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Uniform property Γ and finite dimensional
tracial boundaries
Samuel Evington and Christopher Schafhauser
Abstract. We prove that a C∗-algebra A has uniform property Γ if the set of extremal tracial states,
∂e T(A), is a non-empty compact space of finite covering dimension and for each τ ∈ ∂e T(A), the
von Neumann algebra πτ(A)′′ arising from the GNS representation has property Γ.

1 Introduction

There is a rich interaction between C∗-algebras and their enveloping von Neumann
algebras—see Brown’s survey [4], for example. More recently, this interaction has been
used to great success in C∗-algebra theory, using Connes’ fundamental result on the
uniqueness of the separably acting injective II1 factor [10] to deduce structural theo-
rems about simple nuclear C∗-algebras. For instance, even specializing to C∗-algebras
with unique trace, this idea played a crucial role in the solution to the Toms–Winter
conjecture for C∗-algebras with unique trace [18, 19, 23, 27], the quasidiagonality
theorem [25], and the AF embedding theorem [24].

The condition of interest in this article is Murray and von Neumann’s property Γ
[20], which they used to show the hyperfinite II1 factor is not isomorphic to a free
group factor, giving the first example of non-isomorphic II1 factors, by showing prop-
erty Γ holds for the former and fails for the latter. For our purposes, the most useful
characterization of property Γ for a II1 factor is the existence of an approximately
central projection of trace 1/2, which is due to Dixmier [12].

For a C∗-algebra A, let T(A) denote the set of tracial states on A, which we will
always assume is non-empty and weak∗-compact (the later holds, for example, if A
is unital), and let ∂e T(A) denote the extreme points of T(A). For each τ ∈ T(A),
there is an L2-seminorm ∥a∥2,τ = τ(a∗a)1/2 and the Gelfand–Naimark–Segal (GNS)
representation πτ ∶ A → B(L2(A, τ)).

The associated tracial von Neumann algebra πτ(A)′′ is a factor if and only if τ ∈
∂e T(A), and, in this case, πτ(A)′′ has property Γ if and only if for every finite set
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2 S. Evington and C. Schafhauser

F ⊆ A and ε > 0, there is a positive contraction p ∈ A with

∣τ(p) − 1/2∣ < ε, ∥p − p2∥2,τ < ε, and max
a∈F

∥[a, p]∥2,τ < ε.(1.1)

When A has several traces, a natural version of property Γ, which could be called
fibrewise property Γ, would be asking that πτ(A)′′ has property Γ for every τ ∈ ∂e T(A).
However, the more useful condition is uniform property Γ, introduced in [9], which
requires that p in (1.1) can be chosen uniformly over all traces τ ∈ ∂e T(A).1

In [9], uniform property Γ was shown to hold for all Z -stable C∗-algebras A, i.e.,
when A ≅ A⊗Z , where Z denotes the Jiang–Su algebra [15]. This observation had
a crucial role in proof that simple nuclear finite Z -stable C∗-algebras have nuclear
dimension at most one [6, 9].2 Furthermore, building on work of Matui and Sato [18],
it was shown in [8] that separable simple nuclear C∗-algebras with uniform property
Γ and strict comparison are Z -stable.

Any simple nuclear non-elementary C∗-algebra has fibrewise property Γ because
injective II1 factors have property Γ by Connes’ theorem [10]. Hence, due to the results
of [8], the problem of whether fibrewise property Γ implies uniform property Γ is of
significant interest. In the setting when A is nuclear and ∂e T(A) is compact with finite
covering dimension, this is true by the results of [16, 22, 26]. The main result of this
article removes the nuclearity constraint.

Theorem 1.1 Let A be a C∗-algebras with T(A) compact and non-empty. Suppose
∂e T(A) is compact and has finite covering dimension. Then A has uniform property
Γ if and only if πτ(A)′′ has property Γ for all τ ∈ ∂e T(A).

If property Γ is replaced with McDuff ’s property (the existence of a unital approx-
imately central approximate embedding of the 2 × 2 matrix algebra M2) in both the
fibrewise and uniform conditions, the theorem holds by [16, Proposition 7.7] and also
essentially follows from the results obtained independently and contemporaneously
in [22, 26].

Our proof of Theorem 1.1 is modeled on the argument in the McDuff setting
carried out in [26, Section 4]. Let A∞ ∩ A′ denote the tracial central sequence algebra
of A (see Section 2.2). Then the uniform McDuff property for A (in the separable
setting) is equivalent to the existence of a unital embedding Mk → A∞ ∩ A′ for some,
or equivalently any, integer k ≥ 2. Property Γ is analogously characterized by the
existence of unital embeddings Ck → A∞ ∩ A′ with prescribed tracial behavior. The
extra control on the traces is not needed in the McDuff setting due to the uniqueness of
the trace on Mk , and explicitly controlling the tracial behavior of the maps throughout
the argument is where the new difficulties lie.

It will be technically convenient to prove Theorem 1.1 in the slightly different (and
somewhat more general) setting of W∗-bundles, introduced by Ozawa in [21]. Since

1For technical reasons, one should further require ∣τ(ap) − τ(a)/2∣ < ε for all a ∈ F. We do not
know if this extra condition is automatic in general, but it is when ∂e T(A) is compact [8, Corollary 3.2],
which is the case of interest in this article.

2For an analogous result in the infinite case, see [3, Theorem G] and [19, Theorem 7.1], noting that
simple nuclear infinite Z -stable C∗-algebras are purely infinite by Kirchberg’s Dichotomy [2, Corollary
3.11(ii)].
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Property Γ and finite dimensional tracial boundaries 3

uniform property Γ is an approximation property in the uniform 2-seminorm

∥a∥2,T(A) = sup
τ∈T(A)

τ(a∗a)1/2 , a ∈ A,(1.2)

it is natural to replace A with it’s uniform tracial completion AT(A), obtained by adding
a limit point to every ∥ ⋅ ∥-bounded ∥ ⋅ ∥2,T(A)-Cauchy sequence in A (and quotienting
by ∥ ⋅ ∥2,T(A)-null elements). Ozawa showed in [21] that AT(A) always carries the
structure of a C∗-algebra—in fact, these form the prototypical examples of tracially
complete C∗-algebras, which were recently introduced and studied systematically
in [5].

When A is a C∗-algebra such that T(A) is compact and non-empty and ∂e T(A)
is compact, Ozawa showed in [21] that the centre of M = AT(A) has spectrum K =
∂e T(A) and the natural inclusion C(K) →M admits a faithful tracial conditional
expectation E∶M→ C(K). Further,

∥a∥2,T(A) = ∥E(a∗a)∥1/2 , a ∈ A,(1.3)

and hence, by the definition of M = AT(A), the unit ball of M is complete in the
norm ∥b∥2,u = ∥E(b∗b)∥1/2. Axiomatizing this structure of the triple (M, K , E) leads
to Ozawa’s notion of W∗-bundles (see Section 2.1). Loosely speaking,M can be viewed
as the continuous sections of a topological bundle over K with tracial von Neumann
algebra fibres. The following is a W∗-bundle analog of Theorem 1.1.

Theorem 1.2 Let M be a W∗-bundle over a finite dimensional compact Hausdorff
space such that every fibre of M is a II1 factor. Then M has property Γ if and only if
every fibre of M has property Γ.

If A is a C∗-algebra as in Theorem 1.1, the corresponding W∗-bundle M = AT(A)

will satisfy the hypotheses of Theorem 1.2. Then property Γ for M, coming from
Theorem 1.2, will imply uniform property Γ for A, obtaining Theorem 1.1. After
establishing some preliminaries in Section 2, the rest of the article is essentially
devoted to proving Theorem 1.2 in Section 3. Theorem 1.1 is deduced from Theorem 1.2
at the end of Section 3.

