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1. Introduction

1.1. Statement of the problem and motivation

The goal of this paper is to characterize the spectrum of the relativistic mean
curvature operator, i.e.

Mu := −div

(
∇u√

1 − |∇u|2

)
,

acting on maps u defined in an open, bounded domain Ω ⊂ R
N (N � 1) with

smooth boundary ∂Ω, subject to the homogeneous Dirichlet boundary condition.
More precisely, our goal is to analyse the problem{Mu = λu in Ω

u = 0 on ∂Ω.
(1.1)

Note that problem (1.1) is a nontypical eigenvalue problem since the mean curvature
operator is inhomogeneous. However, its formulation is similar with those of a
typical eigenvalue problem. Roughly speaking, by an eigenvalue of problem (1.1) we
will understand a real number λ for which problem (1.1) has a nontrivial solution
u whose sense will be made precise in the next subsection of the Introduction.
Moreover, keeping in mind the terminology used in the case of typical eigenvalue
problems, in this paper the spectrum of the mean curvature operator represents the
set of all eigenvalues of problem (1.1).
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Several research directions are assembled behind the study of the present work.
The initial motivation comes from the fact that the relativistic mean curvature
operator is an essential object in Geometry and Physics. More precisely, M appears
naturally in the Riemannian Geometry—where it is involved in the determination
of the maximal or constant mean curvature hypersurfaces in the Lorentz–Minkowski
space (see, e.g., Cheng & Yau [8], Flaherty [16], Bartnik & Simon [2], Kiessling
[18], Corsato et al. [10])—and in classical relativity—for instance in the analysis of
the forced relativistic pendulum (see, e.g., Brezis & Mawhin [7]), in the study of the
Born-Infeld theory of electrodynamics (see, e.g., Bonheure et al. [5,6]) or in some
investigations related with the Lorentz force equation (see, e.g., Arcoya et al. [1]).

On the other hand, our study complements earlier investigations on problem
(1.1). More precisely, partial results concerning the description of the spectrum
of M can be found for example in [3, corollary 1] and [11, proposition 2.7 (ii)]
where the existence of nontrivial solutions for problem (1.1) was established in the
case when λ is sufficiently large with no control on a lower bound of λ (see also
[9] for the case of the radial problem). The main argument used in [3] was the
Direct Method in the Calculus of Variations while in [11] an approach based on
the Leray–Schauder degree was considered. In this paper we are able to give the
complete description of the spectrum of problem (1.1) as being exactly the interval
(λ1(2),∞), where λ1(2) stands for the principal frequency of the Laplace operator
(see the statement of theorem 1.1 below). The main argument that will be used
here is an approximation technique based on a Γ-convergence argument.

1.2. Preliminaries and main result

The first step in making precise the rigorous mathematical sense in which the
notion of eigenvalue will be understood throughout this paper is to explain the
function space framework that will be considered in the sequel. In this regard we
note that the structure of the mean curvature operator asks for a condition of type
|∇u(x)| � 1 for a.e. x ∈ Ω. That simple observation and the homogeneous Dirichlet
boundary condition involved in problem (1.1) imply that a good candidate for the
functional space framework would be a subset of

W 1,∞
0 (Ω) := {u ∈ W 1,∞(Ω) : u = 0, on ∂Ω},

namely

K0 := {u ∈ W 1,∞
0 (Ω) : |∇u(x)| � 1, a.e. x ∈ Ω}.

Note that K0 is a convex and closed subset of W 1,∞(Ω) which is the dual of a
separable Banach space (see, e.g., the proof of [3, lemma 2]). This leads to the idea
of constructing the Euler–Lagrange functional associated to the mean curvature
operator as I : W 1,∞(Ω) → [0,∞] defined by

I(u) :=

⎧⎨
⎩
∫

Ω

F (|∇u|) dx if u ∈ K0

+∞ if u ∈ W 1,∞(Ω)\K0,

where F : [−1, 1] → R is given by F (t) := 1 −√
1 − t2 for all t ∈ [−1, 1]. Then, the

Euler–Lagrange functional associated to the problem (1.1) is Jλ : W 1,∞(Ω) → R
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defined by

Jλ(u) := I(u) − λ

2

∫
Ω

u2 dx, ∀ u ∈ W 1,∞(Ω).

