
Proceedings of the Edinburgh Mathematical Society (2021) 64, 373–407

doi:10.1017/S0013091521000201

FOURIER RESTRICTION IN LOW FRACTAL DIMENSIONS

BASSAM SHAYYA

Department of Mathematics, American University of Beirut, Beirut, Lebanon
(bshayya@aub.edu.lb)

(Received 30 October 2020; first published online 30 April 2021)

Abstract Let S ⊂ Rn be a smooth compact hypersurface with a strictly positive second fundamental
form, E be the Fourier extension operator on S, and X be a Lebesgue measurable subset of Rn. If X
contains a ball of each radius, then the problem of determining the range of exponents (p, q) for which
the estimate ‖Ef‖Lq(X) � ‖f‖Lp(S) holds is equivalent to the restriction conjecture. In this paper, we
study the estimate under the following assumption on the set X: there is a number 0 < α ≤ n such
that |X ∩ BR| � Rα for all balls BR in Rn of radius R ≥ 1. On the left-hand side of this estimate, we
are integrating the function |Ef(x)|q against the measure χX dx. Our approach consists of replacing
the characteristic function χX of X by an appropriate weight function H, and studying the resulting
estimate in three different regimes: small values of α, intermediate values of α, and large values of α.
In the first regime, we establish the estimate by using already available methods. In the second regime,
we prove a weighted Hölder-type inequality that holds for general non-negative Lebesgue measurable
functions on Rn and combine it with the result from the first regime. In the third regime, we borrow
a recent fractal Fourier restriction theorem of Du and Zhang and combine it with the result from the
second regime. In the opposite direction, the results of this paper improve on the Du–Zhang theorem in
the range 0 < α < n/2.
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1. Introduction

Let S be a smooth compact hypersurface in Rn with a strictly positive second fundamental
form and σ be the surface area measure on S. The extension operator E = ES on S is
defined as

Ef(x) = ESf(x) = f̂ dσ(x) =
∫

S

e−2πix·ξf(ξ) dσ(ξ)

for f ∈ L1(S) = L1(σ). The restriction conjecture in harmonic analysis asserts that the
operator E is bounded from Lp(S) to Lq(Rn) whenever

q >
2n
n− 1

and
n− 1
p

+
n+ 1
q

≤ n− 1. (1)
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This conjecture is proved in the plane but is largely open in higher dimensions.
There are two important sets of exponents (p, q) satisfying (1): {(2, q) : q ≥ (2n+

2)/(n− 1)} and {(∞, q) : q > 2n/(n− 1)}. For the first set of exponents, the restriction
conjecture is known to be true in all dimensions n ≥ 2. In other words, the estimate

‖Ef‖Lq(Rn) � ‖f‖L2(S) (2)

holds (uniformly in f) for q ≥ (2n+ 2)/(n− 1). This result is known in the literature as
the Tomas–Stein restriction theorem.

For the second set of exponents, there are only partial results. We know that the
estimate

‖Ef‖Lq(Rn) � ‖f‖L∞(S) (3)

holds for q > 13/4 when n = 3 (see [8]), q > (14/5) − (2/416515) when n = 4 (see [3,
23]), q > 2(3n+ 1)/(3n− 3) when n ≥ 5 is odd, and q > 2(3n+ 2)/(3n− 2) when n ≥ 6
is even (see [9, 10]). (For a recent improvement in R3, see [20]; and in Rn, n ≥ 4, see [12].)

We also refer the reader to [13, 17] for the full range of p and q exponents corresponding
to Guth’s q > 13/4 result in [8].

Suppose n ≥ 1 and 0 < α ≤ n. For Lebesgue measurable functions H : Rn → [0, 1], we
define

Aα(H) = inf
{
C :

∫
B(x0,R)

H(x) dx ≤ CRα for all x0 ∈ Rn and R ≥ 1
}
,

where B(x0, R) denotes the closed ball in Rn of centre x0 and radius R. We say H is a
weight of (fractal) dimension α if Aα(H) <∞. We note that Aβ(H) ≤ Aα(H) if β ≥ α,
so we are not really assigning a dimension to the function H; the phrase ‘H is a weight
of dimension α’ is merely another way for us to say that Aα(H) <∞. (The motivation
for referring to α as a fractal dimension comes from § 4 and § 8.

We are interested in weighted restriction estimates of the form

‖Ef‖Lq(H dx) � Aα(H)1/q‖f‖Lp(S) (4)

that hold uniformly in f and H. In other words, the implicit constant in (4) is allowed to
depend on the exponents p and q, the dimensions α and n, and the surface S; but must
be independent of the functions f on S and the weights H on Rn. We shall refer to (4)
as a weighted Lp-based estimate.

One of the main goals of this paper is to prove the following theorem, and then use it in
Rn, n ≥ 2, to obtain new results concerning weighted L2-based and L∞-based restriction
estimates.

For Lebesgue measurable functions F : Rn → [0,∞), we define

MαF =
(

sup
H

1
Aα(H)

∫
F (x)αH(x) dx

)1/α

,

where H ranges over all non-zero weights on Rn of dimension α. We prove the following
weighted Hölder-type inequality that might be of independent interest.
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Theorem 1.1. Suppose n ≥ 1 and 0 < β < α ≤ n. Then

MαF ≤MβF (5)

for all non-negative Lebesgue measurable functions F on Rn.

Before we present the rest of our results, we give a couple of examples that are meant
to provide the reader with a quick overview of the main theme of the paper concerning
L2-based estimates. In both examples, which take place in the plane, S will be the unit
circle.

Consider the set X = {(x, y) ∈ R2 : x > 0 and 0 ≤ y ≤ x−1/4}. It is easy to see that
the characteristic function χX is a weight on R2 of dimension 3/4. We want to determine
the best range of exponents q for which the following restriction estimate holds:

‖Ef‖Lq(X) � ‖f‖L2(S). (6)

To every R > 1, there is a function fR on S such that ‖fR‖L2(S) � R−1/4 and
|EfR| � R−1/2 on the rectangle [0, R] × [0,

√
R]. The intersection of this rectangle with

X contains the rectangle [0, R] × [0, R−1/4], and hence ‖EfR‖Lq(X) � R(−1/2)+(3/(4q)).
So the exponent q in (6) must satisfy (−1/2) + (3/(4q)) ≤ −1/4, and so a necessary con-
dition for (6) to hold is q ≥ 3, which is far from the sufficient condition q ≥ 6 guaranteed
by (2). Even the L∞-based estimate (3) only gives the sufficient condition q > 4 in the
plane.

In the second example, we consider the set Y = ∪∞
l=1R × [l2, 1 + l2], and we observe

that the characteristic function χY is a weight on R2 of dimension 3/2. Again, we want
to determine the best range of exponents q for which the following restriction estimate
holds:

‖Ef‖Lq(Y ) � ‖f‖L2(S). (7)

For R > 1, let fR be the same function on S that was defined during the first example.
Then |EfR| � R−1/2 on every rectangle [0, R] × [l2, 1 + l2] with l2 ≤ √

R. Since there are
∼ R1/4 such rectangles, we see that ‖EfR‖Lq(Y ) � R(−1/2)+(5/(4q)). So the exponent q in
(7) must satisfy (−1/2) + (5/(4q)) ≤ −1/4, and so a necessary condition for (7) is q ≥ 5,
which is again far from the sufficient condition q ≥ 6 guaranteed by (2).

The results of this paper will show that (6) and (7) indeed hold for q > 3 and q > 5,
respectively. As it turns out, we can establish these sharp (up to the endpoints q = 3 and
q = 5) estimates on X and Y as follows.

We first prove a weighted restriction estimate

‖Ef‖Lq1 (H dx) � Aβ(H)1/q1‖f‖L2(S)

that holds whenever 0 < β < 1/2 and q1 > 2, and then combine it with the weighted
Hölder-type inequality of Theorem 1.1 to conclude that (6) holds for q > 3. In doing so,
we realize that the same argument shows that the estimate

‖Ef‖Lq2 (H dx) � Aα(H)1/q2‖f‖L2(S)

holds whenever 1/2 ≤ α ≤ 1 and q2 > 4α. Combining the last estimate with a corollary
(see Corollary 4-A) of the fractal restriction theorem of Du and Zhang [4], we see that
(7) holds for q > 5. For more details, we refer the reader to Theorem 2.1 and § 3.4.
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The strategy that we explore in this paper of proving restriction estimates on specific
sets, such as the sets X and Y in the above examples, by first proving restriction esti-
mates for all weights H of low fractal dimensions and then upgrading the estimates to
higher fractal dimensions is reminiscent of the polynomial method of [8, 9] that upgrades
restriction estimates from low algebraic dimensions to higher ones.

When it comes to weighted L∞-based estimates, i.e. L∞(S) → Lq(H dx) estimates, the
situation becomes much harder, and we will postpone that discussion to the next section.

2. Results and methodology

Any restriction estimate ‖Ef‖Lq(Rn) � ‖f‖Lp(S) is equivalent to the weighted estimate
‖Ef‖Lq(H dx) � An(H)1/q‖f‖Lp(S). In fact, taking H = 1, we see that the latter estimate
implies the former. On the other hand, since the surface S is compact, we can find a
C∞

0 function φ on Rn that satisfies |φ| ≥ 1 on S and φ̂ is compactly supported. Given
f ∈ Lp(S), we define g ∈ Lp(S) by g = f/φ, and we observe that |g| ≤ |f |, Ef = (Eg) ∗ φ̂,
and |Ef |q � |Eg|q ∗ |φ̂|. The non-weighted estimate applied to g then tells us that∫

|Ef(x)|qH(x) dx �
∫

|Eg(y)|q
∫

|φ̂(x− y)|H(x) dxdy

� An(H)
∫

|Eg(y)|q dy � An(H)‖g‖q
Lp(S) ≤ An(H)‖f‖q

Lp(S).

In particular, the Tomas–Stein estimate (2) has the following weighted version:∫
|Ef(x)|qH(x) dx � Aα(H)‖f‖q

L2(S) (8)

for 0 < α ≤ n and q ≥ (2n+ 2)/(n− 1), where we have used the fact that An(H) ≤
Aα(H).

Remark 2.1. For establishing (2) (and hence (8)), the assumption requiring the sur-
face S to have a strictly positive second fundamental form can be relaxed to just requiring
S to have a nowhere vanishing Gaussian curvature.

With the restriction conjecture being open, it is therefore natural to investigate the
situation when α < n. This has been the subject of two recent papers [5, 17]. Both papers
employed Guth’s polynomial partitioning method from [8, 9].

