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Abstract

Despite the growing availability of sensing and data in general, we remain unable to fully characterize many in-service
engineering systems and structures from a purely data-driven approach. The vast data and resources available to capture
human activity are unmatched in our engineered world, and, even in cases where data could be referred to as “big,” they
will rarely hold information across operational windows or life spans. This paper pursues the combination of machine
learning technology and physics-based reasoning to enhance our ability to make predictive models with limited data. By
explicitly linking the physics-based view of stochastic processes with a data-based regression approach, a derivation path
for a spectrum of possible Gaussian process models is introduced and used to highlight how and where different levels of
expertknowledge of a system is likely best exploited. Each ofthe models highlighted in the spectrum have been explored
in different ways across communities; novel examples in a structural assessment context here demonstrate how these
approaches can significantly reduce reliance on expensive data collection. The increased interpretability of the models
shown is another important consideration and benefit in this context.

Impact Statement

The availability of monitoring data from engineering structures offers many opportunities for optimizing their
design and operation. The ability to be able to predict the current health state of a structure, for example, opens the
door to predictive maintenance and, in turn, enhanced safety and reduced cost and waste. Currently most attempts at
haressing knowledge within collected datasets are reliant on those data alone, limiting the potential of what can be
done to how much of the entire life of a structure is captured. This paper demonstrates how using physical
knowledge within a machine learning approach can improve predictions considerably, reducing the burden on
expensive data collection. A range of approaches allow differing levels/types of physical insight to be incorporated.

1. Data versus physics: an opinionated introduction

The umbrella term data-centric engineering, and interest in it, results from our growing ability and
capacity to collect data from our built environment and engineered systems. The potential gains from
being able to harness the information in these data are large, attracting many researchers and practitioners
to the field. Here we enjoy the very engaging challenge of simultaneously assessing what we think we
know, what we can measure, and what might actually tell us about the particular structure or system we are
interested in.
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As our data grow, many researchers naturally look to adopt machine learning (ML) methods to help
analyze and predict behaviors of interest in our measured systems. Within this vibrant field, there are
many advances with the potential to enhance or optimize how we design and operate our human-made
world. The drivers and challenges of taking a data-driven approach in an engineering setting are often,
however, different for those developing the latest ML/AI algorithms. Generalizing significantly, where
a ML practitioner might look to develop a powerful algorithm that can make predictions across many
applications without user input, an engineer’s interest may necessarily be more system-focused and
should also consider what knowledge can be gained from the model itself alongside optimizing its
predictive capability. In terms of challenges, one of the most significant is simply that engineering data,
although sometimes “big,” often do not capture all behaviors of interest, may consist of indirect
measurements of those behaviors, and, for operational monitoring, will often be noisy, corrupt, or
missing.

To give an example where these challenges are particularly pertinent, consider the problem of asset
management of civil infrastructure. Given a fixed budget for a monitoring system, we’d like to be able to
collect and use data to tell us something about the current condition of a structure (or multiple
structures). Ultimately we’d really like to be able to use that data to make predictions about how the
structure(s) will perform in the future. As a monitoring system comes online, the data available may be
large in size; however, the information content in it will be limited by the operational conditions seen in
the monitoring window, the current condition of the structure, and the robustness of the sensing and
acquisition system. A data-driven model established in this setting bears the same limitations and we
should be careful (and are) about how we expect any such model to generalize to future structural and
operational conditions.

Many have and will question why pursuing a data-driven approach is interesting in this context given
these limitations/challenges, especially considering our efforts and successes throughout history in
understanding and describing the world and beyond via physics. The blunt answer is that we don’t know
everything, and, when we do know enough, modeling complex (multi-physics, multi-scale) processes
interacting with a changing environment is often difficult and energy-consuming. The more compelling
answer, perhaps, is that we would really like any inferences we make to be based on the evidence of what is
happening currently, and for that, observation is needed.

Given a particular context, there are, of course, benefits and disadvantages in taking either approach; a
physics-based one can provide interpretability, parsimony, and the ability to extrapolate, for example,
whereas data-driven approaches can be considered more flexible, may require less user input, and take
into account evidence from latest measurements. The selected route may come down to personal choice
but hopefully is the result of a reasoned argument.

One hypothetical approach to this reasoning may be to consider how much of the process of interest can
be described by known/modeled physics (within a given computational budget) versus how much of'it can
be characterized by available data (supposing one could assess such things); see Figure 1. Broadly
speaking, in region A one would likely take a physics-based approach and in region C a data-driven one.
In the happy green area, either may be applicable, and in the bottom left-hand corner, one may wish to
consider the best route to gain additional knowledge, whether through measurement or otherwise (the
triangle sizes here are arbitrary and for illustration only).

Recently interest has been growing in methods that attempt to exploit physics-based models and
evidence from data together, hopefully retaining the helpful attributes from both approaches. Indeed, there
has been an explosion of literature on these methods in the past few years, duly reviewed in Willard et al.
(2020), Karniadakis et al. (2021), and von Rueden et al. (2023). These methods should be useful for the
many engineering problems that fall in region B (in Figure 1, the gray area). “Gray” is also occasionally
used to describe the models themselves, alluding to them being a mix of physics (so-called white-box) and
data-driven (so-called black-box) approaches. The term “physics-informed machine learning” is now also
commonly used for those methods at the darker end of the scale.