2 Preliminaries

2.1 W∗-bundles

W∗-bundles will be central to this article. We recall the definition and set out our
notational conventions below. Our standard references for W∗-bundles are [21] and
[14].

Definition 2.1 (cf. [21, Section 5]) A W∗-bundle consists of a unital C∗-algebra M

together with a unital embedding of C(K) into the centre of M and a conditional
expectation E∶M→ C(K) such that the following axioms hold:

(i) for any a, b ∈M, we have E(ab) = E(ba);

(ii) for any a ∈M, we have E(a∗a) = 0 implies a = 0;
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4 S. Evington and C. Schafhauser

(iii) the unit ball {a ∈M ∶ ∥a∥ ≤ 1} is complete with respect to the norm defined
by ∥a∥2,u = ∥E(a∗a)∥1/2.

We shall denote a W∗-bundle by a triple (M, K , E) or simply by M if K and E are
clear from context. Every point x ∈ K defines a trace τ ∈ T(M) by τ(a) = E(a)(x)
for a ∈M. The map K → T(M) thus defined is continuous with respect to the weak∗
topology on T(M). It will be convenient to identify points in K with their induced
trace.

We write πτ ∶M→ B(L2(M, τ)) for the GNS representation of M with respect to
τ ∈ K. The image πτ(M) is called the fibre ofM at τ ∈ K. An important consequence of
axiom (iii) is that πτ(M)′′ = πτ(M); see [21, Theorem 11]. The trace τ induces a faithful
normal trace τ̄ on πτ(M), so the fibres of a W∗-bundle are tracial von Neumann
algebras. A W∗-bundle is said to have factorial fibres if πτ(M) is a factor for all τ ∈ K.
This is equivalent to saying that every τ ∈ K is an extreme point of T(M); see [13,
Theorem 6.7.3], for example.

Given a C∗-algebra A with T(A) compact and non-empty, the uniform tracial
completion of A with respect to T(A) is defined by

AT(A) =
{(an)∞n=1 ∈ �∞(A) ∶ (an)∞n=1 is ∥ ⋅ ∥2,T(A)-Cauchy}
{(an)∞n=1 ∈ �∞(A) ∶ (an)∞n=1 is ∥ ⋅ ∥2,T(A)-null} ,(2.1)

where �∞(A) denotes the C∗-algebra of bounded sequences in A and

∥a∥2,T(A) = sup
τ∈T(A)

∥a∥2,τ , a ∈ A.(2.2)

Ozawa proved that for such a C∗-algebra, if the set of extreme points of T(A), denoted
∂e T(A), is compact in the weak∗ topology, then AT(A) can be endowed with the
structure of a W∗-bundle over K = ∂e T(A); see [21, Theorem 3].

W∗-bundles form a special case of the more general framework of tracially com-
plete C∗-algebras recently introduced in [5]. A tracially complete C∗-algebra is a pair
(M, X), where M is a unital C∗-algebra and X ⊆ T(M) is a compact convex set of
traces, where the seminorm

∥a∥2,X = sup
τ∈X

∥a∥2,τ , a ∈ A,(2.3)

is a norm and the unit ball {a ∈M ∶ ∥a∥ ≤ 1} is ∥ ⋅ ∥2,X-complete. More precisely, given
a W∗-bundle (M, K , E), let X be the set of all traces of the form

τμ(a) = ∫
K

E(a) dμ, a ∈M,(2.4)

where μ ranges over the space of Radon probability measures on K. Then (M, X) is
a tracially complete C∗-algebra [5, Proposition 3.6]. By a theorem essentially due to
Ozawa in [21], W∗-bundles with factorial fibres are precisely the factorial3 tracially
complete C∗-algebras (M, X) where X is a Bauer simplex; this precise statement is

3We recall from [5, Definition 3.13] that a tracially complete C∗-algebra (M, X) is factorial if X is
a face in T(M). This happens precisely when πτ(M)′′ is a factor for all τ ∈ ∂e X (see [5, Proposition
3.14]), and hence factoriality for tracially complete C∗-algebras generalizes the notion of factorial fibres
for W∗-bundles.
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Property Γ and finite dimensional tracial boundaries 5

given as [5, Theorem 3.37]. In fact, tracially complete C∗-algebras were introduced to
extend the thoery of W∗-bundles beyond the Bauer setting. For example, if A is a unital
C∗-algebra such that T(A) is compact and non-empty but ∂e T(A) is not compact,
then AT(A) does not have a natural W∗-bundle structure but is still a (factorial)
tracially complete C∗-algebra.

2.2 Sequence algebras

Ultrapowers of W∗-bundles were introduced in [3, Section 3]. In this article, it will be
more convenient to work with the Fréchet filter on N rather than an ultrafilter; i.e., we
will work with classical sequential limits instead of ultralimits.

Definition 2.2 Let (M, K , E) be a W∗-bundle. Then

c0,u(M) = {(an)∞n=1 ∈ �∞(M) ∶ lim
n→∞

∥an∥2,u = 0}(2.5)

is an ideal of the C∗-algebra �∞(M) of ∥ ⋅ ∥-bounded sequences in M, and we define
M∞ = �∞(M)/c0,u(M). Since ∥ f ∥2,u = ∥ f ∥ for all f ∈ C(K), the norm sequence
algebra4

C(K)∞ = �∞(C(K))
{( fn)∞n=1 ∈ �∞(C(K)) ∶ limn→∞ ∥ fn∥ = 0} .(2.6)

unitally embeds into the centre of M∞. There is a conditional expectation E∞∶M∞ →
C(K)∞, defined at the level of representative sequences by (an)∞n=1 ↦ (E(an))∞n=1. We
write K∞ for the spectrum of the abelian C∗-algebra C(K)∞ and identify C(K)∞ ≅
C(K∞). The W∗-bundle (M∞, K∞ , E∞) is called the sequence algebra of M.5

It is worth saying a few extra words about the base space K∞ of the reduced power.
For every sequence of points (xn)∞n=1 in K and every free ultrafilter ω on the natural
numbers, we can define a character xω ∶C(K)∞ → C by ( fn)∞n=1 ↦ limn→ω fn(xn).
Hence, xω ∈ K∞. The set of all such characters recovers the norm on C(K)∞ and so
defines a dense subset of K∞ by a standard application of Urysohn’s lemma. When we
view elements of K∞ as traces on M∞, by identifying xω with xω ○ E∞, the characters
of the form xω correspond to limit traces in the sense of [7, Section 1] (see also [3,
Section 1.3] for an ultrapower version). Hence, we may view K∞ as a subset of the
weak∗-closure of the limit traces on M∞.

We end this subsection by reminding the reader of some common notational con-
ventions. We identify M with the subalgebra of M∞ coming from constant sequence
in �∞(M) and write M∞ ∩ S′ for the relative commutant of a subset S ⊆M∞.

4It has become common to use subscripts such as A∞ for C∗-norm sequence algebras and
superscripts such as M∞ for (uniform) tracial sequence algebras. Since the only C∗-norm sequence
algebra appearing in this article is C(K)∞ (and the C∗-norm on C(K) agrees with the uniform trace
norm ∥ ⋅ ∥2,T(C(K))), there should be no ambiguity caused by using the notation C(K)∞ for the C∗-
norm sequence algebra.

5The only difficult part of showing that (M∞ , K∞ , E∞) is a W∗-bundle is proving ∥ ⋅ ∥2,u-
completeness of the unit ball. This is achieved using Kirchberg’s ε-test; see [3, Proposition 3.9] or [5,
Proposition 5.4], for example.
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6 S. Evington and C. Schafhauser

2.3 Tracial factorization

W∗-bundles with factorial fibres enjoy the following property known as tracial factor-
ization.