We would like to mention at this point that weighted estimates of the form∫
B(0,R)

|Ef(x)|qH(x) dx ≤ CAα(H)Rβ‖f‖q
L2(S) (R ≥ 1),

where we integrate over the ball B(0, R) instead of Rn and allow a positive power of
the radius R on the right-hand side of the estimate, have been studied extensively in
the literature due to their important applications in studying decay properties of Fourier
transforms of measures and, consequently, Falconer’s conjecture concerning distance sets
in geometric measure theory. For such results, we refer the reader to [4–7, 11, 14–17,
21] and the references contained within these papers. The results of the present paper
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do not lead to any progress in the direction of Falconer’s conjecture. In fact, and as we
mentioned in the paper’s abstract and introduction, our main concern is to study the
restriction problem on subsets X of Rn with Lebesgue measure |X| = ∞ and satisfying
the dimensionality property: |X ∩BR| � Rα for all balls BR in Rn of radius R ≥ 1. We
will, however, use known facts about the decay properties of the spherical means of Fourier
transforms of measures to establish some of the lower bounds in Theorems 2.2 and 2.3.

As the title of the present paper indicates, we are here mostly interested in studying
the restriction problem in low fractal dimensions. In fact, this paper proves new weighted
L2-based restriction estimates, i.e. L2(S) → Lq(H dx) estimates, in Rn, n ≥ 3, for 0 <
α ≤ (n+ 1)/2 (see Theorem 2.1). In particular, if X is as in the previous paragraph, then,
taking H to be the characteristic function of X, we get new L2(S) → Lq(X) restriction
estimates.

In the plane, we prove new weighted L2-based restriction estimates in the full range
0 < α < 2 of fractal dimensions. This is one important aspect of the approach we follow,
because the results of [5, 17] do not include the plane.

In the regime 0 < α ≤ n/2, the best known weighted L2-based restriction estimates
were obtained in [17] for n = 3, and in [5] for n ≥ 3.

The authors of [5] proved that in Rn, n ≥ 3, to every ε > 0 there is a constant Cε such
that ∫

B(0,R)

|Ef(x)|2n/(n−1)H(x) dx ≤ CεR
εAα(H)‖f‖2n/(n−1)

L2(S) (9)

whenever f ∈ L2(S), 0 < α ≤ max[n/2, 2], H is a weight of dimension α, and R ≥ 1. (See
[5, Theorem 1.8 and Remark 1.10].) In (9), the constant Cε is only allowed to depend on ε,
α, n, and S. Estimates such as (9), where one integrates Ef over a ball of radius R instead
of the entire Rn, are often referred to in the literature as local restriction estimates. Also,
to emphasize the fact that the function Ef is being integrated over Rn, estimates such
as (3) and (8) are often called global restriction estimates.

In [17], (9) was proved in R3, but only for 0 < α ≤ 3/2 and with Aα(H) replaced by
max[Aα(H), Aα(H)1/4].

Remark 2.2. In [5], weights were defined in a slightly different way than in this paper.
For 0 < α ≤ n, the authors of [5] denoted by Fα,n the set of all non-negative measurable
functions H on Rn that satisfy

∫
B(x0,R)

H(x) dx ≤ Rα for all x0 ∈ Rn and R ≥ 1, and
wrote (9) as: ∫

B(0,R)

|Ef(x)|2n/(n−1)H(x) dx ≤ CεR
ε‖f‖2n/(n−1)

L2(S) (10)

whenever f ∈ L2(S), 0 < α ≤ n/2, H ∈ Fα,n, and R ≥ 1. The estimates (9) and (10) are
equivalent. Clearly, (10) implies (9). To establish the reverse implication, given H ∈ Fα,n

and N ∈ N, we let HN = N−1χ{x∈Rn:H(x)≤N}H, observe that Aα(HN ) ≤ N−1, apply (9)
with HN , send N to infinity, and arrive at (10) via the monotone convergence theorem.

The polynomial method for proving restriction estimates that was developed in [8, 9]
in the non-weighted setting, and adapted in [5, 17] to the weighted setting, cannot prove
restriction estimates for exponents q < 2n/(n− 1). In fact, the polynomial method has
a key induction argument in the non-algebraic (or cellular) case in which the condition
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q ≥ 2n/(n− 1) is crucial for closing the induction. Since one naturally expects q to go
below 2n/(n− 1) as α becomes smaller (and, as one learns from Theorem 2.1, turns out
to indeed be the case), the polynomial method does not appear to be of much help in
handling the 0 < α < n/2 case.

Also, the polynomial method proves local restriction estimates. In the non-weighted
setting, this is not a serious limitation, because one can turn local restriction estimates
into global ones by using Tao’s ε-removal lemma from [19]. In the weighted setting,
however, the ε-removal lemma can only be applied in some special cases (see [17, § 2]).

In this paper, we prove global weighted L2-based restriction estimates, and we manage
to go below the 2n/(n− 1) threshold (when 0 < α < n/2) as follows. We divide 0 < α ≤ n
into three regimes: 0 < α < (n− 1)/2, (n− 1)/2 ≤ α ≤ n/2, and n/2 < α ≤ n.

In the first regime, we prove an L2(S) → Lq(H dx) restriction estimate that holds for
all q > 2, and which is sharp up to the endpoint q = 2. In this part of the proof, we use
ideas from Bourgain’s paper [2] to utilize the decay we have on the Fourier transform of
the surface measure σ on S.

In the second regime, we prove an L2(S) → Lq(H dx) restriction estimate that holds
for all q > 4α/(n− 1). To obtain this result, we combine the result that we have obtained
in the first regime with a corollary of Theorem 1.1 (see Corollary 2.1).

Once we have established our restriction estimates in the regime (n− 1)/2 ≤ α ≤ n/2
via Corollary 2.1, we combine them with the fractal restriction theorem of Du and Zhang
[4] to obtain new L2(S) → Lq(H dx) estimates in the regime n/2 < α ≤ (n+ 1)/2 for n ≥
3, and n/2 < α < n for n = 2. As will become apparent during the proof of Theorem 2.1,
in the plane we will able to use the full strength of the theorem of Du and Zhang, but in
Rn, n ≥ 3, we will need to weaken the Du–Zhang theorem before we can combine it with
the estimates from the second regime.

In the opposite direction, it turns out that our L2-based estimates actually improve on
the fractal restriction theorem of [4] when 0 < α < n/2 (see Corollary 4.1).

Here are the main results of this paper concerning L2-based estimates.

Theorem 2.1. Suppose n ≥ 2 and S is a smooth compact hypersurface in Rn with a
strictly positive second fundamental form. Then∫

|Ef(x)|qH(x) dx � Aα(H)‖f‖q
L2(S)

for all functions f ∈ L2(S) and weights H on Rn of dimension α whenever

q >

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if 0 < α < (n− 1)/2,
4α/(n− 1) if (n− 1)/2 ≤ α ≤ n/2,
2α+ 2 if n = 2 and 1 < α < 2,
(2n/(n− 1)) + 2 − (n/α) if n ≥ 3 and n/2 < α ≤ (n+ 1)/2.

We remark to the reader that the q > (2n/(n− 1)) + 2 − (n/α) result of Theorem 2.1
is in fact true for (n− 1)/2 ≤ α ≤ n, but in the regime (n+ 1)/2 < α < n it becomes
inferior to the estimate in Proposition 6.2 that we state and prove in § 6, and at α = n it
becomes inferior to the Tomas–Stein estimate (8).
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The reason for not stating Proposition 6.2 here is due to the fact its proof does not
follow the strategy outlined above. Instead, the proof of Proposition 6.2 combines the
Du–Zhang estimate from [4] with the method that Bourgain developed in [2] to upgrade
local restriction estimates to global ones.

The assumption that the surface S has a strictly positive second fundamental form is
only needed for the q > 2α+ 2 and q > (2n/(n− 1)) + 2 − (n/α) results of Theorem 2.1
(because of the need to use the fractal restriction theorem of [4]). For the other two
results, we only need S to have a nowhere vanishing Gaussian curvature, as will become
clear during the proof of Theorem 2.1 (see also Remark 2.1 and Proposition 6.1).

The ranges of the exponent q in Theorem 2.1 are all sharp (up to the endpoints) in
R2. In Rn, n ≥ 3, we are only able to show that the q > 2 range is sharp (again up to the
endpoint). These results are detailed in the following theorem.

Theorem 2.2. Let S be the unit sphere in Rn. Suppose that to every ε > 0 there is a
constant Cε such that∫

B(0,R)

|Ef(x)|qH(x) dx ≤ CεR
εAα(H)‖f‖q

L2(S)

for all functions f ∈ L2(S), weights H on Rn of dimension α, and radii R ≥ 1. Then

q ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if n ≥ 3 and 0 < α ≤ n− 2,
(2α+ 2)/(n− 1) if n ≥ 2 and n− 2 < α ≤ n,

2 if n = 2 and 0 < α < 1/2,
4α if n = 2 and 1/2 ≤ α ≤ 1.

Before starting the discussion of weighted L∞-based estimates, we make a couple of
definitions and state a corollary of Theorem 1.1.

For 0 < α ≤ n and 1 ≤ p ≤ ∞, we define Q(α, p) to be the infimum of all numbers
q > 0 such that the following holds: there is a constant C such that∫

|Ef(x)|qH(x) dx ≤ CAα(H)‖f‖q
Lp(S)

for all functions f ∈ Lp(S) and weights H on Rn of dimension α. The constant C is
allowed to depend on n, α, p, and q; but, of course, not on f or H.

We also define Qloc(α, p) to be the infimum of all numbers q > 0 such that the following
holds: to every ε > 0 there is a constant Cε such that∫

B(0,R)

|Ef(x)|qH(x) dx ≤ CεR
εAα(H)‖f‖q

Lp(S)

for all functions f ∈ Lp(S), weights H on Rn of dimension α, and radii R ≥ 1. The
constant Cε is allowed to depend on ε, n, α, p, and q.

For applications in the Fourier restriction context, it will be convenient to state the
following corollary of Theorem 1.1.
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Corollary 2.1. Suppose n ≥ 2 and 0 < β < α ≤ n. Then

Q(α, p)
α

≤ Q(β, p)
β

and
Qloc(α, p)

α
≤ Qloc(β, p)

β
.

In view of the fact that Corollary 2.1 holds for all 1 ≤ p ≤ ∞, the strategy we outlined
above for deriving restriction estimates by breaking 0 < α ≤ n into different regimes works
as well for L∞-based estimates as it did for L2-based estimates. But, unlike the L2-based
situation, we are unable to prove a favourable L∞-based estimate for small α. In fact,
establishing a local L∞(S) → L1(χB(0,R)H dx) restriction estimate for 0 < α < (n− 1)/2
would imply (via Corollary 2.1) a local L∞(S) → L2n/(n−1)(B(0, R)) estimate, which
would essentially solve the restriction problem in Rn. So it becomes natural to investigate
if such an estimate is feasible. For example, could Qloc(α,∞) → 0 as α→ 0? The next
theorem tells us that Qloc(α,∞) ≥ (n− 1)/n for small α, but proving this lower bound
turned out to be much harder than the author had initially expected.

Theorem 2.3. Let S be the unit sphere in Rn. Then

Qloc(α,∞) ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(n− 1)/n if n ≥ 3 and 0 < α ≤ (n− 1)2/(2n),
2α/(n− 1) if n ≥ 3 and (n− 1)2/(2n) ≤ α ≤ n,

1/2 if n = 2 and 0 < α ≤ 1/6,
3α if n = 2 and 1/6 ≤ α ≤ 1,
α+ 2 if n = 2 and 1 ≤ α ≤ 2.

