −1 here taken in the reduced residue class group (mod pt−s).
Moreover, if jk1 ≡ jk2 (mod pt−s), 1 6 k1 6 k2 6 pt−s , then

m2 ps D1k1 + w2 − w2 ≡ m2 ps D1k2 + w2 − w2 (mod pt ),

from which k1 ≡ k2 (mod pt−s) rapidly follows. The map is one-to-one and
covers every class (mod pt−s).

In this case

M =
pt−s∑
j=1

exp
(

2π ir
pt

(
m1

m2
ps1−s + L(ps j + w2)

))

= exp
(

2π ir
pt

(
m1

m2
ps1−s + Lw2

)) pt−s∑
j=1

exp
(

2π ir L j
pt−s

)
= 0,

unless pt−s | L . Note that from (1) we may assume that (r, p) = 1.
Hence pt | ps L , pt | (psm2w1− ps1m1w2), i.e., pt | (u1v2−v1u2), and once

more we (temporarily) stop.
Variant. Suppose now that s = s2 = 0, i.e., p - u2. In this case

M =
pt∑′

k=1

exp
(

2π ir
pt

(
u1

u2
+ L

u2 D1k + w2

))
.

Set γ = exp(2π iru1/pt u2). Working within the reduced residue class group
(mod pt ), we introduce a new variable z = u2 D1k + w2. Since z→ z permutes
the group, M has a representation

M = γ
pt∑

z=1
(z,p)=1

exp
(

2π ir Lz
pt

)
,
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a Ramanujan sum with an alternative representation in terms of the Möbius
function:

M = γ
∑

d|(pt ,r L)

µ

(
pt

d

)
d.

If pt−1 - L , then d = ph with h 6 t − 2, µ(pt d−1) = 0 and, from (1),

pt∑′

k=1

χpt

(
u1 D1k + w1

u2 D1k + w2

)
= 0.

Since the summand with k = pt is non-zero, this is impossible. Therefore
pt−1 | L .

If pt | L , then we stop, for once again pt | m2(m2w1 − m1 ps1w2),
pt | (u2w1 − u1w2), i.e., pt | (u1v2 − u2v1). Otherwise, pt−1‖L , and the
Ramanujan sum has value −pt−1.

The fundamental relation (1) becomes

ε(χpt )

pt∑
k=1

χpt

(
u1 D1k + w1

u2 D1k + w2

)
= −pt−1

pt∑
r=1

χ pt (r) exp
(

2π iru1

pt u2

)
= −pt−1χpt

(
u1

u2

)
ε(χpt );

we may cancel the gaussian factors.
Several arguments now present themselves. For example, in absolute value

the left-hand sum is at least pt − 2pt−1, guaranteeing that the prime p is at
most 3.

At this stage, our initial hypothesis implies one of:
(i) pt | (u1, u2);

(ii) pt | (u1v2 − u2v1) if p > 3;
(iii) pt−1 | (u1v2 − v1u2) if p = 2 or 3.

The conclusion of Lemma 6 is now clear.

Completion of Step 4. Once again there are small modifications according to
the cases of Step 1. In the notation for the first case of Step 3,

1 = g
(

a(a A1n + s)+ b
A(a A1n + s)+ B

)
= χ

(
a(a A1n + s)+ b
A(a A1n + s)+ B

)
, χ (mod D),

as long as χ is non-zero. By Lemma 6, D divides 6(a, A)(a A)213.
The remaining cases proceed similarly. Theorem 2 is established. �
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§3. Proof of Theorem 1. The argument is in three steps.
We view a standard character on G as a completely multiplicative function g

with values on the complex unit circle that satisfies g((an+b)/(An+B))= 1 for
all but finitely many positive integers n. This enables us to apply Theorem 2 with
c = 1 and show, in the notation of Constraints, that g must satisfy the following
three conditions:

(i) there is a Dirichlet character χ (mod δ) so that g(p) = χ(p) whenever
(p, δ) = 1,