Proposition 2.3 Let (M, K , E) be a W∗-bundle with factorial fibres. For any finite
subset of contractions F ⊆M and ε > 0, there exist a finite subset of positive contractions
G ⊆M and δ > 0 such that for all x ∈M, if

max
y∈G

∥[x , y]∥2,u < δ,(2.7)

then

max
y∈F

∥E(x y) − E(x)E(y)∥ < ε.(2.8)

The fact that W∗-bundles with factorial fibres have tracial factorisation is implicit
in [21]. Essentially the same phenomenon, in the setting of C∗-algebras with a Bauer
simplex of traces, is shown in [22]. Our proof of Proposition 2.3 is modelled on
[8, Proposition 3.1] with nets replacing sequences.

Proof (Proposition 2.3) Suppose the result doesn’t hold. Then there exist ε0 > 0, a
positive contraction y0 ∈M, and a net (xλ)λ∈Λ of positive contractions inM such that

lim
λ
∥[xλ , y]∥2,u = 0(2.9)

for all y ∈M, but

∥E(xλ y0) − E(xλ)E(y0)∥ ≥ ε0(2.10)

for all λ ∈ Λ. Hence, there exists a net (τλ)λ∈Λ of traces in K such that

∣τλ(xλ y0) − τλ(xλ)τλ(y0)∣ ≥ ε0(2.11)

for each λ ∈ Λ.
Since K is compact, after passing to a subnet, we may assume (τλ)λ∈Λ converges

in the weak∗ topology to some τ ∈ K. Since the unit ball of M∗ is weak∗-compact, by
passing to a subnet again, we may further assume that (y ↦ τλ(xλ y))λ∈Λ converges
in the weak∗ topology to some σ ∈M∗.

It follows from (2.9) that σ is a positive tracial functional on M. Moreover, for
positive y ∈M, we have

σ(y) = lim
λ

τλ(y1/2xλ y1/2)

≤ lim sup
λ

τλ(y1/2∥xλ∥y1/2)(2.12)

≤ τ(y)

since xλ ∈M is a positive contraction.
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Property Γ and finite dimensional tracial boundaries 7

As M has factorial fibres, τ is an extremal trace on M. Since σ ≤ τ, it follows that
σ = σ(1M)τ. We conclude

lim
λ

τλ(xλ y0) = σ(y0)

= σ(1M)τ(y0)
= lim

λ
τλ(xλ) lim

λ
τλ(y0)(2.13)

= lim
λ

τλ(xλ)τλ(y0).

However, this contradicts (2.11). ∎
In this article, we will make judicious use of tracial factorization to expedite our

proofs in the following way. We shall show that elements with certain properties exist
in all relative commutants M∞ ∩M′0, where M0 is any ∥ ⋅ ∥2,u-separable subalgebra
of a W∗-bundle M. A reindexing argument will then allow us to show that elements
with the same set of properties exists in M∞ ∩ S′ for any ∥ ⋅ ∥2,u-separable subalgebra
S ⊆M∞, and moreover, the elements can be chosen such that each element a satisfies
τ(as) = τ(a)τ(s) for all s ∈ S and τ ∈ K∞.

A formal statement and proof of this fact will be presented in the following
lemma. To this end, we introduce some additional terminology: the reindexing ∗-
homomorphism ψρ ∶M∞ →M∞ associated with a strictly increasing function ρ∶N→
N is the unital ∗-homomorphism defined at the level of representative sequences by
(an)∞n=1 ↦ (aρ(n))∞n=1.6

Lemma 2.4 Let (M, K , E) be a W∗-bundle with factorial fibres. For a ∥ ⋅ ∥2,u-
separable subset S ⊆M∞, there is a ∥ ⋅ ∥2,u-separable subalgebra M0 ⊆M with the
following property: for any ∥ ⋅ ∥2,u-separable subset T ⊆M∞ ∩M′0, there exists a rein-
dexing ∗-homomorphism ψρ ∶M∞ →M∞ such that ψρ(T) ⊆M∞ ∩ S′ and

τ(ψρ(t)s) = τ(ψρ(t))τ(s)(2.14)

for all s ∈ S, t ∈ T, and τ ∈ K∞.
Proof By continuity and linearity, it suffices to replace S by a countable set of
contractions. Let us then enumerate S = {s(1) , s(2) , . . . } and represent s(i) by the
sequence of contractions (s(i)n )∞n=1 in M. Set Fn = {s(i)n ∶ i = 1, . . . , n} and εn = 1

n . Let
Gn ⊆M and δn > 0 be the finite set and tolerance corresponding to (Fn , εn) according
to Proposition 2.3. We may assume that Fn ⊆ Gn and δn < εn . Take M0 to be the
subalgebra of M generated by ⋃n∈N Gn and note that M0 is ∥ ⋅ ∥2,u-separable.

Let T ⊆M∞ ∩M′0 be ∥ ⋅ ∥2,u-separable. By continuity and linearity, it suffices to
replace T by a countable set of contractions. Say T = {t(1) , t(2) , . . . } and represent
t( j) by the sequence of contractions (t( j)

m )∞m=1. For each n ∈ N, any sufficiently large
m ∈ N will satisfy

max
y∈Gn

∥[t( j)
m , y]∥2,u < δn(2.15)

6The subtlety here is that ψρ is well-defined. This is true for the sequence algebra as
limn→∞ ∥aρ(n)∥2,u = 0 whenever limn→∞ ∥an∥2,u = 0, but it is not always true for ultrapowers. This
is the reason for our choice to work with sequential limits.
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8 S. Evington and C. Schafhauser

for all j ∈ {1, . . . , n} because T commutes with M0. Hence, we may inductively define
a strictly increasing function ρ∶N→ N such that

max
y∈Gn

∥[t( j)
ρ(n) , y]∥2,u < δn(2.16)

for all j ∈ {1, . . . , n} and n ∈ N. By the choice of Gn and δn , this implies

sup
τ∈K

∣τ(t( j)
ρ(n)s

(i)
n ) − τ(t( j)

ρ(n))τ(s(i)n )∣ < 1
n

(2.17)

for all i , j ∈ {1, . . . , n} and n ∈ N. At the level of the sequence algebraM∞, this implies
(2.14). Since we have chosen that Fn ⊆ Gn and δn < εn = 1

n , it follows from (2.16) that
ψρ(T) ⊆M∞ ∩ S′. ∎

Note that the formulation of Lemma 2.4 simplifies when M itself is ∥ ⋅ ∥2,u-
separable as M0 can always be taken to be M.

2.4 Property Γ

Uniform property Γ for C∗-algebras was introduced in [9] and further investigated in
[8].

Definition 2.5 (cf. [9, Definition 2.1]) Let A be a C∗-algebra with T(A) non-empty
and compact. Then A has uniform property Γ if for any separable subset S ⊆ A and
k ∈ N, there exist projections p1 , . . . , pk ∈ A∞ ∩ S′ summing to 1A∞ such that

τ(ap j) =
1
k

τ(a)(2.18)

for all a ∈ S, τ ∈ T∞(A) and j ∈ {1, . . . , k}.