Figure 2 very loosely maps some of the available methods that exist in the modeling community onto
the knowledge from physics and data axes from the original figure and the black to white spectrum
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Figure 1. Mapping of problem settings according to knowledge available from physical insight and data.
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Figure 2. A non-exhaustive list of modeling approaches very loosely mapped onto the data/physics
problem setting axes from Figure 1.
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(of course it must be noted here that method location will change according to the specific model type
and how it is applied—sometimes significantly so). At the lighter end of the scale, surrogate models are
a continually growing area of interest (Kennedy and O’Hagan, 2001; Queipo et al., 2005; Bhosekar and
Ierapetritou, 2018; Ozan and Magri, 2022) where emulation of an expensive-to-run physical model is
needed. The emerging field of probabilistic numerics (Cockayne et al., 2019; Hennig et al., 2022)
attempts to account for uncertainty within numerical modeling schemes and overlaps with communities
specifically looking at bias correction and residual modeling (Arendt et al., 2012; Brynjarsdottir and
Hagan, 2014; Gardner et al., 2021), where a data-driven component is used to account for error in a
physical model in the first case, or behaviors not captured by a physical model in the latter (most often
achieved by summing contributions from both elements). In the middle sit methods where there is a
more even share between the explanatory power of physics and data-driven components; this may
simply be achieved by feeding the predictions of a physical model into a machine learner as inputs
(Fuentes et al., 2014; Rogers et al., 2017; Worden et al., 2018), or may involve a more complicated
architecture informed by understanding of the process itself. Examples of these hybrid models include
neural networks where the interaction between neurons and the design of their activation functions
reflect knowledge of the physics at work in the situation to be modeled (Caietal., 2021; Laietal.,2021).
Finally at the blacker end of the scale sit constrained methods where, for example, laws or limits can be
built into a machine learner to aid optimization or ensure physically feasible predictions. Many studies
in this area focus on constraining a cost function (Karpatne et al., 2017; Cai et al., 2021), for example,
parameter optimization, with fewer focusing on directly constraining the model itself (as will be the
case in a part of this work) (Wahlstrom et al., 2013; Jidling et al., 2018; Solin et al., 2018; Jones et al.,
2023).

This paper considers a spectrum of models from white to black under a Gaussian process (GP) prior
assumption. GPs have been shown to be a powerful tool for regression tasks (Rasmussen and Williams,
20006), and their use in this context within engineering is becoming common (see, e.g., Kullaa, 2011;
Avendafio-Valencia et al., 2017; Wan and Ni, 2018, 2019). The regular use of GP regression by the
authors of this paper (e.g., Cross, 2012; Holmes et al., 2016; Bull et al., 2020; Rogers et al., 2020) is
because of their simple ability to function given small datasets and, importantly, the Bayesian
framework within which they naturally work; the predictive distribution provided allows the calcu-
lation of useful confidence intervals and the opportunity for uncertainty to be propagated forward into
any following analysis (see, e.g., Gibson et al., 2020). Despite these advantages, their use in the
provided citations remains entirely data-driven and thus open to the challenges/limitations discussed
above.

By drawing an explicit link between the classical treatment of GPs in physical sciences and how they
are used for regression in an ML context, this paper illustrates a derivation path for a spectrum of
possible GP models suitable for incorporating differing levels of physical insight. To do so, Section 2
introduces GPs from both perspectives, with Section 3 identifying their overlap and the specific means
of incorporating physical insight into a GP regression. Examples of specific models across the spectrum
developed for structural assessment are demonstrated in Section 4. Established models that appear on
the spectrum from related fields are discussed below and also in the concluding section (Section 5),
which also attempts to use the studies highlighted here to give insight into applicability and future
directions.

1.1. Related work

The past several years have seen an increase in the use of physics-informed GPs across a variety of
research fields. Arguably the simplest construction of physics-informed GPs has been those based on
residual modeling, where a GP learns the difference between measured data and that of a physics-derived
model, for instance, a finite element analysis or an analytical approximation of the phenomena at play. In
Pitchforth et al. (2021), a residual-based model is formulated for predicting wave loading on an offshore
structural member, combining a simplified, semi-empirical law with a GP regression. In some research
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communities, residual modeling is also referred to as bias correction, where the belief is that model
parameters can be updated to reflect the information of measured data via a correction function, which
Chen et al. (2008) represented as a GP. In Wan and Ren (2015, 2016) similar strategies are proposed for
updating a finite element model for identifying the modal properties of large-scale civil infrastructure.

Input augmentation is also a means of utilizing the outputs of a physical model in combination with
a GP.!' To form such a model, the outputs of the physical model are augmented with the observational
data and used as additional inputs to the machine learner. Input augmentation has offered performance
gains for modeling cascaded tanks exhibiting nonlinear behavior (Rogers et al., 2017) and optimizing
hydroelectric power generation (Sohlberg and Sernfélt, 2002). Parts of the system identification
community also categorize transformation to inputs of a black-box model as semi-physical modeling
(Lindskog and Ljung, 1994).