Next, we note that Jλ is the sum of a convex, lower semi-continuous function and a
C1-functional, and, consequently, it has the structure required by Szulkin’s critical
point theory (see [21]). More precisely, the functional Jλ is the sum of the functional
hλ : W 1,∞(Ω) → R defined by

hλ(u) := −λ

2

∫
Ω

u2 dx,

which belongs to C1(W 1,∞(Ω), R) (see, e.g. [3] for the proof) and has the derivative
given by

〈h′
λ(u), v〉 = −λ

∫
Ω

uv dx, ∀ u, v ∈ W 1,∞(Ω),

with the functional I which is convex and weakly∗ lower semicontinuous
(see, [3, lemma 4]). Then, following Szulkin, we will work with a reformulation of
problem (1.1) as a variational inequality, namely

{
I(v) − I(uλ) + 〈h′

λ(uλ), v − uλ〉 � 0 for all v ∈ W 1,∞(Ω),
uλ ∈ W 1,∞(Ω). (1.2)

or, equivalently,

{
I(v) − I(uλ) + 〈h′

λ(uλ), v − uλ〉 � 0 for all v ∈ K0,
uλ ∈ K0.

(1.3)

In this context a real number λ ∈ R is called an eigenvalue for problem (1.1) if
problem (1.3) has a nontrivial solution uλ ∈ K0. uλ will be called an eigenfunction
corresponding to the eigenvalue λ. According to the terminology from [21], we refer
to uλ as being a critical point of functional Jλ.

Our main result is given by the following theorem.

Theorem 1.1. The set of eigenvalues for problem (1.1) is the open interval
(λ1(2),∞) where λ1(2) stands for the principal frequency of the Laplace operator
in Ω subject to the homogeneous Dirichlet boundary condition, i.e.

λ1(2) := inf
u∈C∞

0 (Ω)\{0}

∫
Ω

|∇u|2 dx∫
Ω

u2 dx

.

Moreover, for each eigenvalue λ we can choose a corresponding eigenfunction
uλ ∈ K0 which is nonnegative on Ω and minimizes Jλ.
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2. Proof of the main result

Following the classical approach used in the analysis of the principal frequency of the
Laplace operator, λ1(2), it is natural to associate to the problem (1.1) the quantity
Λ1 defined below, involving the corresponding Rayleigh-type quotient suggested by
the formulation of problem (1.1), namely

Λ1 := inf
u∈K0\{0}

∫
Ω

F (|∇u|) dx

1
2

∫
Ω

u2 dx

,

where F : [−1, 1] → R is given by F (t) := 1 −√
1 − t2 for all t ∈ [−1, 1]. Our first

key observation is given by the following lemma which relates the spectrum of
problem (1.1) with λ1(2).

Lemma 2.1. The following equality holds true

Λ1 = λ1(2). (2.1)

Proof. Since

F (t) � t2

2
, ∀ t ∈ [−1, 1],

we deduce that

λ1(2) �

∫
Ω

|∇u|2 dx∫
Ω

u2 dx

� 2

∫
Ω

F (|∇u|) dx∫
Ω

u2 dx

, ∀ u ∈ K0\{0}.

Consequently λ1(2) � Λ1. Next, let e1 be a positive minimizer of λ1(2). It is well-
known that such a minimizer is an eigenfunction of −Δ over Ω subject to the
homogeneous Dirichlet boundary condition. Actually, e1 ∈ W 1,2

0 (Ω) ∩ C1,α(Ω) for
some α ∈ (0, 1). Let u1 := e1‖ |∇e1| ‖−1

L∞(Ω). It is clear that u1 ∈ K0\{0}. Then for
each t ∈ (0, 1) we have

Λ1 �

∫
Ω

F (|∇(tu1)|) dx

1
2

∫
Ω

(tu1)2 dx

=

∫
Ω

(1 −
√

1 − t2|∇u1|2) dx

t2

2

∫
Ω

u2
1 dx

=: g(t).