(ii) g(p)2φ(δ) = 1 if p - (a1, A1); g(ρ)2φ(δ) = 1,
(iii) S(g, χ) = 1,
where

S(g, χ) = g(ρ)
∑

g(d1)

d j | δ∞
(d1,d2) |11

g(d2)θd1,d2(χ),

θd1,d2(χ) =
1

δ[d1, d2]
∑′

n (mod δ[d1,d2])
χ

(
a1n + b1

d1

)
χ

(
A1n + B1

d2

)
and δ is the modulus guaranteed by Theorem 2.

We shall then show that these conditions suffice to determine the dual group of
G, hence G itself. Moreover, individual groups G may be determined recursively.

A characterization of G. Given any character g : G → {z ∈ C, |z| = 1},
Theorem 2 provides a Dirichlet character χ (mod δ) for which condition (i) is
satisfied.

The remarks of Constraints, with application of the Chinese Remainder
theorem, show condition (ii) to be satisfied.

Moreover,∑
n6x

g(an + b)g(An + B)

= g(ρ)
∑

d j | δ∞
(d1,d2) |11

g(d1)g(d2)
∑′

n6x

χ

(
a1n + b1

d1

)
χ

(
A1n + B1

d2

)

where d j | δ∞ denotes that d j is comprised of powers of the primes that divide δ
and the innersum is taken over integers n for which a1n + b1 is divisible by d1
and A1n + B1 by d2. The value of the innermost summand is determined by the
residue class (mod δ[d1, d2]) to which n belongs.

A typical innersum has the uniform bound O(x/max(d1, d2)), and the
asymptotic estimate∑′

n (mod δ[d1,d2])
χ

(
a1n + b1

d1

)
χ

(
A1n + B1

d2

)(
x

δ[d1, d2] + O(1)
)
.

In particular, the sum θd1,d2(χ) is O(max(d1, d2)
−1).
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Noting that ∑
d6y

d | δ∞

1 6
∏
p | δ

([
log y
log p

]
+ 1

)
� (log y)ω

where ω denotes the number of distinct prime divisors of δ, we see that∑
√

y<[d1,d2]6y

|θd1,d2(χ)| � (log y)ω
∑

d | δ∞
d>y1/4

1
d

� (log y)ω
∑
p | δ

∑
pm>y1/4ω

1
pm � (log y)ωy−1/4ω.

Hence

lim
x→∞ x−1

∑
n6x

g(an + b)g(An + B) = g(ρ)
∑

d j | δ∞
(d1,d2) |11

g(d1)g(d2)θd1,d2(χ),

which sum is S(g, χ), and condition (iii) is satisfied.
Conversely, suppose that we choose a χ (mod δ), with δ = 6(a, A)(a A)213,

and set g(p) = χ(p) if (p, δ) = 1. If we can, we next choose the g(p) for p
dividing δ but not (a1, A1) to satisfy g(p)2φ(δ) = 1, g(ρ)2φ(δ) = 1, g(ρ)S(g, χ)
= 1. Note that on some of the prime factors of ρ, the value of g may have been
chosen in an earlier round.

Then the corresponding completely multiplicative function g, with values in
the complex unit circle, satisfies

lim
x→∞ x−1

∑
n6x

g(an + b)g(An + B) = 1.

Denoting g(an + b)g(An + B) by zn for convenience, we note that

x−1
∑
n6x

(1− Re zn)→ 0, x →∞.

Here, if zn 6= 1, z2φ(δ)
n = 1 guarantees that 1 − Re zn > c0 > 0, the value of c0

depending only upon δ.
In particular, those n for which zn 6= 1 have asymptotic density zero.
Given an integer n0 for which a1n0+b1 = w1r1 withw1 comprised of primes

dividing δ, r1 coprime to δ, likewise A1n0 + B1 = w2r2, then for a sufficiently
large k every integer of the class n0 (mod δk) will give rise to integers a1n +
b1, A1n + B1 of the same form, with identical values of the w j and with their
corresponding r j belonging to a respective fixed residue class (mod δ).