The proofs of the first and last inequalities in Theorem 2.3 (as well as the first inequality
in Theorem 2.2) involve some geometric measure theory. In particular, the last inequality
depends on a theorem of Bennett and Vargas [1] about the decay of the L1 circular means
of Fourier transforms of measures.

The rest of the paper is organized as follows. In the next section, we give some inter-
esting examples. In § 4, we discuss the fractal restriction theorem of Du and Zhang [4]
and show how Theorem 2.1 improves on it when 0 < α < n/2. Section 5 is dedicated to
the proofs of Theorem 1.1 and Corollary 2.1. Section 6 proves estimates in the regimes
0 < α < (n− 1)/2 and (n+ 1)/2 < α < n. The last four sections of the paper are the
proofs of Theorems 2.1–2.3.

3. Examples

3.1. Restriction estimates in neighbourhoods of algebraic varieties

Let n ≥ 2, Z be a real algebraic variety in Rn of dimension k that is defined by poly-
nomials of degree at most D, and Nρ(Z) be the ρ-neighbourhood of Z. Then a theorem
of Wongkew [22] tells us that

|Nρ(Z) ∩BR| ≤ Cn(Dρ)n−kRk

for any ball BR ⊂ Rn of radius R > 0, where Cn is a constant that depends only on n. This
inequality implies that the characteristic function ofNρ(Z) is a weight on Rn of dimension
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k. Moreover, Ak(χNρ(Z)) ≤ Cn(Dρ)n−k. Therefore, if n ≥ 3 and 1 ≤ k ≤ (n+ 1)/2, then
Theorem 2.1 applies and tells us that∫

Nρ(Z)

|Ef(x)|q dx � (Dρ)n−k‖f‖q
L2(S)

for all f ∈ L2(S) whenever

q >

{
max[2, 4k/(n− 1)] if 1 ≤ k ≤ n/2,
(2n/(n− 1)) + 2 − (n/k) if n/2 < k ≤ (n+ 1)/2.

Furthermore, if n = 2 and Z is the zero set of a polynomial P in two real variables of
degree D ≥ 1, then Theorem 2.1 gives the estimate∫

Nρ(Z)

|Ef(x)|q dx � Dρ‖f‖q
L2(S) (q > 4).

We also refer the reader to the example at the end of § 6 for a similar estimate in higher
dimensions.

3.2. An example of the α = n/2 case

As a second example, we consider the set Ω ⊂ Rn given by

Ω = {x = (x̄, xn) ∈ Rn−1 × R : |xn| ≤ |x̄|1−(n/2)}.

It is easy to see that the characteristic function of Ω is a weight on Rn of dimension n/2
and with An/2(χΩ) � 1. In fact, if x̄0 ∈ Rn−1 and R ≥ 1, then

∫
B(x̄0,R)

|x̄|1−(n/2)dx̄ ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
B(0,11R)

|x̄|1−(n/2)dx̄ � Rn/2 if |x̄0| ≤ 10R,

(|x̄0| −R)1−(n/2)

∫
B(x̄0,R)

dx � Rn/2 if |x̄0| > 10R.

Therefore, (9) gives us the local estimate∫
Ω∩BR

|Ef(x)|2n/(n−1) dx � Rε‖f‖2n/(n−1)
L2(S) , (11)

whereas Theorem 2.1 gives us the global estimate∫
Ω

|Ef(x)|q dx � ‖f‖q
L2(S) (q > 2n/(n− 1)). (12)

(See Remark 3.1 following the next example.)
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3.3. An example in R3

Our third example, which takes place in R3, needs the following result from [5]:∫
BR

|Ef(x)|3H(x) dx ≤ CεR
εAα(H)‖f‖3

L2(S)

for all functions f ∈ L2(S) and weights H on R3 of dimension 3/2 ≤ α ≤ 2. This local
estimate implies that Qloc(2, 2) ≤ 3, and so Corollary 2.1 (applied with β = 2 and n = 3)
implies that

Qloc(α, 2) ≤ (3/2)α (2 < α ≤ (11 −
√

13)/3). (13)

(Proposition 6.2 gives a better result when (11 −√
13)/3 < α < 3, and so does (8) when

α = 3.)
Now, for 0 < b ≤ 1, we define

Ωb = ∪∞
l=1R2 × [l1/b, 1 + l1/b]

and we observe that the characteristic function of Ωb is a weight on R3 of dimension 2 + b
and with A2+b(χΩb

) � 1. So (13) tells us that∫
Ωb∩BR

|Ef(x)|q dx � Rε‖f‖q
L2(S)

for all f ∈ L2(S) whenever b ≤ (5 −√
13)/3 and q ≥ (3/2)(2 + b). Combining this local

estimate with the ε-removal argument of [17, Corollary 2.1] (which is a small modification
on Tao’s ε-removal lemma from [19] that works for some special weights such as the
characteristic function of Ωb), we conclude that the global estimate∫

Ωb

|Ef(x)|q dx � ‖f‖q
L2(S)

holds whenever b ≤ (5 −√
13)/3 and q > (3/2)(2 + b).

Remark 3.1. The ε-removal argument of [17, Corollary 2.1] does not apply when H
is the characteristic function of the set Ω in the second example (§ 3.2), so the author is
not sure whether (12) can be derived from (11) when n ≥ 3.

3.4. The two examples from the introduction – revisited

For 0 ≤ b ≤ 1, we define

Xb = {(x, y) ∈ R2 : x > 0 and 0 ≤ y ≤ x−b}.

If b < 1, then the characteristic function of Xb is a weight on R2 of dimension 1 − b, and
A1−b(χXb

) � 1. If b = 1, then χXb
is a weight on R2 of dimension α and Aα(χXb

) � 1 for
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all 0 < α ≤ 2. Therefore, by Theorem 2.1, we have∫
Xb

|Ef(x)|q dx � ‖f‖q
L2(S) (q > max[2, 4(1 − b)]). (14)

When b = 1, we also have∫
X1∩BR

|Ef(x)|q dx � (logR)‖f‖q
L2(S) (q > 0, R ≥ 1),

but we do not have an ε-removal theorem that would turn this local estimate into a global
one.

We saw in § 1 that the range of q in (14) is sharp (up to the end point q = 4(1 − b))
when b = 1/4. We will see during the proof of Theorem 2.2 that this range of q is actually
sharp for all 0 ≤ b ≤ 1/2.

Our last example also takes place in the plane. For 0 < b < 1, we define

Yb = ∪∞
l=1R × [l1/b, 1 + l1/b].

Then the characteristic function of Yb is a weight on R2 of dimension 1 + b and with
A1+b(χYb

) � 1. So Theorem 2.1 gives the estimate∫
Yb

|Ef(x)|q dx � ‖f‖q
L2(S) (q > 4 + 2b). (15)

We saw in § 1 that the range of q in (15) is sharp (up to the endpoint q = 4 + 2b) when
b = 1/2. We will see during the proof of Theorem 2.2 that this range of q is actually sharp
for all 0 < b < 1.

4. On a fractal restriction theorem of Du and Zhang

Throughout this section, we denote a cube in Rn of centre x and side-length r by B̃(x, r).
Let P = {ξ ∈ Rn : ξn = ξ21 + · · · + ξ2n−1 ≤ 1} be the unit paraboloid in Rn, and EP the

extension operator associated with P. In a recent paper [4], the following interesting
theorem was proved.

Theorem 4-A (Du and Zhang [4, Corollary 1.6]). Suppose n ≥ 2, 1 ≤ α ≤ n,

R ≥ 1, X = ∪kB̃k is a union of lattice unit cubes in B̃(0, R) ⊂ Rn, and

γ = sup
#{B̃k : B̃k ⊂ B̃(x′, r)}

rα
,

where the sup is taken over all pairs (x′, r) ∈ Rn × [1,∞) satisfying B̃(x′, r) ⊂ B̃(0, R).
Then to every ε > 0 there is a constant Cε such that

‖EPf‖L2(X) ≤ CεR
εγ1/nRα/(2n)‖f‖L2(P)

for all f ∈ L2(P).

Theorem 4-A is of interest to us in two ways.
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First, Theorem 2.1 of this paper allows us to improve the exponent of R in Theorem 4-A
from α/(2n) to 0 for 0 < α ≤ (n− 1)/2, and to (α/2) − ((n− 1)/4) for (n− 1)/2 < α <
n/2. (We note to the reader that Theorem 4-A is a corollary of the main theorem in [4]
(see [4, Theorem 1.3]); our results do not appear to improve on the main theorem.)

Second, Theorem 4-A has a corollary that will help us to prove Theorem 2.1 in the
regime n/2 < α ≤ (n+ 1)/2, as well as Proposition 6.2.

We start by proving the corollary to Theorem 2.1 that improves on Theorem 4-A when
0 < α < n/2.

Corollary 4.1. Suppose n, R, X, and γ are as in Theorem 4-A. Also, suppose that S
is a smooth compact hypersurface in Rn with a nowhere vanishing Gaussian curvature,
and E = ES is the extension operator on S. Then to every ε > 0 there is a constant Cε

such that

‖Ef‖L2(X) ≤ CεR
εγ1/2Re(α)‖f‖L2(S)

for all f ∈ L2(S), where

e(α) =

{
0 if 0 < α ≤ (n− 1)/2,
(α/2) − ((n− 1)/4) if (n− 1)/2 < α ≤ n/2.

Proof. Theorem 2.1 provides us with the local estimate∫
B(0,R)

|Ef(x)|q(α)H(x) dx ≤ CεR
εAα(H)‖f‖q(α)

L2(S)

with

q(α) =

{
2 if 0 < α ≤ (n− 1)/2,
4α/(n− 1) if (n− 1)/2 < α ≤ n/2.

We let H be the characteristic function of X. By the definition of γ, we have∫
B̃(x0,r)

H(x) dx ≤ γ(r + 2)α ≤ γ(3r)α

for all x0 ∈ Rn and r ≥ 1. Thus H is a weight on Rn of dimension α, and Aα(H) � γ.
This immediately proves the corollary for 0 < α ≤ (n− 1)/2.

For (n− 1)/2 < α ≤ n/2, we apply Hölder’s inequality, to get∫
X

|Ef(x)|2 dx =
∫

B(0,R)

|Ef(x)|2H(x) dx

≤
(
CεR

εAα(H)‖f‖q(α)
L2(S)

)2/q(α)
(∫

B(0,R)

H(x) dx
)1−(2/q(α))

≤
(
CεR

εAα(H)‖f‖q(α)
L2(S)

)2/q(α)

(Aα(H)Rα)1−(2/q(α))

=
(
CεR

ε
)2/q(α)

Aα(H)R2e(α)‖f‖2
L2(S),

as claimed. �
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Theorem 4-A has the following corollary that will be needed to prove Theorem 2.1 in
the regime n/2 < α ≤ (n+ 1)/2, and Proposition 6.2.