Simple computations imply

lim
t→0+

g(t) = lim
t→0+

∫
Ω

t|∇u1|2√
1 − t2|∇u1|2

dx

t

∫
Ω

u2
1 dx

=

∫
Ω

|∇u1|2 dx∫
Ω

u2
1 dx

= λ1(2).

It follows that Λ1 � λ1(2), and, consequently (2.1) holds true. �
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The next step in our approach goes back to the elementary observation that the
function F admits the following extension into power series

F (t) =
1
2
t2 +

∑
n�2

ant2n, ∀ t ∈ [−1, 1],

where for each integer n � 2 we let an := (2n − 3)!!/2nn!. Thus, if for each integer
n � 2 we define Fn : [−1, 1] → R by

Fn(t) :=
1
2
t2 +

n∑
k=2

akt2k, ∀ t ∈ [−1, 1],

then we have

lim
n→∞Fn(t) = F (t), ∀ t ∈ [−1, 1].

This simple remark suggests to us a Γ-convergence result which will play a cru-
cial role in our approach. More precisely, we prove a Γ-convergence result which
shows that the energy functional associated to the leading differential operator, u 
→
−div(∇u/

√
1 − |∇u|2), on the left-hand side of the PDE in (1.1) can be obtained,

via De Giorgi’s Γ-convergence, as the limit of the sequence of energy functionals
associated to the differential operators −Δu −∑n

k=2((2k − 3)!!/2k−1(k − 1)!)Δ2ku,
where Δ2ku stands for the 2k-Laplacian of u (i.e. Δ2ku = div(|∇u|2k−2∇u)), for
each positive integer k. We begin by recalling the definition of Γ-convergence
(introduced in [14], [15]) in metric spaces. The reader is referred to [13] for a
comprehensive introduction to this topic.

Definition 2.2. Let X be a metric space. A sequence {Sn} of functionals
Sn : X → R := R ∪ {∞} is said to Γ(X)-converge to S∞ : X → R, and we write
Γ(X) − limn→∞ Sn = S∞, if the following hold:

(i) for every u ∈ X and {un} ⊂ X such that un → u in X, we have

S∞(u) � lim inf
n→∞ Sn(un);

(ii) for every u ∈ X there exists a sequence {un} ⊂ X (called a recovery sequence)
such that un → u in X and

S∞(u) � lim sup
n→∞

Sn(un).

Next, for each integer n � 2 define In : L1(Ω) → R by

In(u) :=

⎧⎨
⎩
∫

Ω

Fn(|∇u|) dx if u ∈ W 1,2n(Ω)

+∞ otherwise in L1(Ω),

and let I∞ : L1(Ω) → R be given by

I∞(u) :=
{

I(u) if u ∈ W 1,∞(Ω)
+∞ otherwise in L1(Ω).
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Theorem 2.3. Γ(L1(Ω)) − limn→∞ In = I∞.

Proof. We will first establish the existence of a recovery subsequence for the Γ-limit.
Let u ∈ L1(Ω) be arbitrary. We only need to consider the case where I∞(u) < +∞.
Thus, u ∈ K0, and

I∞(u) =
∫

Ω

F (|∇u|) dx = I(u).

For n � 2 define un := u. We have un ∈ K0 ⊂ W 1,2n
0 (Ω) and thus, for each n � 2,

In(un) = In(u) =
∫

Ω

Fn(|∇u|) dx.

In view of Beppo–Levi’s Monotone Convergence Theorem we have lim supn→∞
In(un) = lim supn→∞ In(u) = I(u) = I∞(u). Hence, the constant sequence {un} =
{u} is a recovery sequence for the Γ-limit.