Hence

g
(

an + b
An + B

)
= g(ρ)

g(w1)

g(w2)

g(r1)

g(r2)

has a constant value on a non-empty residue class.
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Such a class has positive asymptotic density, hence contains a representative
on which g has the value 1. Thus g has the value 1 on the whole class.

In this way every g((an + b)/(An + B)) = 1, i.e. g is a character on G.

Remarks. The choice of a principal character (mod δ) enables the character g
identically 1 on G, so the conditions (i)–(iii) are consistent.

For a given character χ (mod δ) there can be at most one compatible set of
values for g on ρ and the remaining torsion primes. The ratio of two compatible
values would yield a character on G that is 1 on the primes not dividing δ. In
view of Lemma 4, it would also be 1 on the primes not dividing (a1, A1), hence
on ρ.

Not every Dirichlet character (mod δ) need give rise to a character on G.
This gives a characterization of G in terms of its dual group.
Consideration of the dual of the exact sequence 1 → 0 → Q∗ → G → 1

shows the dual group of 0 to be isomorphic to the quotient of denumerably many
copies of the unit circle, one for each prime, by the dual of G.

Determination of G; practical matters. The function S(g, χ) is given by an
infinite series. In this section it will be shown that it factorizes and each of the
finitely many factors is a polynomial in its associated variable g(p).

Consider a typical sum

∑′

n (mod δ[d1,d2])
χ

(
a1n + b1

d1

)
χ

(
A1n + B1

d2

)
.

Let δ = ∏ j6v `
α j
j , ` j distinct primes, d1 =

∏
j6v `

β j
j , d2 =

∏
j6v `

γ j
j , where

β j = 0, γ j = 0 is possible, but min(β j , γ j ) is bounded by the constraint

`
min(β j ,γ j )

j |11.
Consider the map

n (mod δ[d1, d2])→⊗ n (mod `α j+max(β j ,γ j )

j )

given by
n→

∑
j6v

uj L j ,

where L j ≡ 1 (mod `α j+max(β j ,γ j )

j ), L j ≡ 0 (mod `αr+max(βr ,γr )
r ) if 1 6 r 6 v,

r 6= j , (Chinese Remainder theorem).
Typically a1n + b1 ≡ 0 (mod d1) if and only if a1n + b1 ≡ 0 (mod `β j

j ), i.e.

a1uj + b1 ≡ 0 (mod `β j
j ), 1 6 j 6 v. Similarly if A1n + B1 ≡ 0 (mod d2).

Then

χ

(
a1n + b1

d1

)
=
∏
j6v

χ j

(
a1n + b1

d1

)
,

where χ j is a Dirichlet character (mod `α j
j ).
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In particular,

χ j

(
a1n + b1

d1

)
= χ j

(∑
r6v(a1ur + b1)Lr

d1

)
since

∑
r6v Lr ≡ 1 (mod δ[d1, d2]).

Hence

χ j

(
a1n + b1

d1

)
= χ j

(
a1uj + b1

d1

)
= χ j

(
a1u j + b1

`
β j
j

)
χ j (d1 j )

where d1 j = `−β j
j d1, 1 6 j 6 v; for Lr/d1 is divisible by `α j

j if r 6= j .

Define χ̂ j (`
β j
j ) to be

∏
16r6v,r 6= j χr (`

β j
j ), 1 6 j 6 v, dual analogue of Tate’s

lift of a Dirichlet character to a character on the rational idèles.
The sum S(g, χ) becomes

g(ρ)
v∏

j=1

∑
β j>0
γ j>0

g(`
β j
j )χ̂ j (`

β j
j )g(`

γ j
j )χ̂ j (`

γ j
j )

`
max(β j ,γ j )

j

η j

where

`
α j
j η j = `α j

j η j (β j , γ j ) =
∑′

uj (mod `
α j+max(β j ,γ j )
j )

χ j

(
a1uj + b1

`
β j
j

)
χ j

(
A1uj + B1

`
γ j
j

)
,

it understood that a1uj + b1 ≡ 0 (mod `β j
j ), A1uj + B1 ≡ 0 (mod `γ j

j ), and

`
min(β j ,γ j )

j |11, 1 6 j 6 v.