Corollary 4-A (Du and Zhang [4]). Suppose n ≥ 2, 1 ≤ α ≤ n, S is a smooth
compact hypersurface in Rn with a strictly positive second fundamental form, and E =
ES is the extension operator on S. Then to every ε > 0 there is a constant Cε such that∫

B(0,R)

|Ef(x)|2H(x) dx ≤ CεR
εAα(H)Rα/n‖f‖2

L2(S)

for all functions f ∈ L2(S), weights H on Rn of dimension α, and radii R ≥ 1.

Corollary 4-A is not stated as such in [4], but is very similar to [4, Theorem 2.3]. Also,
the proof of [4, Theorem 2.3] is not explicitly given in that paper, because it is very similar
to the proof of [4, Theorem 2.2]. Therefore, we will present the proof of Corollary 4-A
here for the reader’s convenience.

Proof of Corollary 4-A (Du and Zhang [4, Proof of Theorem 2.2]). We may
assume that S is the paraboloid P that was defined at the beginning of this section (see
[5, Remark 1.10] and [4, Part (III) of § 2.2] for the justification of this assumption).

We consider a covering {B̃} of B(0, R) by unit lattice cubes, and for each such cube we
define v(B̃) = Aα(H)−1

∫
B̃
H(x) dx. Also, for k = 0,−1,−2, . . ., we set Vk = {B̃ : 2k−1 <

n−α/2v(B̃) ≤ 2k}. Since each cube B̃ is contained in a ball of radius
√
n, we have v(B̃) ≤

nα/2, so that ∪kVk ⊃ ∪ B̃ ⊃ B(0, R).
Let k1 be the sup of the set {k ∈ Z : 2k ≤ R−1000n}. By the pigeonhole principle, there

is an integer k0 satisfying k1 < k0 ≤ 0 such that∫
B(0,R)

|Ef(x)|2H(x) dx

� Rε2k0Aα(H)
∑

B̃∈Vk0

sup
B̃

|Ef |2 +Aα(H)‖f‖2
L2(S)O(R−500n). (16)

Since the measure f dσ is compactly supported and Ef = f̂ dσ, there is a non-negative
rapidly decaying function ψ on Rn such that supB̃ |Ef |2 ≤ |Ef |2 ∗ ψ(c(B̃)), where c(B̃)
is the centre of B̃. So

sup
B̃

|Ef |2 �
∫

B(c(B̃),Rε)

|Ef(x)|2 dx+ ‖f‖2
L2(S)O(R−1000n),

and since ∑
B̃∈Vk0

χB(c(B̃),Rε) � Rnε, (17)

it follows that ∑
B̃∈Vk0

sup
B̃

|Ef |2 � Rnε

∫
V

|Ef(x)|2 dx+ ‖f‖2
L2(S)O(R−500n), (18)

where V = ∪B̃∈Vk0
B(c(B̃), Rε).
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Let {B̃∗} be the set of all the unit lattice cubes that intersect V , andX = ∪B̃∗. Also, let
Br be a ball in Rn of radius r ≥ Rε. We want to estimate the number of the cubes B̃∗ that
intersect Br. In order to do this, we need to estimate the number of balls B(c(B̃), 2Rε)
that intersect Br.

We have∫
B(c(B̃),Rε)

H(x) dx ≥
∫

B̃

H(x) dx = v(B̃)Aα(H) ≥ nα/22k0−1Aα(H),

so (using (17))

(
#{B̃ ∈ Vk0 : B(c(B̃), 2Rε) ∩Br �= ∅}

)
2k0Aα(H)

� Rnε

∫
B3r

H(x) dx ≤ RnεAα(H)(3r)α,

and so

#{B̃ ∈ Vk0 : B(c(B̃), 2Rε) ∩Br �= ∅} � Rnε2−k0rα.

Thus,

#{B̃∗ : B̃∗ ⊂ Br} � R2nε2−k0rα.

Therefore, we can apply Theorem 4-A with γ ∼ R2nε2−k0 to get∫
V

|Ef(x)|2 dx ≤
∫

X

|Ef(x)|2 dx � R6ε(2−k0)2/nRα/n‖f‖2
L2(S),

which, combined with (16) and (18), now tells us that

∫
B(0,R)

|Ef(x)|2 dx � R(n+6)ε(2k0)1−(2/n)Aα(H)Rα/n‖f‖2
L2(S)

� R(n+6)εAα(H)Rα/n‖f‖2
L2(S).

We note that for the last inequality, we need the fact 2k0 is raised to a non-negative power,
which is a consequence of the fact that the exponent of γ in the estimate of Theorem 4-A
is less than or equal to 1/2, which is also the case in the estimate of Corollary 4.1. �

5. Proof of the weighted Hölder-type inequality and its corollary

In this section, we prove Theorem 1.1 and Corollary 2.1.
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Proof of Theorem 1.1. For N ∈ N, we let χN be the characteristic function of the
set

B(0, N) ∩ {x ∈ Rn : F (x) ≤ N},
and we define the function FN by FN = χNF . Clearly,∫

FN (x)H(x) dx ≤ N

∫
B(0,N)

H(x) dx ≤ Aα(H)N1+α

for all weights H on Rn of dimension α. Letting β0 = 1 and C0 = N1+α, this becomes∫
FN (x)β0H(x) dx ≤ C0Aα(H). (19)

Let H be a weight on Rn of dimension α.
If p > 1 and BR is a ball in Rn of radius R ≥ 1, then (19) and Hölder’s inequality tell

us that∫
BR

FN (x)β0/pH(x) dx ≤
( ∫

BR

FN (x)β0H(x) dx
)1/p( ∫

BR

H(x) dx
)1/p′

≤ (C0Aα(H))1/p(Aα(H)Rα)1/p′

= C
1/p
0 Aα(H)Rα/p′

,

where p′ is the exponent conjugate to p.
We now choose p such that α/p′ = β, i.e. p = α/(α− β), to conclude that the function

H(x) := N−1/pFN (x)β0/pH(x) is a weight on Rn of dimension β. Moreover,

Aβ(H) ≤ N−1/pC
1/p
0 Aα(H).

Therefore, ∫
FN (x)βN−1/pFN (x)β0/pH(x) dx =

∫
FN (x)βH(x) dx

≤ (MβFN )βAβ(H)

≤ (MβF )βN−1/pC
1/p
0 Aα(H),

where we have used the fact that FN ≤ F to conclude that MβFN ≤MβF . Letting M =
(MβF )β , β1 = β + (β0/p), and C1 = MC

1/p
0 , this becomes∫

FN (x)β1H(x) dx ≤ C1Aα(H). (20)

Iterating the above procedure starting from (20) instead of (19), we arrive at∫
FN (x)β2H(x) dx ≤ C2Aα(H)

with β2 = β + (β1/p) and C2 = MC
1/p
1 . Proceeding in this fashion and using mathemat-

ical induction, we obtain two sequences {βk} and {Ck} of non-negative numbers such
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that ∫
FN (x)βkH(x) dx ≤ CkAα(H), (21)

βk = β + (βk−1/p), and Ck = MC
1/p
k−1.

Now

βk = β +
βk−1

p
= β +

(
β +

βk−2

p

)
1
p

= β +
β

p
+
βk−2

p2
= β +

β

p
+

(
β +

βk−3

p

)
1
p2

= β +
β

p
+
β

p2
+
βk−3

p3
= β +

β

p
+
β

p2
+ · · · + β

pk−1
+
βk−k

pk
= β

1 − (1/p)k

1 − (1/p)
+
β0

pk

and

Ck = MC
1/p
k−1 = M

(
MC

1/p
k−2

)1/p

= M1+(1/p)C
(1/p)2

k−2

= M1+(1/p)
(
MC

1/p
k−3

)(1/p)2

= M1+(1/p)+(1/p)2C
(1/p)3

k−3

= M1+(1/p)+(1/p)2+···+(1/p)k−1
C

(1/p)k

k−k = M (1−(1/p)k)/(1−(1/p))C
(1/p)k

0 ,

so (recalling that p = α/(α− β))

lim
k→∞

βk =
β

1 − (1/p)
= α and lim

k→∞
Ck = Mα/β = (MβF )α.

Therefore, letting k → ∞ in (21) and using Fatou’s lemma, we arrive at

∫
FN (x)αH(x) dx ≤ (MβF )αAα(H).

Since FN → F pointwise on Rn as N → ∞, a second application of Fatou’s lemma
gives us ∫

F (x)αH(x) dx ≤ (MβF )αAα(H).

Since the last inequality holds for all weights H on Rn of dimension α, it follows that
MαF ≤MβF . �

Proof of Corollary 2.1. We will only prove the inequality concerningQloc(α, p). The
proof for Q(α, p) is similar and a little easier.

We may assume Qloc(β, p) <∞ (otherwise, there is nothing to prove). Let q >
Qloc(β, p). Then, by the definition of Qloc(β, p), to every ε > 0 there is a constant Cε
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such that ∫
B(0,R)

|Ef(x)|qH(x) dx ≤ CεR
εAβ(H)‖f‖q

Lp(S)

for all functions f ∈ Lp(S) and weights H on Rn of dimension β. Letting F =
χB(0,R)|Ef |q/β , this implies

Mβ(F β) ≤
(
CεR

ε‖f‖q
Lp(S)

)1/β

.

Applying Theorem 1.1, we get

Mα(F β) ≤
(
CεR

ε‖f‖q
Lp(S)

)1/β

.

Therefore, (
1

Aα(H)

∫
B(0,R)

|Ef(x)|(α/β)qH(x) dx
)1/α

≤
(
CεR

ε‖f‖q
Lp(S)

)1/β

for all functions f ∈ Lp(S) and weights H on Rn of dimension α.
Recalling the definition of Qloc(α, p), we now have (α/β)q ≥ Qloc(α, p). Since this

inequality is true for all q > Qloc(β, p), it follows that

(α/β)Qloc(β, p) ≥ Qloc(α, p),

as desired. �

6. Estimates in the regimes 0 < α < (n − 1)/2 and (n + 1)/2 < α < n

We start by proving two L2-based weighted restriction estimates. The first estimate,
which is part (i) of Proposition 6.1, proves Theorem 2.1 in the regime 0 < α < (n− 1)/2,
and, as discussed in § 1, is the base for proving the theorem in the other two regimes
(n− 1)/2 ≤ α ≤ n/2 and n/2 < α ≤ (n+ 1)/2. The second estimate, which is part (ii) of
Proposition 6.1, will be one of the main components of the proof of Theorem 2.3. The
work we do in this section is based on ideas from [2].

Proposition 6.1. Suppose S is a smooth compact hypersurface in Rn with a nowhere
vanishing Gaussian curvature, and H is a weight on Rn of dimension 0 < α < (n− 1)/2.
Then:

(i) To every exponent q > 2 there is a constant Cq, which does not depend on H, such
that

‖Ef‖Lq(H dx) ≤ CqAα(H)1/q‖f‖L2(S)

for all f ∈ L2(S).