It remains to show that for any u ∈ L1(Ω) and {un} ⊂ L1(Ω) such that un → u
in L1(Ω) we have

I∞(u) � lim inf
n→∞ In(un). (2.2)

After eventually extracting a subsequence (not relabelled), we may assume, without
loss of generality, that un ∈ W 1,2n

0 (Ω) and

L := lim inf
n→∞ In(un) = lim

n→∞ In(un) < ∞. (2.3)

Let q � 1 be an arbitrary real number. If n ∈ N is sufficiently large and, in par-
ticular, such that n � [q] + 1, where [q] stands for the integer part of q, then
un ∈ W 1,2n

0 (Ω) ⊂ W
1,2([q]+1)
0 (Ω), and

I[q]+1(un) � In(un) � L + 1. (2.4)

It follows that∫
Ω

|∇un|2([q]+1) dx � (L + 1)a−1
[q]+1, ∀ n � [q] + 1 sufficiently large.

We deduce that {∇un} is bounded in L2([q]+1)(Ω), and thus in Lq(Ω) (by Hölder’s
inequality). Since un → u in L1(Ω), after eventually extracting a further sub-
sequence (again, not relabelled), we have un ⇀ u weakly in W 1,q

0 (Ω). Taking
into account the fact that the functionals I[q]+1 are sequentially weakly lower
semicontinuous in W

1,2([q]+1)
0 (Ω), we obtain

I[q]+1(u) � lim inf
n→∞ I[q]+1(un).

On the other hand, (2.4) gives lim infn→∞ I[q]+1(un) � limn→∞ In(un). Hence,
I[q]+1(u) � limn→∞ In(un) for every q � 2. Letting q → ∞, and using again the
Monotone Convergence Theorem, the conclusion follows. �

We deduce immediately the following corollary.
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Corollary 2.4. Let λ ∈ R be fixed. For each integer n � 2 define Hn : L1(Ω) → R

by

Hn(u) :=

⎧⎨
⎩
∫

Ω

Fn(|∇u|) dx + hλ(u) if u ∈ W 1,2n
0 (Ω)

+∞ otherwise in L1(Ω),

and let H∞ : L1(Ω) → R be given by

H∞(u) :=
{

Jλ(u) if u ∈ W 1,∞(Ω)
+∞ otherwise in L1(Ω).

Then

Γ(L1(Ω)) − lim
n→∞Hn = H∞.

For each integer n � 2 define the differential operator

Mnu := −Δu −
n∑

k=2

bkΔ2ku,

where bk := (2k − 3)!!/2k−1(k − 1)!, for all k � 2, and consider the eigenvalue
problem {Mnu = λu in Ω

u = 0 on ∂Ω.
(2.5)

It is natural to analyse this problem in the Sobolev space W 1,2n
0 (Ω). We say that

λ ∈ R is an eigenvalue for the problem (2.5) if there exists uλ ∈ W 1,2n
0 (Ω)\{0} such

that ∫
Ω

∇uλ∇ϕ dx +
n∑

k=2

bk

∫
Ω

|∇uλ|2k−2∇uλ∇ϕ dx − λ

∫
Ω

uλϕ dx = 0,

∀ ϕ ∈ W 1,2n
0 (Ω). (2.6)

A function uλ ∈ W 1,2n
0 (Ω)\{0} such that (2.6) holds will be called an eigenfunction

corresponding to the eigenvalue λ. Standard regularity arguments (see, e.g. [19,
theorem 4.5]) show that uλ ∈ C1,β(Ω), for some β ∈ (0, 1). For each n � 2 define

μ1(n) := inf
u∈C∞

0 (Ω)\{0}

∫
Ω

Fn(|∇u|) dx

1
2

∫
Ω

u2 dx

= inf
u∈W 1,2n

0 (Ω)\{0}

∫
Ω

Fn(|∇u|) dx

1
2

∫
Ω

u2 dx

. (2.7)

and

ν1(n) := inf
u∈C∞

0 (Ω)\{0}

∫
Ω

F ′
n(|∇u|)|∇u|dx∫

Ω

u2 dx

= inf
u∈W 1,2n

0 (Ω)\{0}

∫
Ω

F ′
n(|∇u|)|∇u|dx∫

Ω

u2 dx

.

(2.8)
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Lemma 2.5. For each integer n � 2 we have μ1(n) = ν1(n) = λ1(2).

Proof. The proof of this lemma follows some ideas from the proof of [4, proposi-
tion 1]. We recall it for readers’ convenience.