Another area that has combined physics and GPs is in the modeling of ordinary and partial
differential equations (ODE/PDEs). In the work of Pfortner et al. (2022), GPs conditioned on
observations resulting from linear operators are shown to provide a general framework for solving
linear PDEs, accommodating scenarios where physics are partially known (i.e., the full governing
equations are unavailable), as well as propagating error resulting from both parameter and measurement
uncertainty. In a similar vein, Raissi et al. (2017a, 2018) and Raissi and Karniadakis (2018) demonstrate
that by constructing a joint distribution between successive time or spatial points, a GP prior can be
constructed that can explicitly learn solutions of partial differential equations, coining the term
“numerical Gaussian processes.”

Other GP works that have sought to leverage governing equations are those of latent force models
(LFMs), which integrate driving mechanistic laws to infer unknown inputs (Alvarez et al., 2009). In
Hartikainen and Sarkka (2010), state space formulations of LFMs address the computational burden of
direct inference over LFMs. Here the covariance function is reconstructed as a solution to a linear time-
invariant stochastic differential equation, an approach now adopted for some problems in the structural
dynamics community (Nayek et al., 2019; Rogers et al., 2020). Attention has also been given to
treating nonlinear latent force models (Ward et al., 2020). In Beckers et al. (2023), an interesting step is
taken of combining LFMs with a variational autoencoder for learning the dynamics of a moving object
from a video sequence, where, unlike in much of the previously referenced works, the resulting GP
posterior is not Gaussian, due to the use of a Bernoulli likelihood for the pixel observation model. For
modeling wind turbine power curves, Mclean et al. (2023) also performed inference over a non-
Gaussian physics-informed GP, where a Beta likelihood observation model was chosen to reflect prior
understanding that the normalized predicted power output cannot exceed one, which is the maximum
rated power.

Moving toward physics-informed GPs that generally are more data-driven in nature, constrained
GPs serve as a general term for a GP whose predictions satisfy some imposed condition(s); a
comprehensive overview can be found in Swiler et al. (2020). Given that knowledge of a constraint
will likely arise in the context of physical insight, such GP models fall firmly into the realm of
physics-informed. For instance, in modeling a degradation process, one may wish to enforce a
monotonicity constraint (Riihiméki and Vehtari, 2010; Agrell, 2019). In Haywood-Alexander
et al. (2021) a series of kernels is constructed that embed differing aspects of physical characteristics
to model ultrasonic-guided waves. The inclusion of both differential equations (Alvarez et al., 2009;
Raissi and Karniadakis, 2018; Long et al., 2022)? and boundary conditions (Cross et al., 2019; Jones
etal.,2023) through constraining predictions via an appropriate operator over the kernel has also been
considered.

! Clearly for residual modeling/bias correction and input augmentation, the black box component of the model need not
necessarily be a Gaussian process. However, given the focus of this paper on physics-informed Gaussian processes, the literature
referenced in this section is exclusively related to GPs.

2Note the link here to the previous two paragraphs.
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2. GPs from a physics and ML perspective
2.1. Physics-based perspective

From a classical perspective, a GP is one example in a wider family of stochastic processes used to
characterize randomness. To begin to describe a stochastic process intuitively, one can consider
something that evolves through time. In this case, a stochastic process is one where, at each instance
of time, ¢, the value of the process is a random variable. In characterizing the stochastic process, we are
describing the evolution of probability distributions through time. Note that we may equally wish to
consider the evolution of a process through a variable ( € R”) that is not time, and will do so later in the
paper.

The fundamental elements for describing a stochastic process are the mean and autocorrelation, which
are functions over time (or the input variable(s) of interest). Considering a process y(7), its mean x(r) and
autocorrelation ¢(#,1,) functions are

(1) =E[y(7)]
(t1,12) =E[y(t1)y(12)] (1)

¢
:/:’0/:x’y(tl)y(h)g(y(tl),y(tz))dy(tl)dy(tz),

where E is the expectation operator. The autocorrelation requires integration of the product of y(¢;)y(#,)
and their joint probability density, g, at times #; and ¢, (this is sometimes referred to as the second-order
density).

Following on from this, the (auto)covariance of a process, k(t1,1,), is

k(ti,t2) =B[(y(t1) —u(t1)) (9(t2) — u(t2))]. 2)

Clearly, the autocorrelation and (auto)covariance are one and the same for a process with a zero mean.

A GP is one where at each instance or iteration the value of the variable of interest follows a normal/
Gaussian distribution, with the joint distribution of a finite collection of these also normal. It is completely
defined by its mean and the covariance function, that is, one need only consider the joint density between
two points (second-order density).

Many of the behaviors/variables that we wish to model in science and engineering are stochastic
processes. The first use of the term “stochastic process” arose in the 1930s (Doob, 1934; Khintchine,
1934), but the response of a physical system to random excitation, which is most certainly a stochastic
process, had been under study since at least the turn of the 20th century.?