Since g(`βj ) = g(` j )
β , χβ are periodic in β, period 2φ(δ), a typical innersum

becomes a polynomial in g(` j )χ̂ j (` j ), of degree at most 2φ(δ) − 1, with
coefficients that are linear forms in 2φ(δ)th roots of unity (values of χ ) that in
turn have coefficients that are essentially geometric progressions, indeed rational
numbers.

The values of the g(p), p - (a1, A1), together with that of g(ρ), that fulfill
conditions (ii) and (iii) may therefore be ascertained recursively.

Theorem 1 is established. �

Remark. For any prime ` and integers α > 1, β > 0, γ > 0, the sum

η̃(β, γ ) = `−α
∑

u (mod `α+max(β,γ ))

`β‖(a1u+b1), `
γ ‖(A1u+B1)

1,

i.e. a typical η j with χ j the principal character (mod `), represents the
asymptotic density of the integers n for which `β‖(a1n + b1), `γ ‖(A1n + B1).
In particular, ∑

β>0,γ>0

η̃(β, γ ) = 1.
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In absolute value, each term in the above product representing S(g, χ) does
not exceed 1. In order for |S(g, χ)| = 1 to hold it is necessary and sufficient
that every term in the product have absolute value 1. In particular, each η j must
satisfy |η j (β j , γ j )| = η̃(β j , γ j ) with respect to the appropriate prime ` = ` j .

§4. Further practical matters. Let k be a positive integer. The foregoing
argument reduces the determination of the multiplicative group generated by the
rationals (an + b)/(An + B) with n > k to a calculation in a polynomial ring
over a cyclotomic extension of the rational field.

The following results may accelerate this process.

Example. The groups Q∗/0k attached to the ratios (3n+ 1)/(5n+ 2), n > k,
introduced in the first author’s volume on arithmetic functions and integer
products [8], were there shown, via homomorphisms into the positive reals, to
be finite.

After Theorem 2 each character g on Q∗/0k coincides, on the primes p that
do not divide 30, with a product of Dirichlet characters χ2χ3χ5 to moduli 2, 32

and 52 respectively.
For χ = χ3, a typical sum

η(β, γ ) =
∑′

u (mod 32+max(β,γ ))

3β‖(3u+1), 3γ ‖(5u+2)

χ

(
3u + 1

3β

)
χ

(
5u + 2

3γ

)

necessarily has β = 0 and, if 5u0 + 2 ≡ 0 (mod 3γ ) with γ > 2, u = u0 + 3γ k,
a representation

χ(3u0 + 1)
32∑

k=1

χ(5k + 3−γ (5u0 + 2))

that vanishes unless the character χ3 is principal.
The character χ5 is likewise principal.
The character g on Q∗ is principal on all primes save possibly 2, 3 and 5, and

by Lemma 4 on these also.
The groups Q∗/0k are trivial. Each positive rational r has infinitely many

representations

r =
∏

j

(
3n j + 1
5n j + 2

)ε j

, ε j = ±1,

with the n j as large as desired. In the notation of the preface to the volume [8],
we may take v = 1.

Rationalizing the denominators establishes the following.
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Multiplicity lemma. Let the integers a j > 0, b j , j = 1, 2, satisfy10 = a1b2−
a2b1 6= 0, and the integers s, n, n′, (s, (a2n + b2)(a2n′ + b2)) = 1.