We will check only the fact that μ1(n) = λ1(2). The identity ν1(n) = λ1(2) can
be obtained similarly and, consequently, we will omit its proof. Thus, we start by
observing that

λ1(2) �

1
2

∫
Ω

|∇u|2 dx

1
2

∫
Ω

u2 dx

�

∫
Ω

Fn(|∇u|) dx

1
2

∫
Ω

u2 dx

, ∀ u ∈ C∞
0 (Ω)\{0}.

Passing to the infimum over all u ∈ C∞
0 (Ω)\{0} we obtain that λ1(2) � μ1(n). Next,

note that for every t > 0 and u ∈ C∞
0 (Ω)\{0} we have

μ1(n) �

∫
Ω

Fn(|∇(tu)|) dx

1
2

∫
Ω

(tu)2 dx

=

n∑
k=2

akt2k−2

∫
Ω

|∇u|2k dx

1
2

∫
Ω

u2 dx

+

∫
Ω

|∇u|2 dx∫
Ω

u2 dx

.

Letting t → 0+, we find

μ1(n) �

∫
Ω

|∇u|2 dx∫
Ω

u2 dx

, ∀ u ∈ C∞
0 (Ω)\{0}.

Passing to the infimum over all u ∈ C∞
0 (Ω)\{0} we obtain μ1(n) � λ1(2). Conse-

quently, we arrive to the conclusion that μ1(n) = λ1(2). �

Theorem 2.6. For each integer n � 2 the set of eigenvalues for the problem
(2.5) is the interval (λ1(2),∞). Moreover, each eigenvalue λ possesses a positive
corresponding eigenfunction in Ω.

Proof. The proof of this result uses similar ideas with the one of [4, theorem 2]. We
recall it for readers’ convenience.

Assume that λ is an eigenvalue of problem (2.5) with uλ ∈ W 1,2n
0 (Ω)\{0} a cor-

responding eigenfunction. Testing with ϕ = uλ in (2.6) and taking into account
lemma 2.5 we deduce that λ � λ1(2). It follows that any λ ∈ (−∞, λ1(2)) is not an
eigenvalue for (2.5). Moreover, if λ1(2) were an eigenvalue of (2.5), then by (2.6)
with ϕ = uλ1(2), where uλ1(2) stands for an eigenfunction associated to λ1(2), and
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in view of Poincaré’s inequality, we would have

n∑
k=2

bn

∫
Ω

|∇uλ1(2)|2n dx + λ1(2)
∫

Ω

u2
λ1(2)

dx

�
n∑

k=2

bn

∫
Ω

|∇uλ1(2)|2n dx +
∫

Ω

|∇uλ1(2)|2 dx

= λ1(2)
∫

Ω

u2
λ1(2)

dx.

It follows that
∫

Ω

|∇uλ1(2)|2n dx = 0, or uλ1(2) = 0, a contradiction.

Next, we show that every λ ∈ (λ1(2),∞) is an eigenvalue for (2.5). Let λ ∈
(λ1(2),∞) and n � 2 be arbitrary, and define Jn,λ : W 1,2n

0 (Ω) → R by

Jn,λ(u) =
∫

Ω

Fn(|∇u|) dx − λ

2

∫
Ω

u2 dx. (2.9)

As it can be easily seen, Jn,λ ∈ C1(W 1,2n
0 (Ω), R), with the Gateaux derivative given

by

〈J ′
n,λ(u), ϕ〉 =

∫
Ω

∇u∇ϕ dx +
n∑

k=2

(2k − 3)!!
2k−1(k − 1)!