(ii) To every exponent q > (n+ 1 − 2α)/(n− 2α) there is a constant C̄q, which does
not depend on H, such that

‖Ef‖Lq(H dx) ≤ C̄qAα(H)1/(q(n−2α))‖H‖(n−1−2α)/(q(n−2α))
L2(Rn) ‖f‖L2(S)

for all f ∈ L2(S).
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Proof. We may assume that H ∈ L1(Rn). (Otherwise, we multiply H by the charac-
teristic function of the ball B(0, R), obtain an estimate that is uniform in R, and then
send R to infinity using the fact that Aα(χB(0,R)H) ≤ Aα(H).) We define the measure μ
on Rn by dμ = H dx.

Let f ∈ L2(S). We need to estimate ‖Ef‖Lq(μ). We write

‖Ef‖q
Lq(μ) =

∫ ‖f‖L1(S)

0

qλq−1μ
({|Ef | ≥ λ

})
dλ. (22)

The set {|Ef | ≥ λ} is contained in{
(ReEf)+≥λ4

}
∪

{
(ReEf)−≥λ4

}
∪

{
(ImEf)+≥λ4

}
∪

{
(ImEf)−≥λ4

}
,

where (ReEf)+ and (ReEf)− are, respectively, the positive and negative parts of ReEf ;
and similarly for ImEf . Therefore, it is enough to estimate the μ-measure of the set
{(ReEf)+ ≥ λ/4}. We denote this set by G, and we observe that

G =
{

ReEf ≥ λ

4

}
for λ > 0. So

λ

4
μ(G) ≤

∫
G

(ReEf) dμ = Re
∫

G

Ef dμ = Re
∫
χG f̂ dσ dμ = Re

∫
χ̂G dμ f dσ,

and so (by Cauchy–Schwarz)

λ2μ(G)2 ≤ 16‖f‖2
L2(S)‖χ̂G dμ‖2

L2(S).

By the duality relation of the Fourier transform, we have

‖χ̂G dμ‖2
L2(S) =

∫
χ̂G dμχ̂G dμdσ =

∫ (
χ̂G dμdσ

)
χ̂G dμ =

∫ (
(χG dμ) ∗ σ̂)

χG dμ,

so

λ2μ(G)2 ≤ 16‖f‖2
L2(S)

∫ (
(χG dμ) ∗ σ̂)

χG dμ. (23)

The next step is to invoke the decay estimate we have on σ̂: |σ̂(ξ)| � |ξ|−(n−1)/2 for all
|ξ| ≥ 1 (which is a consequence of the nowhere vanishing Gaussian curvature assumption
on the surface S), as well as the dimensionality of the measure μ:

μ(B(x0, R)) =
∫

B(x0,R)

H(x) dx ≤ Aα(H)Rα

for all x0 ∈ Rn and R ≥ 1.
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We let ψ0 be a C∞
0 function on Rn satisfying 0 ≤ ψ0 ≤ 1, ψ0 = 1 on B(0, 1), and

ψ0 = 0 outside B(0, 2). Also, for l ∈ N, we define ψl(x) = ψ0(x/2l) − ψ0(x/2l−1). Then
ψl is supported in the ring 2l−1 ≤ |x| ≤ 2l+1, and

(χG dμ) ∗ σ̂ =
∞∑

k=0

(χG dμ) ∗ (ψkσ̂).

Since |ψ0σ̂| � 1 and |ψlσ̂| � 2−(l−1)(n−1)/2, we have

|(χG dμ) ∗ (ψkσ̂)(x)| ≤
∫

|ψk(x− y) σ̂(x− y)|χG(y) dμ(y)

� 2−k(n−1)/2

∫
χB(x,2k+1)(y)χG(y) dμ(y)

� 2−k(n−1)/2μ
(
B(x, 2k+1)

)
� Aα(H)2−k(n−1−2α)/2, (24)

and since α < (n− 1)/2, it follows that

|(χG dμ) ∗ σ̂(x)| �
∞∑

k=0

Aα(H)2−k(n−1−2α)/2 � Aα(H)

for all x ∈ Rn.
Returning to (23), we now have λ2μ(G)2 � ‖f‖2

L2(S)Aα(H)μ(G). Therefore, by (22),

‖Ef‖q
Lq(μ) � Aα(H)‖f‖2

L2(S)

∫ ‖f‖L1(S)

0

λq−3 dλ � Aα(H)‖f‖q
L2(S)

provided q > 2. This proves part (i).
We note that in proving part (i), we did not use the dimensionality of the measure σ:

σ(B(x0, r)) � rn−1 for all x0 ∈ Rn and r > 0. But the dimensionality of σ will be used
in proving part (ii) in the following form:

‖ψ̂k ∗ σ‖L∞ � 2k (25)

for k = 0, 1, 2, . . ..
The inequality (24) is a bound on ‖(χG dμ) ∗ (ψk σ̂)‖L∞ , which implies that∫

|(χG dμ) ∗ (ψk σ̂)|χG dμ � 2−k(n−1−2α)/2Aα(H)μ(G).

We now derive a second bound on
∫ |(χG dμ) ∗ (ψkσ̂)|χG dμ. By Plancherel and (25),

‖(χG dμ) ∗ (ψkσ̂)‖L2 � 2k‖χ̂GH‖L2 = 2k‖χGH‖L2 ,

so (by Cauchy–Schwarz)∫
|(χG dμ) ∗ (ψkσ̂)|χG dμ � 2k‖χGH‖2

L2 . (26)
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Thus, ∫
|(χG dμ) ∗ (ψk σ̂)|χG dμ � min

[
2k‖H‖2

L2 , 2−k(n−1−2α)/2Aα(H)μ(G)
]

for k = 0, 1, 2, . . ., where we have used the fact that ‖χGH‖L2 ≤ ‖H‖L2 .
Returning to (23), we now have

λ2μ(G)2 � ‖f‖2
L2(S)

( k0∑
k=0

2k‖H‖2
L2 +

∞∑
k=k0

2−k(n−1−2α)/2Aα(H)μ(G)
)
,

where k0 is a positive integer that satisfies

2k0 ∼
(
Aα(H)μ(G)

‖H‖2
L2

)2/(n+1−2α)

.

Since (n− 1 − 2α)/2 > 0, the geometric series converges giving

λ2μ(G)2 � ‖f‖2
L2(S)(Aα(H)μ(G))2/(n+1−2α)‖H‖2(n−1−2α)/(n+1−2α)

L2 ,

which in turn implies that

μ(G) � Aα(H)1/(n−2α)‖H‖(n−1−2α)/(n−2α)
L2

(
λ−1‖f‖L2(S)

)(n+1−2α)/(n−2α)
.

Inserting this bound on μ(G) into (22), we obtain

‖Ef‖q
Lq(μ) � Aα(H)1/(n−2α)‖H‖(n−1−2α)/(n−2α)

L2 ‖f‖(n+1−2α)/(n−2α)
L2(S)

×
∫ ‖f‖L1(S)

0

λq−1−(n+1−2α)/(n−2α) dλ

� Aα(H)1/(n−2α)‖H‖(n−1−2α)/(n−2α)
L2 ‖f‖q

L2(S)

provided q > (n+ 1 − 2α)/(n− 2α), which proves part (ii). �

Readers who are familiar with Bourgain’s paper [2] will realize that we can follow that
paper more closely by inserting a favourable local restriction estimate in the inequality
immediately preceding (24). The argument will then proceed as follows.

Suppose 1 ≤ α < n. The last inequality before (24) says∫
χB(x,2k+1)(y)χG(y) dμ(y) � μ(B(x, 2k+1)).

We replace this by∫
B(x,2k+1)

χG(y) dμ(y) � λ−2

∫
B(x,2k+1)

|Ef(y)|2H(y) dy

� λ−22kεAα(H)2kα/n‖f‖2
L2(S),
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where on the first line we used the fact that χG ≤ 4λ−1|Ef |, and on the second line we
used the Du and Zhang estimate from Corollary 4-A. Inequality (24) becomes

|(χG dμ) ∗ (ψkσ̂)(x)| � λ−2Aα(H)2−k
(
(n−1)/2−(α/n)−ε

)
‖f‖2

L2(S),

so that∫
|(χG dμ) ∗ (ψkσ̂)|χG dμ � λ−2Aα(H)2−k

(
(n−1)/2−(α/n)−ε

)
‖f‖2

L2(S)μ(G).

Combining this inequality with (26), we arrive at∫
|(χG dμ) ∗ (ψk σ̂)|χG dμ

� min
[
2k‖χGH‖2

L2 , λ−2Aα(H)2−k
(
(n−1)/2−(α/n)−ε

)
‖f‖2

L2(S)μ(G)
]

≤ μ(G) min
[
2k, λ−2Aα(H)2−k

(
(n−1)/2−(α/n)−ε

)
‖f‖2

L2(S)

]
for k = 0, 1, 2, . . . , where we have used the fact that ‖χGH‖2

L2 =
∫

G
H(x)2 dx ≤∫

G
H(x) dx = μ(G).
Returning to (23), we now have

λ2μ(G) � ‖f‖2
L2(S)

( k0∑
k=0

2k +
∞∑

k=k0

λ−2Aα(H)2−k((n−1)/2−(α/n)−ε)‖f‖2
L2(S)

)
,

where k0 is a positive integer that satisfies

2k0 ∼
(
λ−2Aα(H)‖f‖2

L2(S)

)1/((n+1)/2−(α/n)−ε)

.

For the geometric series to converge, we must have (n− 1)/2 − (α/n) − ε > 0, i.e.

α <
n(n− 1)

2
− nε.

This is possible if α < n(n− 1)/2. In the plane, this condition becomes α < 1. But for
Corollary 4-A to hold, we need α ≥ 1, so for the rest of this argument, we must work in
Rn with n ≥ 3. So, choosing ε sufficiently small, we get

λ2μ(G) � ‖f‖2
L2(S)

(
λ−2Aα(H)‖f‖2

L2(S)

)1/((n+1)/2−(α/n)−ε)

,

and so

μ(G) � λ−2qε‖f‖2qε

L2(S)Aα(H)1/((n+1)/2−(α/n)−ε),

where qε = ((n+ 3)/2 − (α/n) − ε)/((n+ 1)/2 − (α/n) − ε).
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Inserting the bound we now have on μ(G) into (22), we obtain

‖Ef‖q
Lq(μ) � ‖f‖2qε

L2(S)Aα(H)1/((n+1)/2−(α/n)−ε)

∫ ‖f‖L1(S)

0

λq−1−2qε dλ

� Aα(H)1/((n+1)/2−(α/n)−ε)‖f‖q
L2(S)

provided q > 2qε. Since

lim
ε→0

2qε = 2
n2 + 3n− 2α
n2 + n− 2α

,

we obtain the following result.

Proposition 6.2. Suppose that n ≥ 3, 1 ≤ α < n, and S is a compact C∞ hypersur-
face in Rn with a strictly positive second fundamental form. Then to every exponent q >
2(n2 + 3n− 2α)/(n2 + n− 2α) there is a constant cq satisfying cq < ((n− 1)/2) − (α/n)
such that the following holds: if 0 < ε < cq, then∫

|Ef(x)|qH(x) dx � Aα(H)1/((n+1)/2−(α/n)−ε)‖f‖q
L2(S)

for all functions f ∈ L2(S) and weights H on Rn of dimension α.