A particular example of interest that will be used later in this paper is that of a structure vibrating.
Perhaps the simplest formulation of a stochastic process in this context is the response of a deterministic
system under random excitation. Generally speaking, if the excitation to a linear dynamical system is a GP,
then the response of that system is also a GP (a GP remains a GP under linear operations; Papoulis and
Pillai, 2002).

Given an assumed equation of motion (or physical law of interest) for y, one can attempt to derive the
covariance function of a process using (1, 2). Later in the paper the derived covariance function for a single
degree of freedom (SDOF) system under random loading will be shown and employed in a GP regression
setting.

2.2. Data-driven perspective
In the context of GP regression, that is, from a data-driven perspective, the process is unknown (to be
learned from data), and so the definition of the mean and covariance functions become a modeling choice.

31n 1905 Einstein derived the probability distributions of the displacement through time of particles suspended in fluid (Einstein,
1905). For the interested reader, two review papers on Brownian motion by Uhlenbeck and coauthors provide an excellent
discussion of the work around this time (Uhlenbeck and Ornstein, 1930; Wang and Uhlenbeck, 1945).
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These choices form the prior mean and covariance, which will be updated to the posterior mean and
covariance given the observations of the process of interest.

An example of a common choice for covariance function is the squared exponential (SE) with an
additional white noise covariance term:

1
k) =a2exp ([, =) + o2 ®

Rather than a process through time, ¢, this is a covariance function for a process defined over a
multivariate input space with elements x; (reflecting the more generic nature of regression tasks
attempted). Here there are three hyperparameters: aﬁ, the signal variance; /, the length scale of the
process; and o2, the variance from the noise on the measurements. This may be easily adapted to allow a
separate length scale for each input parameter if required.

After selection of appropriate mean and covariance functions and with access to measurements of the
process of interest, the regression task is achieved by calculating the conditional distribution of the process
at testing points given the observations/measurements.

Following the notation used in Rasmussen and Williams (20006), k (xp, xq) defines a covariance matrix
K4, with elements evaluated at points x,, and x,, where x; may be multivariate.

Assuming a zero-mean function, the joint Gaussian distribution between measurements/observations y
with inputs X and unknown/testing targets y* with inputs X* is

DRI )

The distribution of testing targets y* conditioned on the training data (which is what we use for
prediction) is also Gaussian:

VX X,y ~ N (K(X*,X) (K(X.X)+020) "y, K(X*,X*) = K(X*,X) (K(X,X) +02I) ' K(X,X")). (5)

See Rasmussen and Williams (2006) for the derivation. The mean and covariance here are that of the
posterior GP.

From equation (5)) one can see that the GP mean prediction at point x* is simply a weighted sum—
determined by the covariance function—of training points y. Figure 3a illustrates how the influence of a
training point on a prediction decays as the distance in the input space increases when using the SE

0.1378 R e B 0.2
0.1377 0.15
= 0.1376 = 0.1
¥ ¥
0.1375
g § 0.05
§ 01374 5§
g 0.1373 g
S 0.1372 8 —0.05
S S o4
& 0.1371 z Y
0.137 —0.151]
0.1369 e 0. —
0 02040608 1 12141618 2 0 02040608 1 12141618 2
Distance between input points (z) Distance between input points (z)
(a) Squared-exponential (b) SDOF

Figure 3. Measure of influence of an input point on a prediction for the squared exponential (a) and the
covariance function of single degree of freedom (SDOF) oscillator under a random load (b).
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covariance function (hyperparameters arbitrarily selected). This shows how the covariance between
points with similar inputs will be high, as is entirely appropriate for a data-based learner. In the absence
of training data in an area of the input space, the mean value of GP will return to the prior mean (usually
zero). An equivalent plot for the covariance function of an SDOF oscillator employed later (Section 4) is
included for comparison, where one can see the oscillatory nature captured.

3. A spectrum of GPs for regression

Commonly engineering applications of GP regression will follow a typical ML approach and adopt a zero
mean prior and a generic covariance function selected from either the SE or the Matérn kernel class
(Rasmussen and Williams, 2006). In an upcoming summary figure, this will be denoted as
f(x) ~ GP(0,kmr ), with ML denoting the ML approach as above. Although successful in many settings,
these applications suffer from those same challenges discussed in the introduction, namely that the
regression bears the same limitations as the dataset available with which to characterize the system/
structure of interest.

Here the incorporation of one’s physical insight of a system into a GP regression is introduced as a
means of lessening reliance on complete data capture. The GP framework provides a number of
opportunities to account for physical insight, the biggest coming from the definition of the prior mean
and covariance functions. Following on from the previous section, perhaps the most obvious approach is
to use physically derived mean and covariance functions where available (equations (1)) and (2)). If these
can be derived, they may readily be used in the regression context, denoted as f (x) ~ GP(up,kp) (P stands
for physics).

This section lays out a number of modeling options for a more likely scenario that one has partial
knowledge of the system of interest. Following the flow from more physical insight to less, each of the
models discussed is placed on the white to black spectrum in Figure 4, perhaps giving an indication of the
kind of problem where they may be most usefully employed (illustrative examples of each follow in the
next section). As with Figure 2, it should be noted that how each model type is developed and applied
could change its placement on the spectrum.