Here, the tracial sequence algebra A∞ is defined analogously to the sequence algebra
M∞ in Definition 2.2, replacing with uniform trace norm ∥ ⋅ ∥2,u on the W∗-bundle
M with the uniform trace seminorm ∥ ⋅ ∥2,T(A) as in (2.3). The set T∞(A) ⊆ T(A∞)
is the set of limit traces, defined by on representing sequences by

(an)∞n=1 ↦ lim
n→ω

τn(an)(2.19)

for a sequence of traces (τn)∞n=1 ⊆ T(A) and a free ultrafilter ω on N.
The definition in [9] differs in two ways. When A itself is separable, it suffices to

take S = A by a simple reindexing argument. Also, [9] works with the ultrapower Aω

in place of the sequence algebra A∞. Both constructions lead to the same notion of
property Γ; see the discussion in [8, Section 2] for details. Finally, as discussed in
[8, Section 3], when T(A) is a Bauer simplex it suffices take a = 1A in this definition by
tracial factorization. Also, we note that the informal definition of property Γ stated in
the introduction assumed k = 2. This is the same condition by a slight modification of
[8, Proposition 2.3].7 However, it is important in this article that k can be taken to be

7The statement in [8, Proposition 2.3] assumes separability, but this is not hard to remove from the
proof after replacing A∞ ∩ A′ with A∞ ∩ S′ for separable S ⊆ A.
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Property Γ and finite dimensional tracial boundaries 9

arbitrarily large when applying property Γ, and when verifying property Γ, reducing
to the case k = 2 will not significantly simplify our proof.

Property Γ can also be defined at the level of W∗-bundles with factorial fibres.

Definition 2.6 Let (M, K , E) be a W∗-bundle with factorial fibres. We say that
(M, K , E) has property Γ if for any ∥ ⋅ ∥2,u-separable subset S ⊆M and k ∈ N, there
exist projections p1 , . . . , pk ∈M∞ ∩ S′ summing to 1M∞ such that

τ(p j) =
1
k

(2.20)

for all τ ∈ K∞ and j ∈ {1, . . . , k}.

By tracial factorization, the p j can always be chosen such that

τ(ap j) =
1
k

τ(a)(2.21)

for all a ∈ S, τ ∈ K∞ and j ∈ {1, . . . , k}. Hence, our definition of property Γ for W∗-
bundles is consistent with that of [5, Definition 5.19] for tracially complete C∗-
algebras.

Finally, we note that the two notions of property Γ above are closely connected,
which is what will allow us to deduce Theorem 1.1 from Theorem 1.2. If A is a C∗-
algebra with T(A) compact and non-empty and K = ∂e T(A) compact, then M =
AT(A) is a W∗-bundle as recalled in Section 2.1, and A has uniform property Γ if and
only if M has property Γ; see [5, Proposition 5.20].

2.5 Order zero maps and their functional calculus

Let A and B be C∗-algebras. A completely positive and contractive (c.p.c.) map ϕ∶A → B
is said to be order zero if it preserves orthogonality, i.e., if ϕ(x)ϕ(y) = 0 for all x , y ∈
A+ satisfying x y = 0.

We briefly recall the structure theorem for order zero maps and the order zero
functional calculus from [28], which is based on early work from [29]. Let ϕ∶A → B be
a c.p.c. order zero map. Then there is positive contraction h ∈ M(C∗(ϕ(A))) ∩ ϕ(A)′
and a ∗-homomorphism ϕ̂∶A → M(C∗(ϕ(A))) ∩ {h}′ such that ϕ(a) = ϕ̂(a)h for
all a ∈ A (see [28, Theorem 2.3]). Note that when A is unital, we have h = ϕ(1A) ∈
C∗(ϕ(A)).

For a positive contraction f ∈ C0(0, 1], define f (ϕ)∶A → B by f (ϕ)(a) =
ϕ̂(a) f (h). Since ϕ̂ is a ∗-homomorphism commuting with h, it is easily seen that
f (ϕ) is a c.p.c. order zero map. This construction is known as the order zero functional
calculus. Furthermore, we can define an induced ∗-homomorphism ϕ̃∶C0(0, 1] ⊗ A →
B via f ⊗ a ↦ f (ϕ)(a) (see [28, Corollary 3.1]). The original c.p.c. order zero map ϕ
can be recovered from ϕ̃ since ϕ(a) = ϕ̃(id(0,1] ⊗ a) for all a ∈ A.

The following property of the order zero functional calculus is particularly relevant
to the computations in this article. This has been observed before (see [26, (2.1)], for
example), but we include a proof for the sake of completeness.
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Lemma 2.7 Let A and B be C∗-algebras and ϕ∶A → B be a c.p.c. order zero map. Let
p ∈ A be a projection. Then

f (ϕ)(p) = f (ϕ(p))(2.22)

for all positive contractions f ∈ C0(0, 1].
Proof By the Stone–Weierstrass theorem, it suffices to consider the functions
fn(t) = tn for n ≥ 1. Let ϕ̃∶C0(0, 1] ⊗ A → B be the induced ∗-homomorphism. Then,
since pn = p, we have

fn(ϕ(p)) = ϕ̃(id(0,1] ⊗ p)n = ϕ̃(idn
(0,1] ⊗ p) = fn(ϕ)(p).(2.23)

∎
We isolate the following lemma from the proof of [26, Lemma 4.5]. We thank Allan

Donsig for suggesting the short spatial proof below, which we find more intuitive than
the functional calculus approach taken in [26].

Lemma 2.8 Let A and B be C∗-algebras and assume ϕ, ψ∶A → B are c.p.c. maps with
ϕ(a) ≤ ψ(a) for all positive a ∈ A. If ψ is order zero, then so is ϕ.

Proof Fix a faithful representation B ⊆ B(H). If a, b ∈ A are positive with ab = 0,
then ψ(a)ψ(b) = 0. Combining this with the inequalities 0 ≤ ϕ(a) ≤ ψ(a) and 0 ≤
ϕ(b) ≤ ψ(b) yields

ϕ(b)H ⊆ ψ(b)H ⊆ ker ψ(a) ⊆ ker ϕ(a),(2.24)

and hence ϕ(a)ϕ(b) = 0. ∎

3 Finite covering dimension and property Γ

We now begin our journey towards Theorem 1.2. As the argument is fairly technical,
we have broken it down into a series of lemmas, each presented in its own subsection
together with some additional commentary. For convenience, we shall make the
following global notational conventions.

Notation 3.1 We write e1 , . . . , ek for the minimal projections of Ck and 1k for the unit
of Ck . For z1 , z2 ∈ C and ε > 0, we write z1 ≈ε z2 as a shorthand for ∣z1 − z2∣ ≤ ε. For
positive elements x and y of a C∗-algebra, we write x ⊥ y if x y = yx = 0. For future
use in functional calculus, we define the continuous functions gγ1 ,γ2 ∈ C0(0, 1], where
0 ≤ γ1 < γ2 ≤ 1, by

gγ1 ,γ2(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, 0 < t ≤ γ1;
t−γ1

γ2−γ1
, γ1 < t < γ2;

1, γ2 ≤ t ≤ 1.
(3.1)

Our construction makes systematic use of c.p.c. order zero maps ϕ∶Ck → A, where
A is a C∗-algebra of interest. The reader is encouraged to think of these objects
as a convenient packaging for k mutually orthogonal positive contractions in the
C∗-algebra A, namely the elements ϕ(e1), . . . , ϕ(ek) ∈ A. Note that ϕ being a ∗-
homomorphism is equivalent to these positive elements being projections.
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3.1 The core partition of unity argument

The first step in the proof of Theorem 1.2 is to apply a standard W∗-bundle partition
of unity results to the property that all the fibres are II1 factors with property Γ.
In each fibre, we have k orthogonal and approximately central projections, each of
trace 1/k, that sum to the identity. Gluing them together over a partition of unity
results in approximately central positive contractions a1 , . . . , ak ∈M, each of trace
approximately 1/k, that sum to the identify.