We note that 2(n2 + 3n− 2α)/(n2 + n− 2α) = 2(n+ 1)/(n− 1) if α = n, so Proposi-
tion 6.2 improves on Tomas–Stein for all 1 ≤ α < n. But

2
n2 + 3n− 2α
n2 + n− 2α

>
2n
n− 1

for n ≥ 3 and 0 < α <
n(n+ 1)

2
,

so Theorem 2.1 gives a far better result for 0 < α ≤ n/2. In fact, the range of q in
Theorem 2.1 is better than that in Proposition 6.2 for 0 < α ≤ αn, where αn is the
smaller of the two solutions of the equation

2
n2 + 3n− 2α
n2 + n− 2α

=
2n
n− 1

+ 2 − n

α
.

Solving this equation, we see that

αn =
n2 + 1 −√

n4 − 4n3 + 2n2 + 4n+ 1
4

=
n+ 1

2
.

Example. Suppose n ≥ 3 and Z is the zero set of a polynomial P on Rn of degree
D ≥ 1. Also, suppose Nρ(Z) is the ρ-neighbourhood of Z and H is the characteristic
function of Nρ(Z). As we saw in the first example of § 3, H is a weight on Rn of dimension
n− 1 with An−1(H) ≤ CnDρ. So we can apply Proposition 6.2 with α = n− 1.
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The exponent of An−1(H) in Proposition 6.2 is(
n+ 1

2
− n− 1

n
− ε

)−1

≤ 2
n− 1

provided ε < 1/n. Therefore, we have the estimate∫
Nρ(Z)

|Ef(x)|q dx � (Dρ)2/(n−1)‖f‖q
L2(S)

(
q > 2

n2 + n+ 2
n2 − n+ 2

)
for all ρ ≥ D−1. One interesting aspect of this estimate is that it holds beyond the (2n+
2)/(n− 1) exponent of Tomas–Stein, another interesting aspect is that the exponent of
ρ goes to zero as n→ ∞.

7. Proof of Theorem 2.1

Having discussed in detail the Du and Zhang fractal restriction theorem, proven the
weighted Hölder-type inequality and its corollary, and established a good restriction
estimate in fractal dimensions 0 < α < (n− 1)/2, we are now ready to put all those
components together and prove Theorem 2.1.

Proof of Theorem 2.1. Let Q(α, 2) be the quantity defined right before the state-
ment of Corollary 2.1. We need to show that

Q(α, 2) ≤

⎧⎪⎪⎨⎪⎪⎩
2 if 0 < α < (n− 1)/2,
4α/(n− 1) if (n− 1)/2 ≤ α ≤ n/2,
2α+ 2 if n = 2 and 1 < α < 2,
(2n/(n− 1)) + 2 − (n/α) if n ≥ 3 and n/2 < α ≤ n.

(27)

(See the statement of Theorem 2.1 and the paragraph immediately following it.)
Part (i) of Proposition 6.1 immediately gives the inequality on the first line of (27).

Then, applying Theorem 2.1 with 0 < β < (n− 1)/2 ≤ α ≤ n/2, we get

Q(α, 2)
α

≤ Q(β, 2)
β

≤ 2
β
.

Therefore (letting β → (n− 1)/2), Q(α, 2) ≤ 4α/(n− 1).
It remains to prove the last two lines of (27). For this, we need Corollary 4-A.
Suppose n = 2 and 1 < α < 2. Also, let ε > 0 and f ∈ L2(S). Then Corollary 4-A tells

us that ∫
BR

|Ef(x)|2H(x) dx ≤ CεR
εAα(H)Rα/2‖f‖2

L2(S)

for all balls BR ⊂ R2 of radius R ≥ 1. Thus, the function

H(x) := ‖f‖−2
L1(S)|Ef(x)|2H(x)

is a weight on R2 of dimension α′ = (α/2) + ε and with

Aα′(H) � Aα(H)‖f‖−2
L1(S)‖f‖2

L2(S).
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Since 1 < α < 2, we have 1/2 < α′ < 1 provided ε is sufficiently small. So Q(α′, 2) ≤ 4α′,
and so ∫

|Eg(x)|q′H(x) dx � Aα′(H)‖g‖q′

L2(S)

for all g ∈ L2(S) provided q′ > 4α′ = 2α+ 4ε. Replacing H by ‖f‖−2
L1(S)|Ef |2H, plugging

f for g, and choosing ε to be sufficiently small, the last estimate becomes∫
|Ef(x)|qH(x) dx � Aα(H)‖f‖q

L2(S)

for q > 2α+ 2, which proves the inequality on the line next to the last in (27).
Now suppose n ≥ 3 and n/2 < α ≤ n. Also, let ε > 0, 0 < p ≤ 2, and f ∈ L2(S). Then

Corollary 4-A and Hölder’s inequality tell us that∫
BR

|Ef(x)|pH(x) dx ≤
(
CεR

εAα(H)Rα/n‖f‖2
L2(S)

)p/2
(∫

BR

H(x) dx
)1−(p/2)

≤ Cp/2
ε Rpε/2Aα(H)‖f‖p

L2(S)R
(1−((n−1)p/(2n))α

for all balls BR ⊂ Rn of radius R ≥ 1, which implies that the function H(x) :=
‖f‖−p

L1(S)|Ef(x)|pH(x) is a weight on Rn of dimension

α′ =
(

1 − n− 1
2n

p

)
α+

pε

2

and with
Aα′(H) � Aα(H)‖f‖−p

L1(S)‖f‖p
L2(S).

Motivated by what we did in the plane, we want to choose a p ∈ (0, 2] that will place α′

between (n− 1)/2 and n/2 and minimize the exponent q0 given by

q0 =
4α′

n− 1
+ p =

4α
n− 1

+
(

1 − 2α
n

)
p+

2pε
n− 1

.

Since 1 − (2α/n) < 0, q is smallest when p is largest. Also, since ε can be chosen arbitrarily
small,

n− 1
2

≤ α′ ≤ n

2
⇐=

n− 1
2

≤
(

1 − n− 1
2n

p

)
α <

n

2
.

Therefore,

p =
2n
n− 1

− n

α
.

We note that p ≤ 2 if α ≤ n(n− 1)/2, which is satisfied because α ≤ n and n ≥ 3.
Since (n− 1)/2 ≤ α′ ≤ n/2, we now have Q(α′, 2) ≤ 4α′/(n− 1), and so∫

|Eg(x)|q′H(x) dx � Aα′(H)‖g‖q′

L2(S)

for all g ∈ L2(S) provided q′ > (4α′/(n− 1)) = q0 − p. Replacing the weight H by
‖f‖−p

L1(S)|Ef |pH, plugging f for g, and choosing ε to be sufficiently small, the last estimate
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becomes ∫
|Ef(x)|qH(x) dx � Aα(H)‖f‖q

L2(S)

for q > (2n/(n− 1)) + 2 − (n/α), proving the inequality on the last line of (27). �

8. Preliminaries for the proofs of Theorems 2.2 and 2.3

Let M(Rn) be the space of all complex Borel measures on Rn. Suppose μ ∈M(Rn) is
positive and compactly supported, and 0 < α < n. The α-dimensional energy of μ is
defined as

Iα(μ) =
∫∫

1
|x− y|α dμ(x) dμ(y).

The integral Iα(μ) has the following Fourier representation

Iα(μ) = cα

∫
|μ̂(ξ)|2 dξ

|ξ|n−α
= cα

∫ ∞

0

‖μ̂(R·)‖2
L2(Sn−1)R

α−1dR, (28)

where cα is a constant that only depends on α and n, and Sn−1 is the unit sphere in Rn.
For positive μ ∈M(Rn) and 0 < α < n, we also define

Cα(μ) = sup
x∈Rn,r>0

μ(B(x, r))
rα

.

Let 1 ≤ p ≤ ∞ and p′ be the exponent conjugate to p. We want to establish a connec-
tion between Lp(S) → Lq(χB(0,R)H dx) restriction estimates and the decay properties of
‖μ̂(R·)‖Lp′ (S) as R→ ∞ for the positive measures μ ∈M(Rn) that are supported in the
unit ball in Rn and satisfy Iα(μ) <∞ or Cα(μ) <∞.

Proposition 8.1. Suppose 1 ≤ p ≤ ∞, q ≥ 1, 0 < α < n, and we have the weighted
local restriction estimate∫

B(0,R)

|Ef(x)|qH(x) dx ≤ CεR
εAα(H)‖f‖q

Lp(S).

Then

‖μ̂(R·)‖Lp′ (S) ≤ CεR
εCα(μ)R−α/q (R ≥ 1)

for all positive measures μ ∈M(Rn) that are supported in B(0, 1). Moreover, if q ≥ 2,
then

‖μ̂(R·)‖Lp′ (S) ≤ CεR
ε
√
Iα(μ)R−α/q (R ≥ 1)

for all positive measures μ ∈M(Rn) that are supported in B(0, 1).

Proposition 8.1 is a standard result, which we state and prove here for clarity of exposi-
tion, as well as for highlighting the difference between the cases 1 ≤ q < 2 and q ≥ 2. The
proof also reveals that the result of the proposition does not extend to the 0 < q < 1 case,
which is the main reason why Theorem 2.3 is much harder to prove than Theorem 2.2.
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For the proof of Proposition 8.1, we need to borrow the following two lemmas from
[17, 21].

Lemma 8-A (Shayya [17, Lemma 5.1]). Suppose μ ∈M(Rn) is positive and
supported in B(0, 1), 0 < α ≤ n, R ≥ 1, and

Cα,R(μ) = sup
x∈Rn

sup
r≥R−1

μ(B(x, r))
rα

.

Then there is a weight H (which depends on R) of dimension α such that:

(i) Aα(H) ≤ |B(0, 1)|.
(ii) To every function f ∈ L1(S) there is a function g ∈ L1(S) such that |g| ≤ |f | and∫

|Ef(Rx)|q dμ(x) ≤ Cq
Cα,R(μ)
Rα

∫
B(0,2R)

|Eg(y)|qH(y) dy

for q ≥ 1, where Cq is a constant that only depends on n and q.

Lemma 8-B (Wolff [21, Lemma 1.5]). Let μ ∈M(Rn) be a positive measure with
support in B(0, 1), 0 < α < n, and R ≥ 1. Then we can decompose μ as a sum of O(1 +
logR) measures μj so that for each j,

‖μj‖Cα,R(μj) � Iα(μ)

with an implicit constant that depends only on α and n.

Proof of Proposition 8.1. Let f ∈ L1(S), and g be as in (ii) of Lemma 8-A. Then
the weighted restriction estimate in the assumption of Proposition 8.1 tells us that∫

|Ef(Rx)|q dμ(x) ≤ Cq
Cα,R(μ)
Rα

Cε(2R)εAα(H)‖g‖q
Lp(S),

so that ∫
|Ef(Rx)|q dμ(x) � Rε Cα,R(μ)

Rα
‖f‖q

Lp(S), (29)

where we have used the facts that Aα(H) ≤ |B(0, 1)| and |g| ≤ |f | provided to us by
Lemma 8-A.