Light gray: If one is able to express the mean behavior of the process of interest, or something close to
the mean, then this is easily accounted for by employing that mean as a prior with a standard ML
covariance function to capture the variability around it: f (x) ~ GP(up,kmr ) (Zhang et al., 2020; Pitchforth
etal., 2021). If the form of the differential equation governing the process of interest is known along with
the covariance derivable, then this may also simply be used in place of the data-driven kernels discussed

Classical treatment of stochastic processes  f(x) ~ GP(up. kp)
Physical covariance in an ML setting f(x) ~ GP(0. kp)
Physics-based mean function F(x) ~ GP(pp, kna)
Kernel combinations f(x) ~ GP(0.g(kp. ki)
- with mean function f(x) ~ GP(1p. g(ke. ki)
Constrained ML kernel f(x) ~ GP(0, g(kn))
Standard machine learning approach F(x) ~ GP(0, knai)

Figure 4. A spectrum of GPs for regression combining physics-derived mean and covariance functions,
Up,kp, with those more standardly used in ML, k.
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above, f(x) ~ GP(0,kp) (Cross and Rogers, 2021). In this case, the learning of unknown system
parameters may be achieved by maximizing the marginal likelihood, p(y|X), in the way that one learns
the hyperparameters in the standard ML approach (see, e.g., Rasmussen and Williams, 2006).

Medium gray: In the more likely scenario of only possessing partial knowledge of the governing
equations of a system of interest, or not being able to derive a covariance analytically, the suggestion here
is that the GP prior may be approximated or formed as a combination of derived and data-driven
covariance functions so that the data-driven component accounts in some way for unknown behavior;
f(x) ~GP(0,g(kp,kny)), for some function g, or perhaps f(x) ~ GP(up,g(kp,kmr)) if 2 mean may be
appropriately approximated.

Although this is an area very much still under investigation, the suggested route here is to begin, if
possible, by considering or assuming the likely interaction between the known and unknown behaviors
and to propagate this through to the prior GP structure. For example, say that one can assume that the
response of a structure is a sum of understood behavior and an unknown contribution; y =A + B, with A
known and B unknown, then the autocorrelation of this process can be formed as

Elyy] =E[(A +B)(A' + B')) =E[AA’ + AB' + A'B+ BB/. (6)

If A and B may be assumed to be independent and we make the standard ML prior assumption on B of a
zero mean and covariance K p, this suggests a suitable GP model* would be y ~ GP(0,K4 + K ). As any
linear operation between covariance functions is valid, this route is available for many likely scenarios in
an engineering setting where the response to be modeled is a convolution between a known system
and unknown force (as will be the case for the derived covariance in the first example below), or a product
between a known temporal response and an unknown spatial one (y=A(t)B(x)=y~ N (0,K4(1)

x Kp(x)), for x and ¢ independent).

Dark gray: Finally, if the physical insight one has is perhaps more general or cannot be expressed
through a mean or covariance function, one can consider adapting a data-driven covariance function to
obey known constraints or laws. This may be done by, for example, the construction of a multiple-output
GP with auto and cross-covariance terms designed to reflect our knowledge (Wahlstrom et al., 2013;
Jidling et al., 2018), or by constraining predictions onto a target domain such that boundary conditions on
a spatial map can be enforced (Solin and Kok, 2019; Jones et al., 2023).

The next section shows examples for each of these categories, with discussion following in Section 5.
Each of the examples is presented quite briefly, with references for further reading. The intention, and the
reason for brevity, is to attempt to illustrate models across the range of spectra with conclusions drawn
from them jointly in Section 5.

4. Examples
4.1. Physics-derived means and covariances

The light gray models described above are applicable when one can derive an approximate mean or
covariance function for the process of interest.

Example 1. f(x) ~ GP(0,kp).

In Section 2, an oscillatory system under white noise was used as an example of GP in time. For an
SDOF, the equation of motion is my(r) + cy(z) + ky(t) = F(t), with m, ¢, k, and F being the mass,

4 A note of caution here: in considering a derivation path rooted in physical insight, we must be careful not to be fooled into
thinking that the GP defined by mean and covariance derived from partial knowledge is representative of the underlying generative
stochastic process, as in many cases this may not be Gaussian. The implicit assumption taken in any GP regression is that the target of
interest can be suitably modeled by some Gaussian process prior, with the flexibility of the commonly adopted ML kernels allowing
useful models under this assumption. The assumption, in turn, made here is that the combination of these kernels with ones derived
from physical knowledge also describes some Gaussian process that can be used to model the target.
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Figure 5. Comparison between the prediction of GPs with squared exponential and SDOF kernels when
conditioned on every 10th point of simulated vibration data (Cross and Rogers, 2021). The gray area
indicates confidence intervals (CI) at three standard deviations.

damping, stiffness, and force, respectively. Under a white noise excitation of variance ¢2, one can

derive the (auto)covariance of the response Y(#); ¢y, y(,) = E[Y (#1)Y(#2)], which is solvable either

via some lengthy integration or by Fourier transform of the power spectral density (Cross and Rogers,
2021):
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Here standard notation has been used; w, = \/k/m, the natural frequency; { = ¢/2v/km, the damping

ratio; wgy = w,\/ 1 — (2, the damped natural frequency; and r =1t — t; (this is a stationary process).