Then
a1n + b1

a2n + b2
≡ a1n′ + b1

a2n′ + b2
(mod s)

if and only if 10(n − n′) ≡ 0 (mod s).

Example. Consider the group Q∗5/0, where Q∗5 denotes the multiplicative
positive rationals not divisible by 5 and 0 its subgroup generated by all but
finitely many fractions of the form (5n + 1)/(5n − 1). It was established in
the first author’s volume [8] that Q∗5/0 is finite. Reduction (mod 5) shows 2 not
to belong to 0, hence that Q∗5/0 is not trivial.

According to the main result of the present paper, on the primes that do
not divide 30 each character g on Q∗5/0 coincides with a product of Dirichlet
characters, χ2χ3χ5, to moduli 24, 3 and 58 respectively.

For χ = χ3, a typical sum

η(β, γ ) =
∑′

u (mod 31+max(β,γ ))

3β‖(5u+1), 3γ ‖(5u+2)

χ

(
5u + 1

3β

)
χ

(
5n − 1

3γ

)

with γ = 0, β > 1, if 5u0 + 1 ≡ 0 (mod 3β), has a representation

χ3(5u0 − 1)
3∑

k=1

χ3(5k + 3−β(5u0 + 1))

that vanishes unless χ3 is principal.
A similar argument shows that χ2 is principal.
It follows from the multiplicity lemma that the ratios (30n + 1)/(30n − 1)

cover 57 distinct residue classes (mod 58), five times each. From what we have
proved so far, if χ = χ5 has order t , then 57 6 t−1φ(58); t = 1, 2 or 4.

Since 3 is a primitive root for all reduced residue class groups (mod 5r ),
r = 1, 2, . . . , and the representative exponents of a given integer (mod 5) and
(mod 58) differ by a multiple of 4, we may assume χ to be defined (mod 5).
Then χ(3)2 = χ(32) = χ(−1) = 1, and χ5 has order 1 or 2.

An application of Lemma 4 to gχ5 shows that g coincides with χ5 on the
primes 2 and 3.

The group Q∗/0 generated by the ratios (5n+1)/(5n−1) has the single free
generator, 5, and a torsion group of order 2 determined by its dual through the
quadratic Dirichlet character (mod 5).

There are infinitely many representations

572 =
∏

j

(
5n j + 1
5n j − 1

)ε j

, ε j = ±1,

but no such representation is available to 57 itself.

https://doi.org/10.1112/S0025579317000304 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579317000304


938 P. D. T. A. ELLIOTT AND J. KISH

Note that the group G = Q×5 /0, with Q×5 the multiplicative rationals prime
to 5, 0 its subgroup generated by the ratios (5n − 1)/(−5n + 1), n > k, has
order 4.

In the basic condition (iii) S(g, χ) is replaced by g(−1)S(g, χ) where g is
a unitary character on Q∗5 extended to Q×5 by setting g(−1) = 1 or −1. As a
consequence the dual group of G is generated by a quartic character (mod 5)
with g(−1) = −1.

There is a representation

574 =
∏

j

(
5n j + 1
−5n j + 1

)ε j

, n j > k,

but no similar representation for 572.

Remark. A short elementary proof that a complex-valued multiplicative
function constant on all sufficiently large members of a progression an + b,
a > 0, coincides with a Dirichlet character (mod a), on the integers prime to a,
may be found as [8, Lemma 19.3, pp. 334–335].

§5. Further results. Two dimensional product representations. Let Q2 =
Q∗ ⊕Q∗ be the direct sum of two copies of the multiplicative positive rationals,
02 its subgroup generated by the pairs (an+b)⊕(An+B), n > k. Simultaneous
representations of the form

r1 =
m∏

j=1

(an j + b)ε j , r2 =
m∏

j=1

(An j + B)ε j , ε j = ±1,

may be studied through the offices of the quotient group Q2/02. A typical
character on that group amounts to a pair of completely multiplicative functions
g1, g2, with values in the complex unit circle, and that satisfy

g1(an + b)g2(An + B) = 1, n > k.