Using that m = dim(K) < ∞, we can chose the aforementioned partition of unity
so that any point in K is contained in the support of at most m + 1 of the functions
in the partition. This allows us to decompose each a j as a sum ∑m

c=0 a(c)j , where each
a(c)j is a positive contraction and, for each c ∈ {0, . . . , m}, the elements a(c)1 , . . . , a(c)k
are mutually orthogonal, providing an ‘(m + 1)-coloured’ version of property Γ.

It is crucial in the rest of the argument that m can be chosen uniformly over k ∈ N
and over all tolerances used to measure approximate centrality (i.e., that m does not
depend on the separable set S). This is where the finiteness of dim(K) enters the proof
of Theorem 1.2.

Lemma 3.2 (cf. [26, Lemma 4.1]) Let m ∈ N and let (M, K , E) be a W∗-bundle whose
fibres are II1 factors with property Γ and such that dim(K) ≤ m. Further, let S ⊆M

be a ∥ ⋅ ∥2,u-separable subset. Then for every k ∈ N there exist c.p.c. order zero maps
Φ(0) , . . . , Φ(m)∶Ck →M∞ ∩ S′ such that

m
∑
c′=0

Φ(c
′)(1k) = 1M∞(3.2)

and

τ( f (Φ(c)(e j))) =
1
k

τ( f (Φ(c)(1k)))(3.3)

for all τ ∈ K∞, c ∈ {0, . . . , m}, j ∈ {1, . . . , k}, and f ∈ C0(0, 1].

Proof Unpacking the sequence algebra formalism, it suffices to show that
for any finite set F ⊆M, N ∈ N, and ε > 0, there are c.p.c. order zero maps
Φ(0) , . . . , Φ(m)∶Ck →M such that

∥
m
∑
c′=0

Φ(c
′)(1k) − 1M∥

2,u
≤ ε,(3.4)

∥[Φ(c)(e j), b]∥2,u ≤ ε,(3.5)

and

∣τ(Φ(c)(e j)n) − 1
k

τ(Φ(c)(1k)n)∣ ≤ ε(3.6)

for all τ ∈ K, c ∈ {0, . . . , m}, j ∈ {1, . . . , k}, n ∈ {1, . . . , N}, and b ∈ F.
For every τ ∈ K, since πτ(M) has property Γ, there exists a unital ∗-

homomorphism C
k → πτ(M) such that the image of each e j has trace 1

k and ∥ ⋅ ∥2,τ-
approximately commutes with πτ(F).
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By [17, Theorem 4.6] (cf. [1, Proposition 2.6]), the cone over Ck is a projective C∗-
algebra. Combined with the structure theorem for order zero maps [28, Corollary 3.1],
this implies that the constructed ∗-homomorphism C

k → πτ(M) lifts to a c.p.c. order
zero map ϕτ ∶Ck →M. Let ε > 0. By continuity, there is a neighborhood Vτ of τ in K
such that for all σ ∈ Vτ ,

∥ϕτ(1k) − 1M∥2,σ ≤ ε
m + 1

,(3.7)

∥[ϕτ(e j), b]∥2,σ ≤ ε,(3.8)

and

σ(ϕτ(e j)n) ≈ε/2 1/k(3.9)

for all b ∈ F, j ∈ {1, . . . , k}, and n ∈ {1, . . . , N}.8
By compactness and since dim(K) ≤ m, we may find a finite (m + 1)-coloured

refinement of {Vτ ∶ τ ∈ K}—that is, an open cover of K consisting of open sets U(c)i
for i ∈ {1, . . . , lc} and c ∈ {0, . . . , m} such that each U(c)i is contained in Vτ(c)

i
for some

τ(c)i ∈ K, and for each c, the sets U(c)1 , . . . , U(c)lc
are disjoint. Let (h(c)i )c=0,.. . ,m; i=1, . . . , lc

be a partition of unity in C(K) ⊆M subordinate to this open cover. We now define

Φ(c) =
lc

∑
i=1

h(c)i ϕτ(c)
i
∶Ck →M.(3.10)

Since each ϕτ is c.p.c. order zero and h(c)1 , . . . , h(c)lc
are mutually orthogonal and

central, it follows that Φ(c) is itself a c.p.c. order zero map.
To show (3.4), we note that for each c ∈ {0, . . . , m} we have

∥Φ(c)(1k) −
lc

∑
i=1

h(c)i ∥
2,u

≤ ∥
lc

∑
i=1
(ϕτ(c)

i
(1k) − 1M)h(c)i ∥

2,u
≤ ε

m + 1
(3.11)

by (3.7) since every τ ∈ K is in the support of at most one of the functions
h(c)1 , . . . , h(c)lc

. Summing over all c ∈ {0, . . . , m} and using the triangle inequality, we
obtain (3.4) since ∑c , i h(c)i = 1M.

To show (3.5), fix c ∈ {0, . . . , m}, j ∈ {1, . . . , k}, and b ∈ F. For τ ∈ K, there is at
most one i ∈ {1, . . . , lc} such that τ ∈ U(c)i . If no such i exists, then ∥[Φ(c)(e j), b]∥2,τ
= 0, and otherwise, for this i, we have

∥[Φ(c)(e j), b]∥2,τ
(3.10)= ∥[h(c)i ϕτ(c)

i
(e j), b]∥2,τ

(3.8)
≤ ε.(3.12)

Similarly for (3.6), fix τ ∈ K, c ∈ {0, . . . , m}, and n ∈ {1, . . . , N}. If there is no i for
which τ ∈ U(c)i , then

τ(Φ(c)(e j)n) = τ(Φ(c)(1k)n) = 0(3.13)

8Recall from Section 2.1 that we are identifying the point τ ∈ K with the trace evalτ ○ E, and the map
τ ↦ evalτ ○ E is continuous with respect to the weak∗ topology on T(M).
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for all j ∈ {1, . . . , k}. Otherwise, there is exactly one i for which τ ∈ U(c)i , and then we
have, for j ∈ {1, . . . , k},

τ(Φ(c)(e j)n)(3.10)= τ((h(c)i )n ϕτ(c)
i
(e j)n)

= τ((h(c)i )n)τ(ϕτ(c)
i
(e j)n)(3.14)

(3.9)≈ ε/2
1
k

τ((h(c)i )n),

where the unlabeled inequality uses that the h(c)i are central and τ is an extremal
trace on M (as the fibre over τ is a factor).9 Since Φ(c) is c.p.c. order zero, we have
Φ(c)(1k)n = ∑k

j′=1 Φ(c)(e j′)n . Thus,

1
k

τ(Φ(c)(1k)n) = 1
k

k
∑
j′=1

τ(Φ(c)(e j′)n)

≈ε/2
1
k

τ((h(c)i )n)(3.15)

≈ε/2 τ(Φ(c)(e j)n)
for all j ∈ {1, . . . , k}, using (3.14) for both approximations. ∎

3.2 Orthogonal tracial division

The next step towards proving Theorem 1.2 is the construction of mutually orthogonal
positive contractions in M∞ that commute with a given separable subset S, satisfy
tracial factorization with respect to S, and do not vanish on any trace in K∞. The
existence of such families of mutually orthogonal positive contractions follows from
Lemma 3.2 and makes crucial use of the fact that m is independent of k.
Lemma 3.3 (cf. [26, Lemma 4.3]) Given m, r ∈ N, there exists γm ,r > 0 with the
following property: for any W∗-bundle (M, K , E) with dim(K) ≤ m whose fibres are
II1 factors with property Γ and ∥ ⋅ ∥2,u-separable subset S ⊆M∞, there exist mutually
orthogonal positive contractions d0 , . . . , dr ∈M∞ ∩ S′ such that

τ( f (d i)s) = τ( f (d i))τ(s)(3.16)

and

τ(d i) ≥ γm ,r(3.17)

for all i ∈ {0, . . . , r}, s ∈ S , τ ∈ K∞, and f ∈ C0(0, 1].
Proof Fix m ∈ N. We begin with the case r = 1 and define

γm ,1 =
1

4(m + 1) .(3.18)

9More generally, if A is a C∗-algebra, h, a ∈ A with h central, and τ is an extremal trace on A, then
τ(ha) = τ(h)τ(a). Indeed, we may assume h ≥ 0. If τ(h) = 0, this follows from the Cauchy–Schwarz
inequality. When τ(h) ≠ 0, note that b ↦ τ(hb)/τ(h) is a trace on A dominated by τ(h)−1τ and hence
equals τ.
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Let S ⊆M∞ be ∥ ⋅ ∥2,u-separable. Let M0 ⊆M be a ∥ ⋅ ∥2,u-separable subalgebra of M
such that Lemma 2.4 holds.