If one has a system that behaves similarly to this, then we may readily use such a covariance function in
a regression context. Figure 5 shows the prediction of an undersampled SDOF system using a GP
regression with this covariance function, compared to one with a more standard kernel in an ML setting
(the SE). The crosses mark the training/conditioning points.

Hyperparameters for both models were learned from maximizing the marginal likelihood, p(y|X),’
with the hyperparameters of the SDOF kernel being the parameters w,,{ of the system itself. The
hyperparameters of the standard SE kernel are the length scale and signal variance.

One can see that the GP with the standard covariance function (labeled as SE) smooths through the
observed data as designed, and that the GP with the derived covariance function (labeled as SDOF mean
prediction) is much more appropriately equipped to model the process than its purely data-driven
counterpart. In particular, the inbuilt frequency content of the derived covariance function gives a
significant advantage (w, is learned as a hyperparameter within a bounded search space).

In giving the kernel structure pertinent to the process of interest, one is able to significantly reduce
reliance on conditioning data, in this case allowing sampling below Nyquist. This covariance function will
also be employed in a later example with extension to multiple degrees of freedom.

e~ Cenltl <cos(a)df) +@ sin(a)d|1|)) . (7
w4

> From an implementation perspective, this translates to minimizing the negative log marginal likelihood.
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Figure 6. Comparison between GPs predicting bridge deck displacement over time with prior mean of
zero above and with physics-informed mean function below (Zhang et al., 2020).

Example 2. f(x) ~ GP(up,kmr).

In some situations, the mean behavior of a process may be broadly understood. This example shows the
prediction of deck displacement of a stay-cabled bridge,® the model of which is intended for use in
monitoring the structure performance. Deck displacement is a function of a number of factors, principally
traffic loading and temperature. Considering physical insight, we believe that the general displacement
trend is driven by the contraction and relaxation of the cables with temperature, with seasonal trends
visible. Here, therefore, a good candidate prior mean function is a linear relationship between cable
extension and temperature.

Figure 6 compares two standard GP regressions (with SE covariance functions) with and without the
prior mean function included. Mimicking the case where data from a full monitoring campaign is only
available over a short time window, the models are trained (conditioning and hyperparameter setting) using
data from the first month of the 5-month period shown. As before, and indeed in all following examples, the
SE hyperparameters (length scale and signal and noise variance) are found through maximizing the marginal
likelihood, p(y|X). The GP with a zero mean prior (top image in Figure 6) is unable to accurately predict the
deck displacement mean-wise as the temperature drops seasonally toward the end of the 5-month period
(as this is an unseen condition, as indicated by the increased confidence interval).

In this case, building in the linear relationship between cable extension and temperature as a prior mean
function allows a more successful extrapolation into the colder months (lower image in Figure 6), again
demonstrating a lessened reliance on complete data for training.

4.2. Combined derived and data-driven covariance functions

In the middle of the spectra are the many problems where governing equations are only available to
describe some of the behaviors of interest. The hybrid models here are proposed to account for this, with
the interaction between physical and data-driven components necessarily more interwoven.

©The bridge in question is the Tamar Bridge in Southwest England and actually has both stay and suspension cables. The
interested reader is directed toward references (Cross, 2012; Zhang et al., 2020) for a more comprehensive overview of this
experimental campaign.
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Figure 7. Hybrid covariance structure modeling the spatiotemporal behavior of a vibrating beam—the
spatial variation is assumed to be unknown. The predictions of the model are decomposed into the
principal modes of the beam and shown here spatially (a,b) and temporally (c,d) for the first two modes.
Normalized mean squared errors spatially are 0.002 and 0.225 (log loss —5.472,—3.088), with time
domain errors 0.411 and 0.285 (log loss —3.520,—2.677) respectively (Pitchforth et al., 2022).

Example 3. f(x) ~ GP(0,g(kp,kmL)).

The motivating problem here is the health/usage monitoring of an aircraft wing during flight, where we
would like to predict wing displacement spatially and temporally to feed into a downstream fatigue
damage calculation (Holmes et al., 2016; Gibson et al., 2023). In this case, one could assume that the
solution of the equation of motion has separable spatial and temporal components, as with a cantilever
beam. Under a random load, the covariance of the temporal component may be derived as in Example 1
(assuming linearity), accounting for multiple degrees of freedom by adding covariance terms up for each
of'the dominant modes (see Pitchforth et al., 2022). As the wing will likely be complex in structure, a data-
driven model component (covariance) is a good candidate to account for spatial variation.” With
separability, the covariance of the process will be a product between the spatial and temporal components,
which would make the assumed GP model: y ~ GP(0, Kympor (1) Kwmr (x)).