∫
Ω

|∇u|2k−2∇u∇ϕ dx − λ

∫
Ω

uϕ dx

for all u, ϕ ∈ W 1,2n
0 (Ω). It is now standard to check that Jn,λ is coercive and weakly

lower semicontinuous on W 1,2n
0 (Ω), and thus the Direct Method in the Calculus of

Variations (see, e.g., [12] or [20, theorem 1.2]) implies the existence of a global
minimum point wλ ∈ W 1,2n

0 (Ω) of Jn,λ, i.e., Jn,λ(wλ) = minW 1,2n
0 (Ω) Jn,λ. Using

lemma 2.5, we deduce that since λ > λ1(2) there exists vλ ∈ W 1,2n
0 (Ω) such that

Jn,λ(vλ) < 0. Hence, Jn,λ(wλ) � Jn,λ(vλ) < 0 = Jn,λ(0) which means that wλ �= 0.
On the other hand, we have 〈J ′

n,λ(wλ), ϕ〉 = 0, ∀ ϕ ∈ W 1,2n
0 (Ω), hence λ is an

eigenvalue for problem (2.5).
Finally, note that if wλ is a global minimum point of Jn,λ so is |wλ|. Next, the fact

that |wλ| > 0 in Ω can be obtained in a standard manner using as main argument
Harnack’s inequality à la Trudinger [22] and a covering technique (see, e.g. [19,
lemma 5.3] for details). �

The next result emphasizes the asymptotic behaviour of the sequence un given
by theorem 2.6, as n → ∞. This result will be essential in the proof of the main
result of the paper.

Lemma 2.7. Fix λ ∈ (λ1(2),∞). For each integer n > N, let un ∈ W 1,2n
0 (Ω) be

a positive eigenfunction corresponding to the eigenvalue λ of the problem (2.5).
Then there exists a subsequence of {un} that converges uniformly in Ω to some
nonnegative function uλ ∈ C(Ω).
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Proof. First, let us note that the sequence {an} with an := (2n − 3)!!/2nn! satisfies
the following relation

lim
n→∞

n
√

an = lim
n→∞

an+1

an
= lim

n→∞
2n − 1

2(n + 1)
= 1. (2.10)

Next, note that in view of the proof of theorem 2.3 we know that for each n > N the
eigenfunction un ∈ W 1,2n

0 (Ω) of the eigenvalue λ of the problem (2.5) is a minimizer
of Jn,λ, given by relation (2.9), in W 1,2n

0 (Ω) and Jn,λ(un) < 0. Thus, for each n > N
we have ∫

Ω

Fn(|∇un|) dx − λ

2

∫
Ω

u2
n dx < 0,

and consequently

an

∫
Ω

|∇un|2n dx � λ

2

∫
Ω

u2
n dx � λ

2λ1(2)

∫
Ω

|∇un|2 dx, ∀ n > N. (2.11)

Fix q > N . For each integer n > q a simple application of Holder’s inequality yields

∫
Ω

|∇un|q dx �
(∫

Ω

|∇un|2n dx

)q/(2n)

|Ω|1−q/(2n).

Combining this estimate with relation (2.11) and applying again Holder’s inequality
we deduce that for each integer n > q we have

(∫
Ω

|∇un|q dx

)1/q

�
(∫

Ω

|∇un|2n dx

)1/(2n)

|Ω|1/q−1/(2n)

�
(

λ

2anλ1(2)

∫
Ω

|∇un|2 dx

)1/(2n)

|Ω|1/q−1/(2n)

�
(

λ

2anλ1(2)

)1/(2n)(∫
Ω

|∇un|q dx

)1/(nq)

×|Ω|(1−2/q)1/(2n)|Ω|1/q−1/(2n).

Simple computations imply

(∫
Ω

|∇un|q dx

)1/q

�
(

λ

2anλ1(2)

)1/(2n−2)

|Ω|1/q, ∀ n > q.

This estimate and relation (2.10) show that the sequence {un} is bounded in
W 1,q

0 (Ω) for each q > N . This fact and the compact embedding of W 1,q
0 (Ω) into

C(Ω) implies that there exists a subsequence (not relabelled) of {un} and a func-
tion uλ ∈ C(Ω) such that un ⇀ uλ weakly in W 1,q

0 (Ω) and un → uλ uniformly
in Ω. �
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2.1. Proof of theorem 1.1 (concluded)

We start by recalling a well-known result that can be found, for example, in [17,
corollary 6.1.1]. It plays an essential role in the proof of theorem 1.1.