It suffices to prove that there exist orthogonal positive contractions d′0 , d′1 ∈M∞ ∩
M′0 such that

τ(d′i) ≥ γm ,1(3.19)

for all τ ∈ K∞ and i ∈ {0, 1}. Indeed, taking T to be the C∗-algebra generated by d′0 and
d′1 , Lemma 2.4 provides us with a reindexing ∗-homomorphism ψρ ∶M∞ →M∞ such
that ψρ(T) ⊆M∞ ∩ S′ and the tracial factorization in (2.14) holds. Define d i = ψρ(d′i)
for i ∈ {0, 1} and note that (3.16) follows from (2.14). Further, for all τ ∈ K∞, we have
τ ○ ψρ ∈ K∞, so (3.17) follows from (3.19).

Let Φ(0) , . . . , Φ(m)∶C2(m+1) →M∞ ∩M′0 be given by Lemma 3.2 (with S =M0
and k = 2(m + 1)). Define

a =
m
∑
c=0

Φ(c)(e1),(3.20)

which is a positive contraction in M∞ ∩M′0 since ∑c Φ(c) is a u.c.p. map. Making use
of the continuous functions defined in (3.1), set

d′0 = gγm ,1 ,2γm ,1(a) and d′1 = 1M∞ − g0,γm ,1(a)(3.21)

and note that these are orthogonal positive contractions inM∞ ∩M′0 by construction.
To show (3.19) for i = 0, observe that gγm ,1 ,2γm ,1(t) ≥ t − γm ,1 for all t ∈ [0, 1], and so

for τ ∈ K∞,

τ(d′0)≥τ(a) − γm ,1

(3.20)=
m
∑
c=0

τ(Φ(c)(e1)) − γm ,1

(3.3)= 1
2(m+1)

m
∑
c=0

τ(Φ(c)(12(m+1))) − γm ,1(3.22)

(3.2)= 1
2(m+1) − γm ,1

(3.18)= γm ,1 .

To show (3.19) for i = 1, we compute that for τ ∈ K∞,

τ(1M∞ − d′1) = τ(g0,γm ,1(a))
≤ lim

l→∞
τ(a1/l)

(3.20)= lim
l→∞

τ((
m
∑
c=0

Φ(c)(e1))
1/l
)

≤ lim
l→∞

m
∑
c=0

τ(Φ(c)(e1)1/l)(3.23)

(3.3)= lim
l→∞

m
∑
c=0

1
2(m+1) τ(Φ(c)(12(m+1))1/l)≤ m+1

2(m+1)=
1
2 ,
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where in the fourth line we use the fact that ∑m
c=0 Φ(c)(e1) is Cuntz subequivalent to

⊕m
c=0 Φ(c)(e1).10 Thus, τ(d′1) ≥ 1/2 ≥ γm ,1. This completes the proof of the case r = 1.
In the general case, by enlarging r, we may assume r = 2l − 1 for some l ≥ 1. We

will prove the result by induction on l, starting with the case l = 1 handled above. Fix
m ∈ N and a ∥ ⋅ ∥2,u-separable subset S ⊆ M∞. Assume the result holds for r = 2l − 1
and let d0 , . . . , dr ∈M∞ ∩ S′ be positive orthogonal contractions satisfying (3.16) and
(3.17). Let T ⊆M∞ denote the C∗-algebra generated by S ∪ {d0 , . . . , dr}. Note that T
is ∥ ⋅ ∥2,u-separable.

By the r = 1 case proved above (but now with T replacing S), there are positive
orthogonal contractions d̃0 , d̃1 ∈M∞ ∩ T ′ satisfying

τ( f (d̃ i)t) = τ( f (d̃ i))τ(t)(3.24)

and

τ(d̃ i) ≥ γm ,1(3.25)

for all i ∈ {0, 1}, t ∈ T , τ ∈ K∞, and f ∈ C0((0, 1]). We will show the 2l+1 elements
d̃ i d j ∈M∞ ∩ S′ for i ∈ {0, 1} and j ∈ {0, . . . , r} satisfy the required properties with
γm ,2r+1 = γm ,1γm ,r .

First note that the d̃ i d j are clearly mutually orthogonal positive contractions as
each d̃ i commutes with each d j by construction. For all i ∈ {0, 1}, j ∈ {0, . . . , r} and
τ ∈ K∞, we have

τ(d̃ i d j)
(3.24)= τ(d̃ i)τ(d j) ≥ γm ,1γm ,r = γm ,2r+1 .(3.26)

Let i ∈ {0, 1}, j ∈ {0, . . . , r}, s ∈ S, τ ∈ K∞, and n ∈ N. Then

τ((d̃ i d j)ns) = τ(d̃n
i dn

j s)
(3.24)= τ(d̃n

i )τ(dn
j s)

(3.16)= τ(d̃n
i )τ(dn

j )τ(s)(3.27)
(3.24)= τ(d̃n

i dn
j )τ(s)

= τ((d̃ i d j)n)τ(s).

By the Stone–Weierstrass theorem, this implies

τ( f (d̃ i d j)s) = τ( f (d̃ i d j))τ(s)(3.28)

for all f ∈ C0(0, 1]. ∎

3.3 Orthogonal gluing

A sum of c.p.c. order zero maps is typically no longer order zero. One way to get an
order zero sum is to ensure that the ranges of the maps to be summed are orthogonal.

10For positive elements a and b in a C∗-algebra A, a is Cuntz subequivalent to b if there is a sequence
(vn)∞n=1 ⊆ A with ∥v∗n bvn − a∥ → 0. The relevance of this relation dates back to [11, Section 1].
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We can force this to be the case by multiplying the order zero maps with orthogonal
positive contractions commuting with the ranges. The following lemma carries out
this orthogonal gluing for the c.p.c. order zero maps constructed in Lemma 3.2 using
the orthogonal positive contractions constructed in Lemma 3.3.

This gluing operation does not preserve unitality, but we can compute a uniform
lower bound for the trace of the image of the unit. In the next lemma, it is crucial that
α depends only on the dimension m of the base space and is independent of both the
integer k and the separable subset S ⊆M∞.11

Lemma 3.4 (cf. [26, Proposition 4.4]) Given m ∈ N, there exists α ∈ (0, 1] such that
the following holds: for any k ∈ N, W∗-bundle (M, K , E)with dim(K) ≤ m whose fibres
are II1 factors with property Γ, and ∥ ⋅ ∥2,u-separable subset S ⊆M∞, there exists a c.p.c.
order zero map Φ∶Ck →M∞ ∩ S′ such that

τ(Φ(1k)) ≥ α,(3.29)

τ( f (Φ(e j))) =
1
k

τ( f (Φ(1k))),(3.30)

and

τ( f (Φ(e j))s) = τ( f (Φ(e j)))τ(s)(3.31)

for all τ ∈ K∞, j ∈ {1, . . . , k}, f ∈ C0(0, 1], and s ∈ S.