We may reduce this two-dimensional problem to a one-dimensional problem
by means of the following argument, given in an equivalent form in [8, Ch. 19].
For ease of notation we shall assume, as we clearly may, that b > 0, B > 0.

Replacing n by bBn,

g1(aBn + 1)g2(Abn + 1) = c1 6= 0.

Replacing n by (aB + 1)n + 1,

g1(aBn + 1)g2(Ab[(aB + 1)n + 1] + 1) = c2 6= 0.

Eliminating between these relations,

g2(Ab(aB + 1)n + 1)g2(Abn + 1) = c3 6= 0,
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to which we can apply Theorem 2. The functions g2 and g1 are essentially
Dirichlet characters and we may follow the treatment for a single function.

Variant proof of Theorem 1. There is an alternative procedure in Steps 2 and 3
that avoids appeal to the results of Step 1 and may more readily generalize to
higher dimensional problems. Once Step 2 guarantees the existence of a real α
for which the series

∑
p−1(1 − Re g(p)k p−iα) converges, Lemma 5 is applied

to the completely multiplicative function h defined by p→ h(p) = g(p)k p−iα .
We arrive at an asymptotic estimate

lim
x→∞ x−1

∑
n6x

h(an + b)h(An + B) =
∏

p

wp

where the wp may now depend upon the parameter α. Following the argument
of Step 3, g(p)k = piα on all but finitely many primes.

Bearing in mind the two cases considered in Constraints, typically, on a
suitable residue class (g(an+b)g(An+B))k will coincide with ((an+b)/(An+
B))iα .

A simple analogue of Theorem 2 then suffices to guarantee that α = 0.

LEMMA 7. If integers uj > 0, v j , j = 1, 2, 1 = u1v2 − u2v1 6= 0, satisfy(
u1n + v1

u2n + v2

)iα

= c

for all n sufficiently large, then α = 0 and c = 1.

Proof of Lemma 7. Since (uj n+v j )
iα = (uj n)iα(1+iαv j (uj n)−1+O(n−2)),

j = 1, 2,

c =
(

u1

u2

)iα(
1+ iα1

u1u2n
+ O

(
1
n2

))
, n→∞.

This forces (u1/u2)
iα = c, α = 0, c = 1 in turn.

We may now continue as before until reaching the section on constraints. To
once again avoid applying Step 1, choice of an appropriate residue class for n
will, for example, for a given prime p arrange infinitely many representations

1 = g
(

an + b
An + B

)
= g(p)χ

(
an + b

p(An + b)

)
with p‖(an+b), (p−1(an+b)(An+B), δ) = 1, where χ is a Dirichlet character
(mod δ).

In particular, g(p) will be a value of the character χ , and g(p)k = 1 with k
the order of χ . �

Altogether, this variant argument obviates appeal to the Fourier analysis,
involving estimates for Kloosterman sums, that is given in [8, Chs 2 and 4].
It does not deliver, for the moment at least, the upper bound on the number of
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terms sufficient to represent group theoretically a typical positive rational, r ,
or the underlying recursive argument by which such a bound is obtained there.
Moreover, the attendant inequalities on the additive functions in [8, Ch. 10], are
strongly localized.

§6. Closing remarks (by the first author). In anticipation of the validity of an
appropriate version of the conjecture that correlations of multiplicative functions
with values in the complex unit circle could only satisfy

lim sup
x→∞

x−1
∣∣∣∣∑
n6x

g1(an + b)g2(An + B)
∣∣∣∣ > 0, 1 6= 0,

if there are reals τ j and Dirichlet characters χ j so that the series∑
p−1(1− Re g j (p)χ j (p)piτ j ), j = 1, 2,

taken over the prime numbers converge, a particular case of Conjecture II
mentioned in the Introduction, Jonathan Kish and I were already in possession
of a detailed version of Step 4 in the proof of Theorem 2 by mid 2010—putting
the cart before the horse is sometimes helpful.