Since q ≥ 1, we can use Hölder’s inequality to get(∫
|Ef(Rx)|dμ(x)

)q

� Rε‖μ‖q−1 Cα,R(μ)
Rα

‖f‖q
Lp(S).

Since μ is supported in the unit ball, we have ‖μ‖ = μ(B(0, 1)) ≤ Cα,R(μ), so
‖μ‖q−1Cα,R(μ) ≤ Cα,R(μ)q, and so∫

|Ef(Rx)|dμ(x) � Rε/q Cα,R(μ)
Rα/q

‖f‖Lp(S).
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Since Ef = f̂ dσ, it follows that∣∣∣ ∫
μ̂(Rξ)f(ξ) dσ(ξ)

∣∣∣ � Rε/q Cα,R(μ)
Rα/q

‖f‖Lp(S)

for all f ∈ Lp(S). By duality, this implies that

‖μ̂(R·)‖Lp′ (S) ≤ CεR
ε/qCα,R(μ)R−α/q ≤ CεR

εCα(μ)R−α/q

for all R ≥ 1.
Now suppose q ≥ 2 and write μ =

∑
j μj as in Lemma 8-B. By Hölder’s inequality, we

have ∫
|Ef(Rx)|dμj(x) ≤ ‖μj‖1−(1/q)

(∫
|Ef(Rx)|q dμj(x)

)1/q

= ‖μj‖1−(2/q)

(
‖μj‖

∫
|Ef(Rx)|q dμj(x)

)1/q

.

Since q ≥ 2, we have ‖μj‖1−(2/q) ≤ ‖μ‖1−(2/q). Also, by applying (29) to μj and then
using the inequality ‖μj‖ Cα,R(μj) � Iα(μ) from Lemma 8-B, we have

‖μj‖
∫

|Ef(Rx)|q dμj(x) � Rε‖μj‖Cα,R(μj)
Rα

‖f‖q
Lp(S) � Rε Iα(μ)

Rα
‖f‖q

Lp(S).

Therefore, ∫
|Ef(Rx)|dμj(x) � ‖μ‖1−(2/q)

(
Rε Iα(μ)

Rα
‖f‖q

Lp(S)

)1/q

.

Summing over j, this gives∫
|Ef(Rx)|dμ(x) � (1 + logR)Rε/q‖μ‖1−(2/q)Iα(μ)1/qR−α/q‖f‖Lp(S).

Since suppμ ⊂ B(0, 1), we have ‖μ‖2 � Iα(μ), and the above estimate becomes∫
|Ef(Rx)|dμ(x) � (1 + logR)Rε/qIα(μ)1/2R−α/q‖f‖Lp(S).

Therefore, ∣∣∣ ∫
μ̂(Rξ)|f(ξ) dσ(ξ)

∣∣∣ � RεIα(μ)1/2R−α/q‖f‖Lp(S)

for all f ∈ Lp(S), and the desired inequality, i.e.

‖μ̂(R·)‖Lp′ (S) ≤ CεR
ε
√
Iα(μ)R−α/q

for all R ≥ 1, follows from duality. �

We now need to complement Proposition 8.1 with some of the facts that we currently
know about the decay properties of ‖μ̂(R·)‖L1(S) and ‖μ̂(R·)‖Lp′ (S) when S is the unit
sphere. The first fact is the following basic result in geometric measure theory.
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Proposition 8.2. Let 0 < α < n. Then to every pair (β, b) of numbers that satisfy
β > α/2 and b > 0 there is a number R ≥ 1 and a positive measure μ ∈M(Rn) with
suppμ ⊂ B(0, 1) such that Rβ‖μ̂(R·)‖L2(Sn−1) > bCα(μ).

Proof. Suppose the proposition is not true. Then there is a pair (β, b) with β > α/2
and b > 0 such that ‖μ̂(R·)‖L2(Sn−1) ≤ bR−βCα(μ) for all R ≥ 1 and positive μ ∈M(Rn)
that are supported in B(0, 1).

We let γ < n be a number that lies strictly between α and 2β, and K⊂ B(0, 1) be a set
of Hausdorff dimension strictly between α and γ. Then K carries a probability measure μ
with Cα(μ) <∞. By the previous paragraph, we have ‖μ̂(R·)‖L2(Sn−1) � R−β for all R ≥
1, so (by (28)) Iγ(μ) <∞, and so K carries a probability measure ν such that Cγ(ν) <∞.
This implies that K has Hausdorff dimension ≥ γ, which is a contradiction. �

The second fact that complements Proposition 8.1 is due to Wolff [21]:

Proposition 8-A (Wolff [21, Lemma 3.1]). Let 0 < α < n. Then to every pair
(β, b) of numbers that satisfy β > α/2 and b > 0 there is a number R ≥ 1 and a positive
measure μ ∈M(Rn) with suppμ ⊂ B(0, 1) such that Rβ‖μ̂(R·)‖L1(Sn−1) > b

√
Iα(μ).

Proof. Let ψ be a non-negative C∞ function on Rn that is supported in the unit
ball and satisfies |ψ̂| ≥ 1 on the unit sphere. For 0 < ρ ≤ 1 and x ∈ Rn, we let Ψ(x) =
ρ(α/2)−nψ(ρ−1x), and we define the measure μ by dμ = Ψ dx. Then μ̂(ξ) = ρ(α/2)ψ̂(ρξ)
and (by (28))

Iα(μ) = cαρ
α

∫
|ψ̂(ρξ)|2|ξ|α−n dξ = cα

∫
|ψ̂(u)|2|u|α−ndu ∼ 1.

Suppose the proposition is not true. Then there are numbers β > α/2 and b > 0 such
that ‖μ̂(R·)‖L1(Sn−1) ≤ bR−βIα(μ) for all R ≥ 1, so that∫

Sn−1

∣∣ψ̂(ρRθ)
∣∣ dσ(θ) � R−βρ−α/2

for all 0 < ρ ≤ 1 and R ≥ 1. Taking R = ρ−1, we get

σ(Sn−1) ≤
∫

Sn−1

∣∣ψ̂(θ)
∣∣ dσ(θ) � R−βRα/2

for all R ≥ 1, which implies that β ≤ α/2, which is a contradiction. �

The third fact that we need to complement Proposition 8.1 is the following result of
Bennett and Vargas [1].

Theorem 8-A (Bennett and Vargas [1, Corollary 2]). Let 1 ≤ α < 2. Then to
every pair (β, b) of numbers that satisfy β > α/(α+ 2) and b > 0 there is a positive
measure μ ∈M(R2) with suppμ ⊂ B(0, 1) such that Rβ‖μ̂(R·)‖L1(S1) > b

√
Iα(μ).

For the interesting proof of Theorem 8-A, we refer the reader to [1].
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9. Proof of Theorem 2.2

We are given the estimate∫
BR

|Ef(x)|qH(x) dx ≤ CεR
εAα(H)‖f‖q

L2(S) (30)

for some q > 0, and we need to show that

q ≥
⎧⎨⎩2 if n ≥ 2 and 0 < α < n,

(2α+ 2)/(n− 1) if n ≥ 2 and 1 < α ≤ n,
4α if n = 2 and 1/2 ≤ α ≤ 1.

(31)

In fact, the first line of (31) proves the first and third lower bounds on q in Theorem 2.2,
the second line of (31) proves the second lower bound on q in Theorem 2.2, and the third
line of (31) is identical to the fourth lower bound on q in Theorem 2.2.

In proving (31), we proceed backwards starting with the inequality on its last line.
Suppose n = 2 and 1/2 ≤ α ≤ 1. We let b = 1 − α and define

Xb = {(x, y) ∈ R2 : x > 0 and 0 ≤ y ≤ x−b}.

Recall from § 3.4 that the characteristic function of Xb is a weight on R2 of dimension
1 − b = α, and Aα(χXb

) � 1. So (30) implies that∫
Xb∩BR

|Ef(x)|q dx � Rε‖f‖q
L2(S)

for all R ≥ 1. We now use the same Knapp-example argument that we used in § 1.
To every R > 1, there is a function fR on S such that ‖fR‖L2(S) � R−1/4 and |EfR| �

R−1/2 on the rectangle [0, R] × [0,
√
R]. The intersection of this rectangle with Xb ∩

B(0, R) contains the rectangle [0, R] × [0, R−b], so ‖EfR‖q
Lq(Xb∩B(0,R)) � R(−q/2)+α, and

so R(−q/2)+α ≤ RεR−q/4. Therefore, q ≥ 4α.
Moving to the second line of (31), we now suppose that n ≥ 2 and 1 < α ≤ n. We let

b = (α− 1)/(n− 1) and define

Ωb = ∪∞
l=1R × [l1/b, 1 + l1/b]n−1

and we observe that 0 < b ≤ 1 and the characteristic function of Ωb is a weight on Rn

of dimension 1 + (n− 1)b = α and with Aα(χΩb
) � 1. So (30) (applied with H = χΩb

)
implies that ∫

Ωb∩BR

|Ef(x)|q dx � Rε‖f‖q
L2(S)

for all R ≥ 1.
To every R > 1, there is a function fR on S satisfying ‖fR‖L2(S) � R−(n−1)/4 and

|EfR| � R−(n−1)/2 on [0, R] × [l1/b, 1 + l1/b]n−1 whenever l1/b ≤ √
R. Since there are
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∼R(n−1)b/2 such boxes, we see that ‖EfR‖Lq(Ωb∩B(0,R)) � Rm with

m = −n− 1
2

+
(

1 +
(n− 1)b

2

)
1
q
.

We have Rmq � RεR−(n−1)q/4 for all R > 1, so m ≤ −(n− 1)/4, and it follows that (n−
1)q ≥ 2α+ 2.

Suppose n ≥ 2 and 0 < α < n. We will prove the first inequality in (31) by contradic-
tion. Assume q < 2. Then the estimate (30) holds with q replaced by an exponent q0 that
satisfies q < q0 < 2 and q0 ≥ 1 (and Cε replaced by Cεσ(S)(q0−q)/2). When we combine
the resulting estimate with Proposition 8.1, we get the decay estimate

‖μ̂(R·)‖L2(S) ≤ C ′
εR

εCα(μ)R−α/q0 (R ≥ 1)

for all positive measures μ ∈M(Rn) that are supported in B(0, 1). Proposition 8.2 now
implies that α/q0 ≤ α/2, which implies that q0 ≥ 2, which is a contradiction.

10. Proof of Theorem 2.3

We need to show that

Qloc(α,∞) ≥

⎧⎪⎪⎨⎪⎪⎩
(n− 1)/n if n ≥ 2 and 0 < α < n− 1,
2α/(n− 1) if n ≥ 2 and 0 < α ≤ n,
3α if n = 2 and 0 < α ≤ 1,
α+ 2 if n = 2 and 1 ≤ α ≤ 2.