Proof Set α = γm ,m from Lemma 3.3. Fix k ∈ N and let (M, K , E) be a W∗-bundle
with dim(K) ≤ m whose fibres are II1 factors with property Γ. Further, fix a ∥ ⋅ ∥2,u-
separable subset S ⊆M∞.

Let M0 ⊆M be the ∥ ⋅ ∥2,u-separable subset of M such that Lemma 2.4 holds. It
suffices to prove that there exists a c.p.c. order zero map Φ∶Ck →M∞ ∩M′0 such that
(3.29) and (3.30) hold for all τ ∈ K∞, j ∈ {1, . . . , k} and f ∈ C0(0, 1]. Indeed, taking T
to be the C∗-algebra generated by {Φ(e j) ∶ j = 1, . . . , k}, Lemma 2.4 provides us with a
reindexing ∗-homomorphism ψρ ∶M∞ →M∞ such that, after replacing Φ with ψρ ○
Φ, all three conditions (3.29), (3.30), and (3.31) are satisfied.

Let Φ(0) , . . . , Φ(m)∶Ck →M ∩M′0 be maps as in Lemma 3.2. Let d0 , . . . , dm ∈
M∞ ∩ (Φ(0)(Ck) ∪ ⋅ ⋅ ⋅ ∪ Φ(m)(Ck) ∪M0)

′ be orthogonal positive contractions,
constructed using Lemma 3.3, such that

τ( f (d i)b) = τ( f (d i))τ(b)(3.32)

and

τ(d i) ≥ γm ,m = α(3.33)

for all c ∈ {0, . . . , m}, b ∈ C∗(Φ(c)(Ck)), τ ∈ K∞, and f ∈ C0(0, 1]. Define

Φ =
m
∑
c=0

dc Φ(c)∶Ck →M∞ ∩M′0 .(3.34)

11The α constructed is also independent of the bundle (M, K , E) itself, but this is not important in
the application of the lemma in the proof of Theorem 1.2.
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Since the d0 , . . . , dm are orthogonal positive contractions commuting with the images
of the Φ(c), Φ is c.p.c. order zero.

Let τ ∈ K∞, j ∈ {1, . . . , k}, and n ∈ N. Then

τ(Φ(e j)n)(3.34)=
m
∑
c=0

τ(dn
c Φ(c)(e j)n)

(3.32)=
m
∑
c=0

τ(dn
c )τ(Φ(c)(e j)n)

(3.3)=
m
∑
c=0

1
k

τ(dn
c )τ(Φ(c)(1k)n)(3.35)

(3.32)= 1
k

m
∑
c=0

τ(dn
c Φ(c)(1k)n)(3.34)= 1

k
τ(Φ(1k)n),

using in the first and last lines that the dc are mutually orthogonal and each dc
commutes with the range of each Φ(c

′). By linearity, continuity, and the Stone–
Weierstrass theorem, (3.30) follows from (3.35).

Now let τ ∈ K∞. Then

τ(Φ(1k))
(3.34)=

m
∑
c=0

τ(dc Φ(c)(1k))

(3.32)=
m
∑
c=0

τ(dc)τ(Φ(c)(1k))

(3.33)
≥

m
∑
c=0

ατ(Φ(c)(1k)).

(3.36)

Hence, τ(Φ(1k)) ≥ α by (3.2). This verifies (3.29). ∎

3.4 The maximality argument

Theorem 1.2 is now proven via a maximality argument based on Lemma 3.4. Roughly,
if we can take α = 1 in Lemma 3.4, then Theorem 1.2 follows. By a reindexing argument,
there is a maximal α0 which satisfies Lemma 3.4. If α0 < 1, we will use Lemma 3.3 and
the order zero functional calculus (see Section 2.5) to construct a larger α satisfying
Lemma 3.4, which will yield a contradiction.

Proof (Theorem 1.2) Suppose (M, K , E) is a W∗-bundle such that m = dim(K) < ∞
and every fibre of M is a II1 factor with property Γ. Let Ω be the set of all α ∈ [0, 1]
for which the conclusion of Lemma 3.4 holds, and set α0 = sup Ω. Lemma 3.4 implies
α0 > 0. Moreover, a standard reindexing argument shows that Ω is a closed set, so
α0 ∈ Ω.

It suffices to show that α0 = 1. Indeed, in this case, for every k ∈ N and ∥ ⋅ ∥2,u-
separable subset S ⊆M∞, there exists a c.p.c. order zero map Φ∶Ck →M∞ ∩ S′ such
that

τ(Φ(1k)) ≥ 1,(3.37)
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τ(Φ(e j)) =
1
k

τ(Φ(1k)),(3.38)

and

τ(Φ(e j)s) = τ(Φ(e j))τ(s)(3.39)

for all τ ∈ K∞, j ∈ {1, . . . , k}, and s ∈ S. It follows from (3.37) that τ(1M∞ − Φ(1k)) ≤ 0
for all τ ∈ K∞. Since 1M∞ − Φ(1k) is positive, this implies Φ(1k) = 1M∞ . By [28, Theo-
rem 3.3], a u.c.p. order zero map is a ∗-homomorphism. Therefore, Φ(e1), . . . , Φ(ek)
are orthogonal projections summing to 1M∞ , and by (3.38) and (3.39), these projec-
tions witness that M has property Γ.

Assume for the sake of contradiction that α0 < 1. Let γ = γm ,1 > 0 be as in
Lemma 3.3. Since 0 < α0 < 1 and γ > 0, we may choose ε > 0 so that

α = α0 + γ(α0 − α2
0) − ε(1 − γα0) > α0 .(3.40)

We will show that the conclusion of Lemma 3.4 holds with this α (i.e., α ∈ Ω), which
will be a contradiction.

Suppose k ∈ N and let S ⊆M∞ be a ∥ ⋅ ∥2,u-separable subset. Let M0 ⊆M be a ∥ ⋅
∥2,u-separable subalgebra obtained by applying Lemma 2.4 to S. By hypothesis, there
exists a c.p.c. order zero map Φ0∶Ck →M∞ ∩M′0 satisfying

τ(Φ0(1k)) ≥ α0 ,(3.41)

τ( f (Φ0(e j))) =
1
k

τ( f (Φ0(1k))),(3.42)

and

τ( f (Φ0(e j))b) = τ( f (Φ0(e j)))τ(b)(3.43)

for all τ ∈ K∞, j ∈ {1, . . . , k}, f ∈ C0(0, 1], and b ∈M0. Using Lemma 3.3, let d0 , d1 ∈
M∞ ∩ (M0 ∪ Φ0(Ck))′ be orthogonal positive contractions such that

τ( f (d i)b) = τ( f (d i))τ(b)(3.44)

and

τ(d i) ≥ γ(3.45)

for all i ∈ {0, 1}, τ ∈ K∞, f ∈ C0(0, 1], and b ∈ C∗(Φ0(Ck)).
Let g0,ε , gε ,2ε ∈ C0(0, 1] be the continuous functions defined in (3.1) and set Δε =

g0,ε − gε ,2ε . Using the order zero functional calculus, define Φ′0∶Ck →M∞ ∩M′0 by
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Φ′0 = d0Δε(Φ0) + gε ,2ε(Φ0)
= d0 g0,ε(Φ0) + (1 − d0)gε ,2ε(Φ0).