The conjecture has a root in the probabilistic theory of numbers. In the early
1970s, when studying asymptotic behaviour of additive arithmetic functions with
unbounded renormalizations:

[x]−1
∑

1
n6x

f (n)−α(x)6zβx

, x(real)→∞.

I felt that the Erdős–Kac realization of an additive function as a sum of
independent random variables, in general not valid, might be restored provided
a suitable (moving) obstruction were removed from f .

Where to find such an obstruction? In the event, cf. [5, 6], perturbation of
the underlying probability models, somewhat in the style of the perturbation
of planetary orbits within the circle of ideas of the Hamilton–Jacobi equation,
led to a satisfactory outcome, the renormalizing functions α(x), β(x) classified
according to their behaviour under the group of transformations x → x y , y > 0,
fixed.

The same point of view could be applied to frequencies involving the sums
f1(an + b)+ f2(An + B) of two (or more) possibly distinct additive functions,
aB − Ab 6= 0, cf. [7].

The respective characteristic functions of the corresponding frequencies have
the form

[x]−1
∑
n6x

g(n), [x]−1
∑
n6x

g1(an + b)g2(An + B),

where the functions g(n) = exp(i t f (n)), g j (n) = exp(i t f j (n)), t , t j real, are
multiplicative.
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Besides the many experiences in probabilistic number theory, there is the
further experience of the Hardy–Ramanujan–Littlewood circle method. One may
view that method as resting on the approximation of continuous characters
α → exp(2π ikα), k = 0 ± 1,±2, . . . , on the group R/Z dual to the additive
group of integers, by the discrete characters a/q → exp(2π ika/q), (usually
effected with (a, q) = 1) on the additive (reduced) group Z (mod qZ).

For this and other reasons the Dirichlet characters suggested themselves as
obstructions in the dual group of the positive rationals under multiplication, the
direct product of denumerably many copies of R/Z, and in which, in a certain
sense, they are dense, cf. [16, Ch. 12, Exercise 7]. The role of reduced rationals
a/q is then played by primitive characters.

Whilst the Stone–Weierstrass theorem might offer other approximating
functions, the connections between special functions and group representations
also suggests the application of associated group characters.

Conjecture III of [14, p. 65], that there is a positive absolute constant c such
that

x−1
∑
n6x

g(n)h(n + 1)

�
(

T−1 + exp
(
−min

χ
min
|τ |6T

∑
p6x

p−1(1− Re g(p)χ(p)piτ )

))c

uniformly for x > 2, and multiplicative functions g, h with values in the complex
unit disc, modified by the requirement that the characters χ be to moduli not
exceeding T , as noted in the author’s Cambridge Tract [16, Ch. 34, p. 315], may
well be applied to g(an + b)h(An + B), aB − Ab 6= 0.

It is clear that some restriction must be made upon the size of the defining
moduli of the characters χ , since the application of Kronecker’s theorem that
shows the χ to be dense in the dual of Q∗ for a given value of x shows the
minimum over χ in Conjecture III to be arbitrarily close to zero.

Although the ultimate aim was for a fixed obstruction, experience in
Probabilistic Number Theory showed that the variable τ might be allowed to
float far past x in size yet be retrieved, cf. [10, 19]. Moreover, cf. [9, 13],
I was aware that for considerable ranges of τ and the modulus D, at most
one generalized character n → χ(n)niτ , χ (mod D), could be near to a given
multiplicative function. To this extent the obstruction would be isolated (just as
it is in the case of a single renormalized additive function).

Ultimately, one would expect the study of quotient groups of Q∗ to embrace
integration over appropriate subgroups of the dual group of Q∗.

An extensive survey of problems and results attached to many dimensional
product representations of rationals by the values of polynomials on the integers
or on the primes, together with a discussion of their attendant groups and Q∗-
character sums, may be found in [18].
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