(32)

In fact, the first line of (32) proves the first and third lower bound on Qloc(α,∞) in
Theorem 2.3, the second line of (32) proves the second lower bound on Qloc(α,∞) in
Theorem 2.3, the third line of (32) proves the fourth lower bound on Qloc(α,∞) in
Theorem 2.3, and the last line of (32) proves the fifth lower bound on Qloc(α,∞) in
Theorem 2.3.

In proving (32), we proceed backwards starting with the inequality on its last line.
Suppose that n = 2 and 1 ≤ α ≤ 2, and that we have the estimate∫

BR

|Ef(x)|rH(x) dx ≤ CεR
εAα(H)‖f‖r

L∞(S) (33)

for some r > 0. We need to prove that r ≥ α+ 2. We will do this by showing that r <
α+ 2 leads to a contradiction.

Suppose (33) holds for some r < α+ 2. We let q be an exponent that satisfies r < q <
α+ 2 and q ≥ 2. Then (33) holds with r replaced by q and Cε replaced by σ(S)q−rCε.
Since q ≥ 2, it follows by Proposition 8.1 that

‖μ̂(R·)‖L1(S) ≤ C ′
εR

ε
√
Iα(μ)R−α/q (R ≥ 1)

for all positive measures μ ∈M(Rn) that are supported in B(0, 1). By Theorem 8-A, it
then follows that α/q ≤ α/(α+ 2), which implies that q ≥ α+ 2, which is a contradiction.
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We now move to the inequality before the last in (32). So we are still in the plane, but
now 0 < α ≤ 1. We have just proved that Qloc(1,∞) ≥ 3, so, by Corollary 2.1, we have

Qloc(α,∞)
α

≥ Qloc(1,∞)
1

≥ 3,

and so Qloc(α,∞) ≥ 3α.
Suppose that n ≥ 2 and 0 < α ≤ n. The fact that Qloc(n,∞) ≥ 2n/(n− 1) follows from

the fact that the |σ̂(ξ)| ∼ |ξ|−(n−1)/2 for large ξ. Applying Corollary 2.1 as in the previous
paragraph, we obtain the second inequality in (32).

The rest of the proof will be concerned with the first inequality in (32).
Suppose that n ≥ 2 and 0 < α < n− 1, and that we have the estimate∫

BR

|Ef(x)|rH(x) dx ≤ CεR
εAα(H)‖f‖r

L∞(S) (34)

for some r > 0. We need to prove that r ≥ (n− 1)/n.
We apply the Cauchy–Schwarz inequality in (34) to get∫

BR

|Ef(x)|r/2H(x) dx ≤
(
CεR

εAα(H)‖f‖r
L∞(S)

)1/2( ∫
BR

H(x) dx
)1/2

≤ C1/2
ε Aα(H)‖f‖r/2

L∞(S)R
β

for all balls BR ⊂ Rn of radius R ≥ 1, where β = (α+ ε)/2. This means H :=
‖f‖−r/2

L1(S)|Ef |r/2H is a weight of dimension β with

Aβ(H) ≤ C1/2
ε Aα(H)‖f‖−r/2

L1(S)‖f‖r/2
L∞(S).

We have 0 < α/2 < (n− 1)/2. So, from here on, we may assume that ε is small enough
for us to have 0 < β < (n− 1)/2, which will allow us to apply part (ii) of Proposition 6.1
with any weight of dimension β.

We let Bρ be a ball in Rn of radius ρ ≥ 1, and we apply part (ii) of Proposition 6.1
with the weight χBρ

H to get∫
Bρ

|Ef(x)|qH(x) dx ≤ C̄q
qAβ(H)1/(n−2β)‖H‖(n−1−2β)/(n−2β)

L2(Bρ) ‖f‖q
L2(S)

for q > q0, where

q0 =
n+ 1 − 2β
n− 2β

.

We already have the bound on Aβ(H) from the previous paragraph. Also, (34) tells us
that to every δ′ > 0 there is a constant Cδ′ such that

‖H‖2
L2(Bρ) = ‖f‖−r

L1(S)

∫
Bρ

|Ef(x)|rH(x)2 dx ≤ ‖f‖−r
L1(S)Cδ′ρδ′

Aα(H)‖f‖r
L∞(S),

https://doi.org/10.1017/S0013091521000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000201


404 B. Shayya

where we have used the fact that H2 ≤ H. So∫
Bρ

‖f‖−r/2
L1(S)|Ef(x)|q+(r/2)H(x) dx

≤ C̄q
q

(
C1/2

ε Aα(H)‖f‖−r/2
L1(S)‖f‖r/2

L∞(S)

)1/(n−2β)

×
(
‖f‖−r

L1(S)Cδ′ρδ′
Aα(H)‖f‖r

L∞(S)

)(n−1−2β)/(2(n−2β))

‖f‖q
L2(S)

≤ Cq,ε,δ ρ
δAα(H)(n+1−2β)/(2(n−2β))‖f‖−r/2

L1(S)‖f‖r/2
L∞(S)‖f‖q

L2(S)

provided q > (n+ 1 − 2β)/(n− 2β), where δ = δ′(n− 1 − 2β)/(2(n− 2β)), and so∫
Bρ

|Ef(x)|q+(r/2)H(x) dx ≤ Cq,ε,δ ρ
δAα(H)q0/2‖f‖q

L2(S)‖f‖r/2
L∞(S). (35)

We now let μ ∈M(Rn) be positive, supported in the unit ball B(0, 1), and satisfies
Cα(μ) <∞. Since q0 = (n+ 1 − 2β)/(n− 2β) > 1, we have q > 1, and so we can apply
Lemma 8-A (with q + (r/2) replacing q) to get a weight H on Rn of dimension α that
satisfies

(1) Aα(H) ≤ |B(0, 1)|
(2) to every function f ∈ L1(S) there is a function g ∈ L1(S) such that |g| ≤ |f | and∫

|Ef(ρ x)|q+(r/2) dμ(x) ≤ C ′ Cα(μ)
ρα

∫
B(0,2ρ)

|Eg(y)|q+(r/2)H(y) dy,

where C ′′ depends on q, r, and n.

Then (35) implies that∫
|Ef(ρ x)|q+(r/2) dμ(x) ≤ C ′′ Cα(μ)

ρα
ρδ‖f‖q

L2(S)‖f‖r/2
L∞(S).

Letting γ = α− δ and p = q + (r/2), and using Hölder’s inequality, this becomes∫
|Ef(ρ x)|dμ(x) ≤ C

1
ργ/p

‖f‖q/p
L2(S)‖f‖1−q/p

L∞(S).

Therefore, ∣∣∣ ∫
μ̂(ρξ)f(ξ) dσ(ξ)

∣∣∣ ≤ C
1

ργ/p
‖f‖q/p

L2(S)‖f‖1−(q/p)
L∞(S) . (36)

We will use (36) to estimate the σ-measure of the set

{ξ ∈ S : |μ̂(ρξ)| > λ}
for 0 < λ ≤ ‖μ‖. For such λ and for l ∈ N, we set

Xl = Xl(λ) = {ξ ∈ S : 2l−1λ < |μ̂(ρξ)| ≤ 2lλ}.
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Clearly,

{ξ ∈ S : |μ̂(ρξ)| > λ} ⊂ ∪∞
l=1Xl.

Inserting μ̂(ρξ)χXl
(ξ) for f(ξ) in (36), we obtain(∫

Xl

|μ̂(ρξ)|2 dσ(ξ)
)1−(q/(2p))

≤ Cρ−γ/p(2lλ)1−(q/p),

which implies that

(σ(Xl)(2l−1λ)2)1−(q/(2p)) ≤ Cρ−γ/p(2lλ)1−(q/p),

which in turn implies that

σ(Xl) � ρ−2γ/(2p−q)(2lλ)−2p/(2p−q)

for all l ∈ N. Since 2p− q = q + r, we have
∑∞

l=1 2−2lp/(2p−q) ∼ 1, and hence

σ({ξ ∈ S : |μ̂(ρξ)| > λ}) ≤
∞∑

l=1

σ(Xl) � ρ−2γ/(2p−q)λ−2p/(2p−q).

Of course, we also have the trivial bound

σ({ξ ∈ S : |μ̂(Rξ)| > λ}) ≤ σ(S) � 1.

We now let p0 = 2p/(2p− q) and use the two bounds we now have on the σ measure of
the set {ξ ∈ S : |μ̂(ρξ)| > λ} to see that∫ ‖μ‖

0

σ({ξ ∈ S : |μ̂(ρξ)| > λ})λp0−1 dλ

�
∫ ρ−γ/p

0

λp0−1 dλ+ ρ−γp0/p

∫ ‖μ‖

ρ−γ/p

dλ
λ

� ρ−γp0/p log ρ

provided ρ ≥ (‖μ‖−1 + ‖μ‖)p/γ . Thus∫
|μ̂(ρξ)|p0 dσ(ξ) � (log ρ)ρ−γp0/p.

Since p0 ≤ 2, it follows that∫
|μ̂(ρξ)|2 dσ(ξ) ≤ ‖μ‖2−p0

∫
|μ̂(ρξ)|p0 dσ(ξ) � (log ρ)ρ−γp0/p.

The inequality we just derived is true for all positive measures μ ∈M(Rn) that are
supported in the unit ball and satisfy Cα(μ) <∞. So, by Proposition 8.2, γp0/p ≤ α.
Recalling that γ = α− δ, and letting δ → 0, we see that p0 ≤ p.
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Replacing p0 by its value in terms of p and q, we see that 2p− q ≥ 2. Replacing p
by its value in terms of q and r, this becomes r ≥ 2 − q. Since this is true for every
q > (n+ 1 − 2β)/(n− 2β), it follows that

r ≥ 2 − n+ 1 − 2β
n− 2β

.

Recalling that β = (α+ ε)/2, and letting ε→ 0, we arrive at

r ≥ 2 − n+ 1 − α

n− α
. (37)

If α′ ≤ α, then any weight H on Rn of dimension α′ is also a weight of dimension α.
Moreover, Aα(H) ≤ Aα′(H). So the given estimate (34) holds for all weights on Rn of
dimension α′ ≤ α, and so we can send α→ 0 in (37) to get

r ≥ 2 − n+ 1
n

=
n− 1
n

,

as promised.

Remark 10.1. During the proof of Theorem 2.3, we used the fact that q + (r/2) > 1
to obtain the decay estimate

‖μ̂(ρ ·)‖L2(S) � (log ρ)1/2ρ−γp0/(2p)

for all positive measures μ ∈M(Rn) that are supported in the unit ball and sat-
isfy Cα(μ) <∞. If, for some reason, we knew that q + (r/2) ≥ 2, then (35) (via
Proposition 8.1) would give us the decay estimate

‖μ̂(ρ·)‖L1(S) � ρερ−α/(q+(r/2))

for all positive measures μ ∈M(Rn) that are supported in the unit ball and satisfy
Iα(μ) <∞, which would have allowed us to use Proposition 8-A to conclude that

α

q + (r/2)
≤ α

2
,

i.e. r/2 ≥ 2 − q. Proceeding as we did in the last part of the proof of Theorem 2.3, we
would have arrived at r ≥ 2(n− 1)/n.
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