(3.46)

Since d0 commutes with C∗(Φ0(Ck)) and gε ,2ε ≤ g0,ε , we have that Φ′0 ≤ g0,ε(Φ0).
Since g0,ε(Φ0) is c.p.c. order zero, so is Φ′0 by Lemma 2.8. Fix τ ∈ K∞, j ∈ {1, . . . , k},
and n ∈ N. Using Lemma 2.7 and the binomial theorem, we compute that

τ(Φ′0(e j)n)(3.46)=
n
∑
i=0

(n
i
)τ(d i

0(Δi
ε gn−i

ε ,2ε)(Φ0(e j)))

(3.44)=
n
∑
i=0

(n
i
)τ(d i

0)τ((Δi
ε gn−i

ε ,2ε)(Φ0(e j)))

(3.42)= 1
k

n
∑
i=0

(n
i
)τ(d i

0)τ((Δi
ε gn−i

ε ,2ε)(Φ0(1k)))

(3.44)= 1
k

n
∑
i=0

(n
i
)τ(d i

0(Δi
ε gn−i

ε ,2ε)(Φ0(1k)))

(3.46)= 1
k

τ(Φ′0(1k)n).

(3.47)

Next, we define the positive contraction12

h = d1(1M∞ − g0,ε(Φ0(1k))) ∈M∞ ∩ (M0 ∪ Φ0(Ck))′ .(3.48)

Since d0 ⊥ d1 and (1M∞ − g0,ε(Φ0(1k))) ⊥ gε ,2ε(Φ0(1k)), we see that

h ⊥ d0Δε(Φ0(1k)) + gε ,2ε(Φ0(1k))
(3.46)= Φ′0(1k).(3.49)

Using again that α0 satisfies Lemma 3.4, there is a c.p.c. order zero map Φ1∶Ck →
M∞ ∩ (M0 ∪ {h})′ satisfying

τ(Φ1(1k)) ≥ α0 ,(3.50)

τ( f (Φ1(e j))) =
1
k

τ( f (Φ1(1k))),(3.51)

and

τ( f (Φ1(x))b) = τ( f (Φ1(x)))τ(b)(3.52)

for all τ ∈ K∞, x ∈ Ck , f ∈ C0(0, 1], and b ∈ C∗(h). Now, define

Φ = Φ′0 + hΦ1∶Ck →M∞ ∩M′0 .(3.53)

Since h commutes with the range of Φ1, hΦ1 is c.p.c. order zero. By (3.49), h is
orthogonal to Φ′0(1k), and using the structure theorem for order zero maps, h is also
orthogonal to the range of Φ′0. So Φ is a sum of c.p.c. order zero maps with orthogonal
ranges and hence is itself a c.p.c. order zero map.

12To see that h commutes with the range of Φ0, note that the structure theorem for order zero maps
implies Φ0(1k) commutes with the range of Φ0.
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We shall show thatΦ satisfies both (3.29) and (3.30). First, we show (3.30). For τ ∈
K∞, j ∈ {1, . . . , k}, and n ∈ N, we have

τ(Φ(e j)n)(3.53)= τ(Φ′0(e j)n + hnΦ1(e j)n)
(3.52)= τ(Φ′0(e j)n) + τ(hn)τ(Φ1(e j)n)
(3.47),(3.51)= 1

k
τ(Φ′0(1k)n) + 1

k
τ(hn)τ(Φ1(1k)n)

(3.52),(3.53)= 1
k

τ(Φ(1k)n).

(3.54)

By linearity, continuity, and the Stone–Weierstrass theorem, (3.30) follows.
We now work towards showing that Φ satisfies (3.29). Let τ ∈ K∞. By (3.46), (3.53),

and Lemma 2.7, we have

τ(Φ(1k)) = τ(d0Δε(Φ0(1k))) + τ(gε ,2ε(Φ0(1k))) + τ(hΦ1(1k)).(3.55)

We estimate the first term of (3.55) as follows:

τ(d0Δε(Φ0(1k)))
(3.44)= τ(d0)τ(Δε(Φ0(1k)))
(3.45)
≥ γτ(Δε(Φ0(1k)))

≥γα0τ(Δε(Φ0(1k))),

(3.56)

where we have used that α0 < 1 in the last line. We estimate the third term of (3.55) as
follows:

τ(hΦ1(1k))
(3.52)= τ(h)τ(Φ1(1k))
(3.50)
≥ α0τ(h)

(3.48)= α0τ(d1(1M∞ − g0,ε(Φ0(1k))))
3.44= α0τ(d1)τ(1M∞ − g0,ε(Φ0(1k)))
(3.45)
≥ γα0τ(1M∞ − g0,ε(Φ0(1k))).

(3.57)

Substituting the estimates (3.56) and (3.57) into (3.55) and using that Δε = g0,ε − gε ,2ε ,
we obtain

τ(Φ(1k)) ≥ γα0τ(Δε(Φ0(1k))) + τ(gε ,2ε(Φ0(1k))) + γα0τ(1M∞ − g0,ε(Φ0(1k)))
= γα0τ(g0,ε(Φ0(1k))) − γα0τ(gε ,2ε(Φ0(1k)))

+ τ(gε ,2ε(Φ0(1k))) + γα0 − γα0τ(g0,ε(Φ0(1k)))
= γα0 + (1 − γα0)τ(gε ,2ε(Φ0(1k))).

(3.58)
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Finally, using that gε ,2ε(t) ≥ t − ε for all t ∈ [0, 1], we get

τ(Φ(1k))≥γα0 + (1 − γα0)τ(Φ0(1k) − ε1M∞)
(3.41)
≥ γα0 + (1 − γα0)(α0 − ε)
(3.40)= α,

(3.59)

which completes the proof that (3.29) holds.
By Lemma 2.4 with T = C∗(Φ(Ck)) ⊆M∞ ∩M′0, there exists a strictly increasing

function ρ∶N→ N such that, after replacing Φ with ψρ ○ Φ∶Ck →M∞ ∩ S′, we have
that (3.31) holds for all τ ∈ K∞, j ∈ {1, . . . , k}, f ∈ C0(0, 1], and b ∈ S.

From the definition of the reduced power (M∞, K∞ , E∞), we have E∞ ○ ψρ = ψρ ○
E∞. Hence, it follows that (3.29) and (3.30) continue to hold with ψρ ○ Φ in place of
Φ. Thus we have shown α ∈ Ω, which is our intended contradiction. ∎

Restricting to the case of tracial completions of C∗-algebras with a Bauer simplex
of traces, we obtain Theorem 1.1.
Proof (Theorem 1.1) Let A be a C∗-algebra with ∂e T(A) non-empty and compact.
If A has uniform property Γ, then it is clear that πτ(A)′′ has property Γ for each τ ∈
∂e T(A).

Suppose now that K = ∂e T(A) has finite covering dimension and πτ(A)′′ has
property Γ for each τ ∈ K. By [21, Theorem 3], the uniform tracial completion M =
AT(A) has the structure of a W∗-bundle over K with fibres πτ(A)′′ for τ ∈ K. By
Theorem 1.2,M has property Γ. Hence, by ∥ ⋅ ∥2,u-density, it follows that A has uniform
property Γ (see Section 2.4). ∎
Remark 3.5 If (M, K , E) is a W∗-bundle with factorial fibres where K has finite
covering dimension and πτ(M)′′ is McDuff for every τ ∈ K, then M is McDuff.
The proof follows as in the proof of Theorem 1.2 except with the order zero maps
C

k →M∞ ∩ S′ replaced with order zero maps Mk →M∞ ∩M′ throughout the proof.
This is essentially the proof of [26, Theorem 4.6].
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