Figure 7 shows a simple illustration of this using a simulated cantilever beam under an impulse load—
assuming here that we have no prior knowledge of the likely form of the spatial (modal) response. The GP
is conditioned on a subsampled and truncated time history (/:2:7) from eight points spatially distributed
across the beam. The performance of the model in capturing the spatial temporal process is assessed by
decomposing the beam response into its principal modes and comparing reconstruction errors across
100 spatial points and the full time history of the simulation ({:end). Figure 7 shows the GP prediction of
the first two modes, where one can see that fidelity in the spatial and temporal domains is good.

"1f the wing was idealized as a cantilever beam, the covariance of the spatial component may also be readily derived.
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(a) Schematic and sensor locations [67]. (b) Image of actual structure built in-house.

Figure 8. Images of benchmark GARTEUR aircraft. Note that the experimental setup used and shown
here in (b) does not include the wing tips from the original benchmark configuration shown in (a).

Having demonstrated good performance on a simulated case study, a second example more represen-
tative of a real-world scenario was considered in the form of a benchmark aircraft structure built to
simulate the behavior of an airplane. Initially designed by the Group for Aeronautical Research and
Technology in EURope (GARTEUR) to exhibit the dynamic behavior similar to that of a real aircraft, the
structure has since been used as a benchmark for dynamic model validation studies and for assessing
modal identification and model updating methods (Balmes and Wright, 1997; Link and Friswell, 2003;
Xiaand Lin, 2004; Govers and Link, 2010; Delo etal., 2023). A detailed description of the structure can be
found in Link and Friswell (2003). Figure 8 shows an image of the authors’ in-house GARTEUR
structure, as well as a schematic detailing the location of the sensors. The data used for demonstration
here are the measurements of the aircraft response under a random load between 4 and 80 Hz, with the
challenge again being able to make spatial-temporal predictions of the response of the structure. For this
example, seven spatial locations of interest are across the span of both wings; these are sensors 1-z, 5-z,
8-z, 206-z, 108-z, 105-z, and 101-z, shown in Figure 8.

As before, a GP with an SDOF covariance function (from Example 1) in product with a more standard
covariance (SE) to account for the unknown spatial variation is used. Training on every sixth time point,
Figure 9 shows the corresponding predictions made at each of the sensors along the span of the wing over
1,500 time points, where it can be seen that the model is able to accurately account for both the spatial and
temporal component of the response of the aircraft structure.

Knowledge of the system has been used in two ways here, firstly in developing the model structure (the
kernel product) and secondly in accounting for the time domain behavior through derived covariance. The
relative importance of each is dependent on the availability of training data. Where fully sampled temporal
and spatial data are available, a black-box counterpart should be comparable in performance so long as the
selected covariance is sufficiently flexible/expressive. Knowledge of the separability of the domains has
allowed good prediction here where limited data are available spatially, with the temporal knowledge
becoming important where data are not fully sampled in time.

4.3. Constrained covariance functions

Atthe darkest end of the spectrum are problems and models where insights may be more general in nature,
particularly where that knowledge cannot be used to derive generative equations.

Example 4. f(x) ~ GP(0,g(kmr)).
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Figure 9. Predictions of the spatial-temporal response of GARTEUR, decomposed into the temporal
prediction at each sensor. The top plot corresponds to sensor 1-z, with each successive plot the next sensor
along the span of the wing. The normalized mean squared error averaged across all sensors is 5.18 (log
loss —1.45). It is worthwhile highlighting that without including sensor 206-z, the averaged error reduces
t0 0.62 (log loss —1.43). The reduced performance at this location is likely explained by sensor 206-z being

at a node (little response). The log loss remains largely unchanged as the full predictive posterior is

reflective of the variation on the measurements.

This example looks at the problem of crack localization in a complex structure using acoustic emission
monitoring (acoustic emissions occur during the initialization and growth of cracks, which may be
detected and located through high-frequency sensing; Jones et al., 2022; Jones, 2023). The task central to
the localization is to attempt to learn a map of how energy propagates through a structure from any
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Figure 10. Comparison of standard and constrained GP models for AE crack localization (Jones et al.,
2023) where training data have been limited to the middle section of the plate. (a) Compares model errors
at decreasing training grid densities, with measurements at the boundaries included (top), partial
boundary measurements (middle), and no boundary measurements (bottom). (b) Shows an example of
squared error difference between the two models across the plate, with the standard GP showing
increased errors away from the training area.

possible crack location to a number of fixed sensors that are deployed to monitor acoustic emissions. The
map is created by introducing a forced acoustic burst at each possible crack location (with a laser or pencil
lead break) and then, in our case, producing an interpolative model that can be used inversely to infer
location when a new emission is recorded. A large restriction limiting the use of such a localization
scheme is the need to collect training data across the structure, which can be time-consuming and costly.
Similarly, from a physical perspective, propagation of AE through a structure is complex (and costly) to
model unless that structure is homogenous and of simple geometry. The proposed solution here is to
follow a data-driven approach but with inbuilt information of the geometry/boundaries of the system,
hopefully helping with both shortcomings.