Proposition 2.8. Let Y be a topological space satisfying the first axiom of
countability, and assume that the sequence {Gn} of functionals Gn : Y → R Γ −
converge to G : Y → R. Let zn be a minimizer for Gn. If zn → z in X, then z is a
minimizer of G, and G(z) = lim infn→∞ Gn(zn).

Next, we fix λ ∈ (λ1(2),∞) arbitrary and we show that it is an eigenvalue of
problem (1.1) in the sense that there exists uλ ∈ K0\{0} satisfying relation (1.3).

Indeed, taking into account corollary 2.4 and lemma 2.7, we can apply proposi-
tion 2.8 with Y = L1(Ω), Gn = Hn, G = H∞, zn = un to deduce the existence of
a minimizer for H∞ and consequently a minimizer for Jλ on K0, say uλ. We claim
that uλ �= 0. Indeed, since by lemma 2.1 we have

inf
u∈K0\{0}

∫
Ω

F (|∇u|) dx

1
2

∫
Ω

u2 dx

= λ1(2),

we deduce that for each λ > λ1(2) there exists wλ ∈ K0\{0} such that∫
Ω

F (|∇wλ|) dx

1
2

∫
Ω

w2
λ dx

< λ,

which implies

Jλ(uλ) � Jλ(wλ) < 0 = Jλ(0),

which proves the claim.
Further, note that from the fact that

Jλ(v) � Jλ(uλ), ∀ v ∈ K0,

we deduce that

I(v) − I(uλ) � λ

2

∫
Ω

(v2 − u2
λ) dx � λ

∫
Ω

uλ(v − uλ) dx, ∀ v ∈ K0.

Since uλ ∈ K0\{0} the above relation shows that each λ > λ1(2) is an eigenvalue
of problem (1.1).

Finally, we check that each λ ∈ (−∞, λ1(2)] can not be an eigenvalue of problem
(1.1).

Let λ ∈ R be an eigenvalue for (1.1). Then there exists u ∈ K0\{0} such that the
inequality in (1.3) holds for all v ∈ K0. For each t ∈ (0, 1) it is clear that tu ∈ K0.
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Thus, testing in (1.3) with v = tu we get

∫
Ω

F (|∇(tu)|) dx −
∫

Ω

F (|∇u|) dx − λ(t − 1)
∫

Ω

u2 dx � 0,

∀ t ∈ (0, 1),

or, equivalently

t2 − 1
2

∫
Ω

|∇u|2 dx +
∑
n�2

an(t2n − 1)
∫

Ω

|∇u|2n dx − λ(t − 1)
∫

Ω

u2 dx � 0,

∀ t ∈ (0, 1),

where an := (2n − 3)!!/2nn!. Dividing both sides above by (t − 1)
∫
Ω

u2 dx < 0, we
are led to

t + 1
2

∫
Ω

|∇u|2 dx∫
Ω

u2 dx

+
∑
n�2

an
1 − t2n

1 − t

∫
Ω

|∇u|2n dx∫
Ω

u2 dx

� λ, ∀ t ∈ (0, 1).

Letting t → 1− we find

λ1(2) �

∫
Ω

|∇u|2 dx∫
Ω

u2 dx

+
∑
n�2

2nan

∫
Ω

|∇u|2n dx∫
Ω

u2 dx

� λ.

Therefore λ � λ1(2). To conclude the proof we still need to show that λ1(2) is not
an eigenvalue for problem (1.1). Indeed, if we assume the contrary, then there exists
u ∈ K0\{0} ⊂ W 1,2

0 (Ω)\{0} such that the inequality in (1.3) is true for all v ∈ K0.
Repeating the above arguments we deduce that

∫
Ω

|∇u|2 dx +
∑
n�2

2nan

∫
Ω

|∇u|2n dx � λ1(2)
∫

Ω

u2 dx �
∫

Ω

|∇u|2 dx.

Thus, ∫
Ω

|∇u|2n dx = 0, ∀ n � 2.

Since by the definition of K0 we have u ∈ K0 ⊂ W 1,2n
0 (Ω), it follows that u = 0, a

contradiction. The proof of theorem 1.1 is complete.
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