Figure 10 shows how the use of a constraint to a standard ML covariance function can considerably
lessen reliance on full data capture. Here a localization map has been made of AE propagation through a
plate with a number of holes; and a standard GP is compared to one where knowledge of the boundaries of
the plate has been built into a sparse approximation of the covariance function, which reformulates the
kernel as an eigen decomposition of the Laplacian of the plate domain (Jones et al., 2023). The two
approaches perform similarly where training data are abundant, but we begin to see the gains of the
introduced boundaries as training grid density decreases, and particularly so when parts of the plate are not
mapped at all in the training phase.

5. Discussion and conclusions

Each of the examples shown here has demonstrated how the introduction of physical insight into a GP
regression has lessened reliance on conditioning data and has shown significantly increased model
performance over black-box examples where training data are incomplete.

The number of ways of accounting for knowledge within the GP framework provides parsimonious
means to capture many of the different forms of prior knowledge that engineers possess and, in some
cases, particularly when employing a mean function can be quite simply achieved.

An additional benefit of many of the models shown is enhanced interpretability, which is particularly
important in the applied setting. In Examples | and 3, the hyperparameters of the GP are the physical
parameters of the system itself, opening the door to system identification in some cases.
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Of the methods introduced/discussed, some are more familiar than others. The use of a mean function
here takes the same approach as the bias correction community when a GP regression is used to account
for discrepancy between a physical (often numerical) model and measurements of the real system
(Kennedy and O’Hagan, 2001; Gardner et al., 2021). Underlying the application shown here is the
unspoken assumption that physics built into the mean function is trusted, thus allowing the consideration
of extrapolation. Although the flexibility of the GP means that it is well able to account for potential bias,
in its presence and in the case of incomplete data available for training, one is as unable to place trust in the
model across the operational envelope as one would be in the black-box case. In the case of incomplete
data, this would suggest that only the simplest physics of which one is confident should be built into the
regression.

The design of useful kernels is also naturally an area of interest for many, although often for different
purposes than those explored here. Covariance design has been considered within the control community
to improve the performance of machine learners for system identification tasks (Ljung, 2010; Pillonetto
and Nicolao, 2010; Schoukens and Ljung, 2019). In Pillonetto et al. (2014) a review is provided in this
context, where the focus is on the derivation of a covariance function that will act as an optimal regularizer
for the learning of linear dynamical system parameters. Within the ML community, researchers attempting
to develop more generic technology also look to physical systems to provide covariance functions useful
for a broad class of problems (Higdon, 2002; Boyle and Frean, 2005; Alvarez et al., 2009; Wilson and
Adams, 2013; Tobar et al., 2015; Parra and Tobar, 2017; Van der Wilk et al., 2017; McDonald and
Alvarez, 2021; Ross et al., 2021). These examples present very flexible models that are able to perform
very well for a variety of different tasks. As discussed in the introduction, the motivation here is to build in
system-specific knowledge to lessen reliance on data capture. These models will only help with tasks
where the physics that inspired the general model is representative of the process of interest.

Including pertinent physical insight in a GP regression has most commonly been achieved via the
multiple output framework, where relationships between multivariate targets are encoded in cross-
covariance terms, including those studies already mentioned while discussing constraints (Wahlstrom
etal., 2013; Jidling et al., 2018; Solin et al., 2018). In Cross et al. (2019) we adopt a multiple output GP to
constrain a predictor using knowledge of physical boundary conditions for a structural health-monitoring
task.a more comprehensive approach in this context is shown, where the relationships between monitored
variables are captured with the multiple output framework; different combinations of covariance
functions are also considered. Notable contributions relevant here and also applied within an engineering
context (Raissi et al., 2017a, 2017b, 2018) use a differential operator to constrain multiple outputs to
represent a system of differential equations. All of these works, which show significant improvement over
an entirely black-box approach, adapt the standard ML covariance functions commonly used for
regression. Expanding the possibility of directly derived priors in both mean and covariance as done
here provides an opportunity (where available) to improve these models further.

The hybrid methods discussed in the medium (murky) gray section have been less well studied in this
context and are the subject of ongoing work. The more complex interactions between physical and data-
driven components have the potential to provide powerful models, although their use and interpretability
will depend on architecture. When combining covariance functions over the same input domain, for
example, the flexibility of the data-driven component will generally mean that hopes of identifiability are
lost, while nonetheless still preserving predictive power.

Finally, across disciplines, there are a growing number of examples now available demonstrating how
knowledge of the boundaries or constraints of a system can be very helpful in the automated learning of
their corresponding mapping (Coveney et al., 2020; Swiler et al., 2020), with many of the multiple output
GP examples discussed above falling in this category. The flexibility of such models, alongside the
opportunity to build in the simplest of intuitions, will likely prove very popular in the future.

The main aim of this work was to provide a spectrum of potential routes to account for differing levels
of physical insight within a regression context, using a GP framework. The examples employed here have
demonstrated how the derivation path proposed can allow one to establish simple yet flexible models with
components and/or (hyper)parameters linked to the physical system. This has been shown to be a
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desirable pursuit when models must be established without an abundance of training data—a common
occurrence across engineering applications, where monitoring of our key infrastructure remains a difficult
and expensive challenge.
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